用户名: 密码: 验证码:
机载非正侧面阵雷达的空时自适应处理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载雷达的杂波抑制是空时多维滤波问题,自从Brennan的全空时联合最优处理法提出后,应用空时自适应信号处理(Space Time Adaptive Processing,STAP)抑制杂波的研究便纷纷涌现,其中研究最多的是降维STAP处理法,其较小的计算量在实际应用中有较大的优势,而且性能得到了验证。但是,这些研究基本上都是针对正侧面阵雷达展开的,对非正侧面阵的研究很少。鉴于此,本文主要讨论了机载非正侧面阵雷达的空时自适应性能,这种研究是很有意义的,因为要实现全方位扫描,非正侧面阵雷达的使用必不可少。本文主要分两个方面来考察非正侧面阵:首先,介绍了几种常用的降维STAP处理方法原理:多通道法(Extended Factored Approach,EFA或mDT)、局域联合处理法(Joint Domain Localized,JDL)以及和差波束法(∑△-STAP),通过仿真验证了这几种方法应用于非正侧面阵雷达时,同样能够达到杂波抑制的效果。接着,对非正侧面阵近程杂波非平稳性(杂波多普勒随距离变化)做一说明,并提出了一种非均匀分段方法限制近程杂波对杂波抑制的影响,文中详细介绍了非均匀分段的原理和实现方法,通过仿真实验验证了该方法能够达到预期的目的,同时与其它几种分段方法比较,说明了该非均匀分段法的合理性和严密性。
The clutter suppression for airborne radars can be implemented by a space time filter. The researches on Space Time Adaptive Processing (STAP) has been very popular since Brennan proposed the theory of optimum full rank STAP for suppressing clutter. And the focus is always concentrated on reduced rank STAP, for its smaller computation and better performance proven in practice. However, almost techniques have been used in airborne forward looking radars for clutter suppression, barely in non side looking array radars. Based on this, this paper studies the space time adaptive processing performance of airborne non side looking array radars, which has a great signification since the non side looking array radars are necessary for omnidirectional scan. There are two parts: first, three common used reduced rank STAP methods, including Extended Factored Approach (EFA or mDT), Joint Domain Localized (JDL) and∑△STAP, are discussed. And the simulation result proves that the clutter of non side looking array radars can be considerably reduced by using these three methods. Second, the near range clutter of non side looking array radars shows high nonhomogeneity, which is presented by the range doppler curve: the doppler value changes with the range. This paper gives a new non average subsection method to restrict the near range clutter within a special area in the range doppler clutter figure so that the result of clutter suppressing in other area can meet our expection. The principle and implement process of the non average subsection method are studied in detail. By comparison with several other subsection methods, this method mentioned before is effective, reasonable and considerate.
引文
[1] R. Klemm. Optimum clutter suppression in airborne phased array radars[J]. Proc. of IEEE ICASSP. Paris, France. 1982: 1509 1512.
    [2] R. Klemm. Suboptimum clutter suppressing for airborne phased array radars[J].Proc.of IEE. Int. Conf. on Radar’82th, London, UK 1982: 473 476.
    [3] R. Klemm. Adaptive clutter suppression for airborne phased array radars[J]. IEE Pt. F, 1983, 130(1): 125 132.
    [4] R. Klemm. Some properties of space time covariance matrices[C]. Int. Conf. Radar, Paris, 1986: 357 362.
    [5] R. Klemm. Adaptive airborne MTI: an auxiliary channel approach[J]. IEE Proc. F, 1987, 134(3): 269 276.
    [6] R. Klemm, J. Ender J. New aspects of airborne MTI[C]. Proc. IEEE Int. Conf. On Radar, Arlington, USA, 1990: 335 340.
    [7]‘IEEE. AESS 1991 award to F. R. Dickey, F .M. Staudaher, and M. Labitt’, IEEE Aerosp. Electron. Syst. Mag., 32, May 1991, p.32.
    [8] R. Klemm. Adaptive airborne MTI: comparison of sideways and forward looking radars[C]. Proc. of 1995 IEEE Int. Radar Conf., Alexandria, VA, USA: 614 618.
    [9] R. Klemm. Forward looking radar/SAR: clutter and jammer rejection with STAP[C]. Proc. of EUSAR’96th, Konigswinter, Germany: 485 488.
    [10] P. G. Richardson and S. D. Hyaward. Adaptive space time processing for forward looking radars[J]. Proceeding of 1995 IEEE International radar conference, May 1995, 629 634.
    [11] M. Zatman. Circular array STAP[J]. IEEE Trans. Aerosp. Electron. Syst., 2000, 36(2), 510 517.
    [12]廖桂生,保铮,张玉洪.相控阵AEW雷达杂波抑制的简化辅助通道法[J].电子科学学刊, 1993年9月15 (5).
    [13]保铮,张玉洪,廖桂生,王永良,吴仁彪.机载预警雷达空时二维滤波的一种方案及其改进[C].机载雷达研讨会,北京, 1992年12月, 24 38.
    [14]保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时空二维自适应滤波[J].电子学报, 1993年9月, 21(9).
    [15] Wang Yongliang, Peng Yingning and Bao Zheng. Space time processing for airborne radars with various array orientation[J]. IEE Proc. Radar, Sonar Navigation,Dec. 1997, 144(6): 330~340.
    [16] Wang Yongliang, Bao Zheng and Liao Guisheng. Three united configurations on adaptive spatial temporal processing for airborne surveillance radar systems[C]. International conference on signal processing (ICSP’93), Beijing, 1993. 381~386.
    [17] H. Wang, L. Cai. On adaptive spatial temporal processing for airborne surveillance radar systems[J]. IEEE. Trans. AES, 1994, 30(3): 660 669.
    [18] Y. Zhang, H. Wang. Further results ofΣ△STAP approach to airborne unveillance radars[C]. IEEE National Radar Conference, 1997: 337 342.
    [19] R. D. Brown, R. A. Schneible, M. C. Wicks, H. Wang, Y. Zhang. STAP for clutter suppression with sum and difference beams[J]. IEEE Trans. AES, 2000, 36(2): 634 646.
    [20] J. R. Roman, M. Rangaswamy, D. W. Davis, Q. Zhang, B. Himed, J. H. Michels. Parametric adaptive matched filter for airborne radar applications[J]. IEEE. Trans. Aerospace Electron. Syst., 2000, 36(2): 677 692.
    [21] Yongliang Wang, Jianwen Chen, Zheng Bao, Yingning Peng. Robust space time adaptive processing or airborne radar in nonhomogeneous clutter environments[J]. IEEE. Trans. Aerospace Electron. Syst., 2003, 39(1): 70 81.
    [22] J.Ward. Space Time Adaptive Processing for Airborne Radars[C]. Technical Report of Lincoln Lab, US. December, 1994.
    [23] I. S. Reed, J. D. Mallett, L. E. Brennan. Rapid convergence rate in adaptive arrays. IEEE. Trans. AP 24(5) 1976.
    [24] Bao Zheng etc. Adaptive spatial temporal processing for airborne radars. Chinese Journal of Electronics, 2(1), 1993.
    [25]廖桂生等.机载雷达时空二维部分联合自适应处理.电子科学学刊, 15(6), 1993.
    [26] R.Dipietro. Extended factored space time processing for airborne radar systems. Proceeding of the 26th Asilomar Conference on Signals, Systems, and Computing, Pacific Grove, CA, October, 1992: 425 430.
    [27] H.Wang. Space time Processing for airborne radars. V. Madisetti and D. Williams (Eds), Digital Signal Processing Handbook. Boca Raton, FL: CRC Press, 1997.
    [28]王彤.机载雷达简易SATP方法及其应用.西安电子科技大学博士学位论文, 2001.
    [29]廖桂生,保铮,许志勇.阵面面向任意的机载相控阵雷达降维空时自适应处理.西安电子科技大学学报, 25(4), 1998.
    [30]王永良,保铮,彭应宁.阵面在方位上任意放置时机载雷达空时二维信号处理方法.电子学报, 24(3), 1996.
    [31] C. D. Richmond. Statistical performance analysis of the adaptive sidelobe banker detection algorithm. Proc. 31st Asilomar Conf. On Signals, Systems, and Computers, 1997: 872 876.
    [32] D. J. Rabideau, A. O. Steinhardt. Improving the performance of adaptive arrays in nonstationary environments through data adaptive training. Proc. 30th Asilomar Conf. On Signal, Systems and Computers, Pacific Grove, CA, November 1996:75 79.
    [33] D. J. Rabideau, A. O. Steinhardt. Improved adaptive clutter cancellation through data adaptive training. IEEE. Trans. AES., 1999, 35(3): 879 891.
    [34] W. L. Melvin. Eigenbased modeling of nonhomogeneous airborne radar environments. Proc. of the IEEE. National Radar Conf., Dallas, Tx, May 1998: 171 176.
    [35]吴仁彪.机载相控阵雷达时空二维自适应滤波的理论与实现.西安电子科技大学博士学位论文, 1993.
    [36] Y. I. Han. Performance of excision GO CFAR detectors in nonhomogeneous environments. IEE. Proc. Radar, Sonar Navig., 1996, 143(2):105 112.
    [37] R. S. Adve, M. C. Wicks, etc. Ground moving target indication using knowledge based space time adaptive processing. Proc. of the IEEE. Int. Radar Conf., May, 2000: 735 740.
    [38] D. Marshall. Evaluation of STAP training strategies with Mountaintop data. MIT Lincoln Laboratory TR MTP 5, 1996.
    [39] W. L. Melvin, M. C. Wicks. Improving practical space time adaptive radar. Proc. of the IEEE. National Radar Conf., Syracuse, NY., May 1997: 48 53.
    [40] T. K. Sarkar, N. Sangruji. An adaptive nulling system for a narrow band signal with a looking direction constraint utilizing the conjugate gradient method. IEEE. Trans. AP., 1989, 37(7): 940 944.
    [41] G. K. Borsari. Mitigating effects on STAP processing caused by an inclined array. Proc. of the IEEE. National Radar Conf., Dallas, Tx., May 1998: 135 140.
    [42] O. Kreyenkamp, R. Klemm. Doppler compensation in forward looking STAP radar. IEE. Proc. Radar, Sonar, Navig., 2001,148(5):253 258.
    [43] F. D. Lapierre, M. V. Droogenbroeck, J. G. Verly. New methods for handling the range dependence of the clutter spectrum in non side looking monostatic STAP radars. ICASSP, April, 2003: V73 V76.
    [44] F. D. Lapierre, J. G. Verly, M. V. Droogenbroeck. New solutions to the problem of ranges dependence in bistatic STAP radars. Proc. of the 2003 IEEE. Radar Conf., theHuntsville Marriott, Huntsille, Alabama, May, 2003: 452 259.
    [45] S. M. Kogon, M. A. Zatman. Bistatic STAP for airborne radar systems. ASAP Workshop, MIT Lincon Laboratory, Lexington, 2001.
    [46] M. Zatman. Circular array STAP. Proc. of the IEEE. National Radar Conf., Boston, MA, April 1999: 108 113.
    [47]孟祥东.空时二维自适应信号处理与动目标检测.西安电子科技大学博士学位论文, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700