用户名: 密码: 验证码:
组装两亲性嵌段聚合物构建人工GPx
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
谷胱甘肽过氧化物酶(EC.1.11.1.9)是一种对人体非常重要的含硒酶,它在防御氧化性相关疾病、新陈代谢中的氧化还原反应、细胞的生长和凋亡等生命活动中起着重要的作用。人们对已知的GPx酶进行了细致的研究,并在此基础上了设计了许多GPx酶模型来解决天然GPx稳定性差、来源有限、使用成本高等缺点。虽然以前通过化学方法和生物方法制备的GPx酶模型都展现出高的催化活性,但是这些酶模型仍然具有一某些缺点,一方面这些酶模型具有合成方法复杂、成本高、产率低等缺点。另一方面,这些酶模型中各种催化基元的比例都是固定值,通过改变各种基元的比例对GPx酶模型进行优化是非常困难的。因此,要利用一种简单高效的方法制备人工GPx酶模型仍然是个挑战性课题。
     纳米科学和超分子科学的快速发展为人工酶的设计开辟了更为广阔的研究空间。在了解GPx结构的基础上,我们结合ATRP、Click化学、共混方法、纳米科学和超分子科学的优势,系统地进行了利用聚合物组装与自组装模拟GPx的研究工作,并获得了以下研究成果:
     Ⅰ组装嵌段聚合物构建GPx酶模型利用识别与催化协同仿酶的思想,发展了一种更加简单高效的制备GPx酶模型的方法。首先通过ATRP和Click化学制备了一系列修饰有识别位点和催化中心的聚苯乙烯-b-聚丙烯酸三缩乙二醇单甲醚酯嵌段聚合物。并以这些功能化聚合物为基元,用共混组装方法简单高效的制备了GPx酶模型。实验证明可以通过改变三种功能化聚合物共混的比例来制备活力最佳的GPx酶模型。
     Ⅱ组装嵌段聚合物构建温度响应的GPx酶模型设计制备了活力能够通过温度进行调控的智能GPx酶模型。首先利用ATRP和Click化学制备了一系列修饰有识别位点和催化中心的功能化聚氮异丙基丙烯酰胺-b-聚丙烯酰胺嵌段聚合物。利用共混方法构建了具有最佳催化活力的温度响应GPx模拟酶。该酶模型的GPx活力展现出了很好的温度响应特性。
     Ⅲ主客体超分子组装构建温度响应的嵌段聚合物GPx酶模型发展了主客体超分子组装方法与共混方法相结合制备高催化活力的GPx酶模型的新方法。我们首先制备了端基是环糊精的主体聚合物和修饰有催化基元的金刚烷客体小分子。通过主客体超分子作用,将温敏聚合物与催化基元非共建偶联,制备了修饰有GPx催化基元的功能化聚合物。通过共混方法构建了新型高效的温度响应GPx酶模型。期望这种利用超分子方法构建共混GPx酶模型的方法能为其他抗氧化酶的设计提供新的思路。
As an important selenium-containing enzyme, glutathione peroxidase (GPx EC.1.11.1.9) is indispensable for human, which with the basic catalytic characteristic allows the enzymes to adopt diversified biological roles ranging from defence against peroxide damage, redox regulation of metabolic processes, cellular differentiation and apoptosis. So researchers ranging from biologists to chemists have been extensively investigated this important selenium-containing enzyme as it plays the numerous and fundamental roles. Up to now, eight distinct GPxs have been identified in mammals, five of them being selenoproteins in man. Usually, GPx functions to catalyze the reduction of hydroperoxides using glutathione as a specific reducing substrate and plays a major role in the organismal antioxidant defense mechanism protecting cells from oxidative stress, such as such as reperfusion injury, brain ischemia. tumor, cataract, inflammation, and physiological aging. Due to its biologically crucial role, considerable efforts have been devoted to producing organoselenium or tellurium compounds that mimic the properties of GPx in recent years.
     Recently, in our group, for promoting the catalytic efficiency of the artificial GPx models, more exact imitation of the active site of GPx with the concept of synergy of the recognition and catalysis was carried out based on the understanding of the structure of GPx. Thus, a series of host molecules with high substrate specificity and appropriate catalytic selenium moieties were developed. Afterwards, a genetic engineering strategy was further emplyed to construct well-defined artificial GPx models and a series of telluro-proteins as artificial GPx models with higher catalytic activity were continuously reported. Recently, molecularly imprinted artificial GPx models were developed in view of transition state recognition or mimicking the active site microenvironment of enzymes. Furthermore, various smart nanoenzyme models with controlled catalytic activity were well demonstrated by the combination of biological, supramolecular and nanoscientific strategies. Up to now, some of these artificial GPx models show satisfying enzymatic properties, excitingly, some of them display extraordinarily high activities rivalling native ones.
     Although artificial GPx models constructed by chemical and genetic strategies previously have demonstrated high catalytic activity, some disadvantages still remain in such efficient GPx models. On the one hand, catalytic factors are commonly combined into one scaffold through covalent chemical methods, which have the limitation of complicated synthetic routes, expensive cost and low productivity. On the other hand, it is difficult to construct the optimum artificial GPx models via altering the molar ratio of the catalytic factors as it is a fixed value. Thus. the construction of artificial GPx models using a simple and efficient method is still a great challenge. Additionally, the construction of a desirable artificial GPx models with smart characteristics of its catalytic efficiency could be regulated by some environmental stimuli is always an interesting job. And how to combine the catalytic factors into one smart artificial GPx models is also a great challenge. Futhermore. could all the challenge mentioned above be resolved in a more simple method using the protocol of supramolecular science? All of them are the challenge we will meet.
     Recently. ATRP and Click chemistry have flourishing developed, which is one of the significant protocols employed to design versatile functional materials and polymers with complex architectures and compositions. Significantly, a blending process is efficient method to obtain new polymer materials with superior properties compared to those of individual components. Meanwhile, the flourishing development in nano and supramolecular science brings a new field in the design of artificial enzyme. Based on the understanding of the sturcture of GPx and the advantage of ATRP, Click chemistry, blending process, nano and supramolecular science, we have designed three artificial GPx models to meet the challenges mentioned above.
     1 Construction of artificial GPx based on assembly of block copolymers
     A series of block copolymers loaded with recognition and catalytic sites were synthesized based on polystyrene-block-poly[tri(ethylene glycol) methyl ether acrylate]s (PS-PMEO3MAs) via Atom Transfer Radical Polymerization and Click chemistry. A simply and efficient artificial GPx models was obtained using the blending process for the first time. A study of the assembly behavior of the blended artificial GPx models and the individual copolymers indicated that the blended artificial GPx models can assemble into uniform and stable vesicles that are analogous to the individual copolymers. which makes the blending process a feasible and excellent method to construct blended artificial GPx models. In particular, the optimum artificial GPx models was achieved through optimizing the structure of the functional block copolymers and changing the molar ratio of three functional block copolymers. PP-Te1, PP-CD2 and PP-q2. Although the specific substrate binding plays an important role in designing a desirable GPx mimic, the match degree among the catalytic factors also makes a great contribution to obtaining high GPx activity. As a new artificial GPx models, considering its high catalytic activity, simple preparation process and better match of catalytic factors, the blended artificial GPx models may make the preparation of efficient artificial GPx models more eassy.
     2 Construction of smart artificial GPx based on block copolymers
     Previous works have well demonstrated that blended process is a simple and efficient protocol to construct blended artificial GPx models. Herein, this simple method was successfully emolyed to construct smart artificial GPx models. As the functional block copolymers loaded with recognition and catalytic sites. PPAM. PPAM-Te, PPAM-N, PPAM-CD were synthesized via ATRP and Click chemistry. Using the blending process, the optimum artificial GPx models (PPAM-N-CD-Temax) was obtained by the self-assembly of temperature-sensitive block copolymers through altering the molar ratio of the functional copolymers. By exploring the catalytic behavior, it is noted that not only the specific substrate binding ability but also the better match among the catalytic factors play an important role in designing a desirable artificial GPx models. Significantly, as a smart blended artificial GPx models. the catalytic activity of the optimum artificial GPx models can be well modulated by changing the temperature. It was proved that a change in the self-assembly structure of the block copolymers at different temperatures plays an important role in the modulation of catalytic activity.
     3 Construction of smart artificial GPx via supramolecular self-assembly
     Considering that the constructing of smart blended artificial GPx models is successful. an attempt of preparation a more simplified smart blended artificial GPx model via supramolecular chemistry is finished. Herein, the host-polymer CD-PNIPAM was synthesized via ATRP and Click chemistry. And the guest-molecules loaded with catalytic and recognition sites,8 and 9 were synthesized. Subsequently, functional copolymers loaded with recognition and catalytic sites. CD-PNIPAM, Arg-CD-PNIPAM, Te-CD-PNIPAM were obtained via self-assemble between the host-polymer and the guest-molecules. The optimum artificial GPx models was constructed by blending process of three functional copolymers by altering the the molar ratio of them. By exploring the catalytic behavior, this smart blended artificial GPx models constructed via host-guest self-assemble method acted as an real enzyme catalyst. And the catalytic activity of the optimum artificial GPx models can be well modulated by changing the temperature. Considering that such smart artificial GPx models were constructed throuth a simplified protocol, we anticipate that this study will open up a new field in designing a smart antioxidative artificial enzyme.
引文
[1]Schramm, V. L. Enzymatic transition states and transition state analog design. Annu. Rev. Biochem.1998,67,693-720.
    [2]Breslow, R.; Dong. S. D. Biomimetic reactions catalyzed by cyclodextrins and their derivatives. Chem. Rev.1998,98,1997-2012.
    [3]Kirby. A. J. Enzyme mechanisms, models, and mimics. Angew. Chem. Int. Ed. Engl. 1996,35,707-724.
    [4]Qi. D. F.; Tann, C. M.; Haring. D.; Distefano. M. D. Generation of new enzymes via covalent modification of existing proteins. Chem. Rev.2001,101,3081-3112.
    [5]Lobanov i. A. V.; Hatfield, D. L.; Gladyshev, V. N. Eukaryotic selenoproteins and selenoproteomes. Biochim Biophys Acta.2009,1790,1424-1428.
    [6]Mills. G. C.; Hemoglobin C.I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobinfrom oxidase breakdown. J. Biol. Chem.1957,229,189-197.
    [7]Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm Resolution. Eur. J. Biochem.1983,133,51-69.
    [8]Sies, H.; Masumoto, H. Ebselen as a glutathione peroxidase mimic and as a scavenger of peroxynitrite. Adv. Pharmacol.1997,38.2229-2246.
    [9]Engman. L.; Stern. D.; Cotgrware, I. A.; Andersson. C. M. Thiol peroxidase activity of diaryl ditellurides as determined by a 1H NMR method. J. Am. Chem. Soc.1992,114, 9737-9743.
    [10]Kanda, T.; Engman, L.; Cotgreave,I. A.:Powis, G. Novel water-soluble diorganyl tellurides with thiol peroxidase and antioxidant activity. J. Org. Chem.1999,64, 8161-8169.
    [11]Dong, Z. Y.; Liu. J. Q.; Mao. S. Z.; Huang, X.; Yang. B.; Ren. X. J.; Luo. G. M.; Shen. J. C. Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2, 2'-ditellurobis(2-deoxy-beta-cyclodextrin). J. Am. Chem. Soc.2004,126,16395-16404.
    [12]Zhang, X.:Xu, H. P.; Dong, Z. Y.; Wang. Y. P.; Liu, J. Q.; Shen, J. C. Highly efficient dendrimer-based mimic of glutathione peroxidase. J. Am. Chem. Soc.2004,126, 10556-10557.
    [13]Xu, H. P.; Wang. Y. P.; Wang, Z. Q.; Liu, J. Q.; Smet. M.; Dehaen. W. Dendritic tellurides act as antioxidant. Chinese Science Bulletin.2006.51.2315-2321.
    [14]Xu, H. P.; Gao, J.; Wang, Y. P.; Wang, Z. Q.; Smet, M.; Dehaen, W.; Zhang, X. Hyperbranched polyselenides as glutathione peroxidase mimics. Chem. Commun. 2006.796-798.
    [15]Wulff, G.; Sarhan, A. Use of polymers with enzyme analogues structures for the resolution of enantiomers.Angew. Chem. Int. Ed. Engl.1972,11,341-344.
    [16]Huang, X.; Yin, Y. Z.; Liu, Y.; Bai, X. L.; Zhang, Z. Z.; Xu, J. Y.; Shen, J. C.; Liu. J. Q. Incorporation of glutathione peroxidase active site into polymer based on imprinting strategy. Biosens. Bioelectron.2009,25,657-660.
    [17]Huang, X., Liu, Y., Liang, K., Tang, Y. and Liu, J. Q. Construction of the active site of glutathione peroxidase on polymer-based nanoparticles. Biomacromolecules 2008, 9,1467-1473.
    [18]Liu, J. Q.; Luo, G. M.; Gao, S. Z.; Zhang, K; Chen, X.; Shen, J. C. Generation of glutathione peroxidase-like mimic by using bioimprinting and chemical mutation. Chem. Commun.1999,199-200.
    [19]Liu, L.; Mao, S. Z.; Liu, X. M.; Huang, X.; Xu, J. Y.; Liu, J. Q.; Luo. G. M.; Shen, J. C. Functional mimicry of the active site of glutathione peroxidase by glutathione imprinted selenium-containing protein. Biomacromolecules 2008.9,363-368.
    [20]Huang, X.; Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Xu, J. Y.; Luo. G. M.; Shen, J. C. Selenium-mediated micellar catalyst:An efficient enzyme model for glutathione peroxidase-like catalysis. Langmuir 2007,23,1518-1522.
    [21]Huang, X.; Dong, Z. Y.; Liu. J. Q.; Mao, S. Z.; Luo, G. M.; Shen, J. C. Tellurium-based polymeric surfactants as a novel seleno-enzyme model with high activity. Macromol. Rapid. Commun.2006.27,2101-2106.
    [22]Yin, Y. Z.; Huang, X.;Lv, C. Y.; Wang, L.; Yu, S. J.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Construction of artificial glutathione peroxidase active site on copolymer vesicles. Macromol. Biosci.2010.10.1505-1516.
    [23]Tang, Y.; Zhou. L. P.;Li, J. X.; Huang, X.; Wu, P.; Wang, Y. G.; Xu, J. Y.; Shen, J. C. Liu. J. Q. Giant nanotubes loaded with artificial peroxidase centers:self-assembly of supramolecular amphiphiles as a tool to functionalize nanotubes. Angew. Chem. Int. Ed. 2010,49,3920-3924.
    [24]Huang, X.; Yin, Y. Z.; Tang, Y.; Bai, X. L.; Zhang, Z. Z.; Xu. J. Y.; Liu, J. Q.; Shen, J. C. Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter 2009,5,1905-1911.
    [25]Huang, X.; Yin, Y. Z.; Jiang, X.; Tang. Y.; Xu, J. Y.; Liu, J. Q.; Shen, J. C. Construction of smart glutathione peroxidase mimic based on hydrophilic block copolymer with temperature responsive activity. Macromol. Biosci.2009,9,1202-1210.
    [26]Yu. S. J.; Yin, Y. Z.; Zhu. J. Y.; Huang, X.; Luo, Q.; Xu, J. Y.; Shen, J. C.; Liu, J. Q. A modulatory bifunctional artificial enzyme with both SOD and GPx activities based on a smart star-shaped pseudo-block copolymer. Soft Matter 2010,6.5342-5350.
    [27]Wu, Z. P.; Hilvert, D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc.1990,112,5647-5648.
    [28]Mao, S. Z.; Dong. Z. Y.; Liu. J. Q.; Li, X. Q.; Liu. X. M.; Luo, G. M.; Shen, J. C. Semisynthetic tellurosubtilisin with glutathione peroxidase activity. J. Am. Chem. Soc. 2005,127,11588-11589.
    [29]Ren, X. J.; Jemth, P.; Board.,P. G.; Luo, G. M.; Mannervik, B.; Liu, J. Q.; Zhang, K. Shen, J. C. A semisynthetic glutathione peroxidase with high catalytic efficiency: Selenoglutathione transferase. Chem. Biol.2002,9.789-794.
    [30]Liu. X. M.; Silks. L. A.;Liu. C. P.; Ollivault-Shiflett, M.; Huang. X.; Li, J.; Luo, G. M.; Hou, Y. M.; Liu. J. Q.; Shen, J. C. Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew. Chem. Int. Ed.2009, 48,2020-2023.
    [31]Luo, G. M..; Zhu, Z. Q.; Ding, L.; Gao. G.; Sun, Q. A.; Liu. Z.; Yang. T. S.; Shen. J. C. Generation of selenium-containing abzyme by using chemical mutation. Biochem. Biophys. Res. Commun.1994,198,1240-1247.
    [32]Breslow, R.; Schmuck, C. Goodness of fit in complexes between substrates and ribonuclease mimics:effects on binding, catalytic rate constants, and regiochemistry. J. Am. Chem. Soc.1996.118,6601-6605.
    [33]Huang, X.; Yin, Y. Z.; Liu, J. Q. Design of artificial seleno-enzymes based on macromolecular scaffolds. Macromol. Biosci.2010,10,1385-1396.
    [34]Mosbach, K.; Haupt, K. Some new developments and challenges in noncovalent molecular imprinting technology. J. Mol. Recogn.1998,11,62-68.
    [35]Mugesh, G.; du Mont. W. W.;Sies. H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev.2001,101,2125-2180.
    [36]Wulff. G. Enzyme-like catalysis by molecularly imprinted polymers. Chem. Rev.2002, 102.1-28.
    [37]Suh. J. Synthesis of polymeric enzyme-like catalysts. Catalysts Synlet.2001.9. 1343-1363.
    [38]Hodge, P. Polymer-supported organic reactions:what takes place in the beads? Chem. Soc. Rev.1997,26.417-424.
    [39]Liu, L.; Zhou, W. J.; Chruma, J.; Breslow, R. Transamination reactions with multiple turnovers catalyzed by hydrophobic pyridoxamine cofactors in the presence of polyethylenimine polymers. J. Am. Chem. Soc.2004,126,8136-8137.
    [40]Suh, J.; Hah, S. S. Organic artificial proteinase with active site comprising three salicylate residues. J. Am. Chem. Soc.1998,120.10088-10093.
    [41]Svensson, R.; Pamedytyte, V.; Juodaityte, J.; Makuska, R.; Morgenstern, R. Characterisation of polymeric surfactants that are glutathione transferase mimics. Toxicolog.2001,168,251-258.
    [42]Okhapkin. I. M.; Bronstein, L. M.; Makhaeva, E. E.; Matveeva, V. G.; Sulman, E. M.; Sulman, M. G.; Khokhlov, A. R. Thermosensitive imidazole-containing polymers as catalysts in hydrolytic decomposition of p-Nitrophenyl acetate. Macromolecules 2004,37, 7879-7883.
    [43]Nagel, B.; Warsinke, A.; Katterle, M. Enzyme activity control by responsive redoxpolymers. Langmuir 2007,23,6807-6811.
    [44]Skouta, R.; Wei, S. J.; Breslow, R. High rates and substrate selectivities in water by polyvinylimidazoles as transaminase enzyme mimics with hydrophobically bound pyridoxamine derivatives as coenzyme mimics. J. Am. Chem. Soc.2009,131, 15604-15605.
    [45]Benezra, M.; Vogel, T.; Ben-Sasson, S. A.; Panet, A.; Sehayek, E.; Haideiri, M. A.; Decklbaum, R. J.; Vlodavsky, I. A synthetic heparin-mimicking polyanionic compound binds to the LDL receptor-related protein and inhibits vascular smooth muscle cell proliferation. J. Cell. Biochem.2001,81,114-117.
    [46]Jang, B. B.; Lee, K. P.; Min, D. H.; Suh, J. Immobile artificial metalloproteinase containing both catalytic and binding groups. J. Am. Chem. Soc.1998,120,12008-12016.
    [47]Wang, Y. P.; Xu, H. P.; Ma, N.; Wang, Z. Q.; Zhang, X. Liu, J. Q.; Shen, J. C. Block copolymer micelles as matrixes for incorporating diselenide compounds:a model system for a water-soluble glutathione peroxidase mimic fine-tuned by ionic strength. Langmuir 2006.22,5552-5555.
    [48]Chi, Y. G.; Scroggins, S. T.; Boz, E.; Frechet. J. M. J. Control of aldol reaction pathways of enolizable aldehydes in an aqueous environment with a hyperbranched polymeric catalyst.J. Am. Chem. Soc.2008,130,17287-17289.
    [49]Liu, J. Q.; Wulff, G. Functional mimicry of carboxypeptidase A by a combination of transition state stabilization and a defined orientation of catalytic moieties in molecularly imprinted polymers. J. Am. Chem. Soc.2008,130,8044-8054.
    [50]Liu, J. Q.; Wulff, G. Molecularly imprinted polymers with strong carboxypeptidase A-Like activity:combination of an amidinium function with a zinc-ion binding site in transition-state Imprinted cavities. Angew. Chem. Int. Ed. Engl.2004,43,1287-1290.
    [51]Svenson, J.; Zheng, N.; Nicholls, I. A. A molecularly imprinted polymer-based synthetic transaminase. J. Am. Chem. Soc.2004,126,8554-8560.
    [52]Sellergren, B.; Karmalkar. R. N.; Shea, K. J. Enantioselective ester hydrolysis catalyzed by imprinted polymers. J. Org. Chem.2000,65,4009-4027.
    [53]Huang, J. T.; Zheng, S. H.; Zhang. J. Q. Molecularly imprinting of polymeric nucleophilic catalysts containing 4-alkylaminopyridine functions. Polymer 2004,45, 4349-4354.
    [54]Staudinger, H.;Husemann. E. Uber hochpolymere verbindungen,116. mitteilung:uber das begrentzt quellbare Poly-Styrol. Chem. Ber.1935,68,1618-1634.
    [55]Biffis, A.; Graham. N. B.; Siedlaczek, G.; Stalberg, S.; Wulff, G. The synthesis. characterization and molecular recognition properties of imprinted microgels. Macromol. Chem. Phys.2001,202,163-171.
    [56]Wulff, G.; Chong, B. O.; Kolb, U.; Stalberg, S.; Wulff. G. Soluble single-molecule nanogels of controlled structure as a matrix for efficient artificial enzymes. Angew. Chem. Int. Ed. Engl.2006,45,2955-2958.
    [57]Carboni, D.; Flavin, K.; Servant. A.; Gouverneur. V.; Resmini. M. The first example of molecularly imprinted nanogels with aldolase type Ⅰ activity. Chem. Eur. J.2008,14. 7059-7065.
    [58]Szwarc, M.'Living' polymers. Nature 1956,176,1168-1169.
    [59]Hadjichristidis, N. Pitsikalis. M.; Pispas. S.; Iatrou, H. Polymers with complex architecture by living anionic polymerization. Chem. Rev.2001.101,3747-3792.
    [60]Yang. X. M.; Stern, C. L.; Marks. T. J. Iatrou, H. Cationic zirconocene olefin polymerization catalysts based on the organo-lewis acid tris(pentafluorophenyl)borane. A synthetic, structural, solution dynamic, and polymerization catalytic study. J. Am. Chem. Soc.1994,116,10015-10031.
    [61]Wang. J. S.; Matyjaszewski, K. Controlled/'living' radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995.117,5614-5615.
    [62]Chiefari, J; Chong. Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. Living free radical polymerization by reversible additionfragmentation chain transfer:the RAFT process. Macromolecules 1998,31.5559-5570.
    [63]Hawker, C. J.; Bosman, A. W.; Harth, E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev.2001,101,3661-3688.
    [64]Huang, J. Y.; Jia, S. J.; Siegwart, D. J.; Kowalewski, T.; Matyjaszewski, K. Synthesis and characterization of styrene/butylacrylate linear and star block copolymers via Atom Transfer Radical Polymerization. Macromol. Chem. Phys.2006,207,801-811.
    [65]Subramanian, S. H.; Dhamodharan, R. Rapid ambient temperature Atom Transfer Radical Polymerization of tert-butyl acrylate. Polym. Int.2008,57,479-487.
    [66]Liu, S. S.; Mishra, M. K. Atom Transfer Radical Polymerization of menthyl acrylate. Macromolecules 2007,40,867-871.
    [67]Matyjaszewski, K.; Jo, S. M.; Paik, H. J.; Gaynor, S. G. Synthesis of well-defined polyacrylonitrile by Atom Transfer Radical Polymerization. Macromolecules 1997,30, 6398-6400.
    [68]Masci, G.; Giacomelli, L.; Crescenzi, V. Atom Transfer Radical Polymerization of N-isopropylacrylamide. Macromol. Rapid. Commun.2004,25,559-564.
    [69]Matyjaszewski, K.; Xia, J. Atom Transfer Radical Polymerization. Chem. Rev.2001,101, 2921-2990.
    [70]Matyjaszewski, K.; Tsarevsky. N. V, Nanostructured functional materials prepared by atom transfer radical polymerization. Nature Chemistry 2009,1,695-704.
    [71]Tsarevsky, N. V.; Matyjaszewski, K. "Green" Atom Transfer Radical Polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials. Chem. Rev.2007,107,2270-2299.
    [72]Matyjaszewski. K. Inner sphere and outer sphere electron transfer reactions in Atom Transfer Radical Polymerization. Macromol. Symp.1998,134,105-118.
    [73]Ando, T.; Kamigaito, M.; Sawamoto, M. Metal alkoxides as additives for Ruthenium(Ⅱ)-catalyzed living radical polymerization. Macromolecules 2000,33, 732-6637.
    [74]Penczek, S. Cypryk, M.; Duda, A.; Kubisa, P.; Slomkowski, S. Living ringopening polymerizations of heterocyclic monomers. Prog. Polym. Sci.2007,32,247-82.
    [75]Kyeremateng, S. O.; Amado, E.; Blume, A.; Kressler, J. Synthesis of ABC and CABAC triphilic block copolymers by ATRP combined with'Click'chemistry. Macromol. Rapid. Commun.2008,29,1140-1146.
    [76]Peng, D. Zhang, X. H.; Feng, C.; Lu. G. L.; Zhang, S.; Huang, X. Y. Synthesis and characterization of amphiphilic graft copolymers with hydrophilic poly(acrylic acid) backbone and hydrophobic poly(methyl methacrylate) side chains. Polymer 2007,48. 5250-5258.
    [77]Hou, S. J.; Chaikof, E. L.; Taton, D.; Gnanou, Y. Synthesis of water-soluble star-block and dendrimer-like copolymers based on poly(ethylene oxide) and poly(acrylic acid). Macromolecules 2003.36,3874-3881.
    [78]Urbani, C. N.; Bell, C. A.; Lonsdale, D.; Whittaker. M. R.; Monteiro, M. J. Self-assembly of amphiphilic polymeric dendrimers synthesized with selective degradable linkages. Macromolecules 2008.41,76-86.
    [79]Johnson, J. A.; Finn. M. G.; Koberstein. J. T.; Turro, N. J. Synthesis of photocleavable linear macromonomers by ATRP and star macromonomers by a tandem ATRP-Click reaction:precursors to photodegradable model networks. Macromolecules 2007,40, 3589-3598.
    [80]Atzet. S.; Curtin. S.; Trinh. P.; Bryant.S. Ratner, B. Degradable poly(2-hydroxyethyl methacrylate)-co-polycaprolactone hydrogels for tissue engineering scaffolds. Biomacromolecules 2008,9,3370-3377.
    [81]Liu, S. Y.; Armes, S. P.; Trinh. P. The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids. J. Am. Chem. Soc.2001,123,9910-9911.
    [82]Senaratne, W.; Andruzzi. L.; Ober, C. K. Self-assembledmonolayers and polymer brushes in biotechnology:current applications and future perspectives. Biomacromolecules 2005. 6,2427-2448.
    [83]Xua. F. J.; Neohb. K. G.; Kang, E. T. Bioactive surfaces and biomaterials via atom transfer radical Polymerization. Prog. Polym. Sci.2009,34,719-761.
    [84]Lee, S. B.; Koepsel. R. R.; Morley, S. W.; Matyjaszewski, K. Sun, Y; Russell, A. J. Permanent, nonleaching antibacterial surfaces.1. Synthesis by atom transfer radical polymerization. Biomacromolecules 2004,5,877-882.
    [85]Giacomelli, C.; Schmidt, V.; Borsali, R. Nanocontainers formed by self-assembly of poly(ethyleneoxide)-b-poly(glycerol monomethacrylate)-drug conjugates. Macromolecules 2007.40,2148-2157.
    [86]Liu, S.; Armes, S. P. Polymeric surfactants for the new millennium:a pH-responsive, zwitterionic, schizophrenic diblock copolymer. Angew. Chem. Int. Ed.2002.41. 1413-1416.
    [87]Anderson, W. F. Human gene therapy. Nature 1998,392,25-30.
    [88]Liu. S.; Du, F.; Wang, Y.; Ji. S.; Liang. D.; Yu. L. An acid-labile block copolymer of PDMAEMA and PEG as potential carrier for intelligent gene delivery systems. Biomacromolecules 2008,9.109-115.
    [89]Hoffman, A. S.; Stayton. P. S. Conjugates of stimuli-responsive polymers and proteins. Prog. Polym. Sci.2007,32,922-932.
    [90]Nicolas. J.; Mantovani, G.; Haddleton, D. M. Living radical polymerization as a tool for the synthesis of polymer-protein/peptide bioconjugates. Macromol Rapid. Commun. 2007,28,1083-1111.
    [91]Reynhout. I. C.; Cornelissen. J. J. L. M.; Nolte. R. J. M. Synthesis of polymer-biohybrids: from small to giant surfactants. Acc. Chem. Res.2009,42.681-692.
    [92]Fristrup, C. J.; Jankova, K. J.; Hvilsted, S. Surface-initiated atom transfer radical polymerization—a technique to develop biofunctional coatings. Soft Matter 2009,5, 4623-4634
    [93]Auschra, C.; Eckstein, E.; Muhlebach, A.; Zink, M. O.; Rime, F. Design of new pigment dispersants by controlled radical polymerization. Prog. Org. Coat.2002,45,83-93.
    [94]Li, W. W.; Matyjaszewski, K.; Albrecht. K.; Moller, M. Reactive surfactants for polymeric nanocapsules via interfacially confined miniemulsion ATRP. Macromolecules 2009,42,8228-8233.
    [95]Cui, L.; Tong, X.; Yan, X. H.; Liu, G. J.; Zhao, Y. Photoactive thermoplastic elastomers of azobenzene-containing triblock copolymers prepared through Atom Transfer Radical Polymerization. Macromolecules 2004,37,7097-7104.
    [96]Rastogi, A.; Nad, S.; Tanaka. M.; Mota, N. D.; Tague, M.; Baird. B. A.; Abruna, H. D.; Ober, C. K. Preventing nonspecific adsorption on polymer brush covered gold electrodes using a modified ATRP initiator. Biomacromolecules 2009,10,2750-2758.
    [97]He, P.; Urban, M. W. Controlled phospholipid functionalization of single-walled carbon nanotubes. Biomacromolecules 2005,6,2455-2457.
    [98]Dong, R.; Krishnan, S.; Baird, B. A.; Lindau. M.; Ober, C. K. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces. Biomacromolecules 2007,8,3082-3092.
    [99]Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Click Chemistry:Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed.2001,40,2004-2021.
    [100]Meldal, M.; Tornφe, C. W. Cu-Catalyzed Azide#Alkyne Cycloaddition. Chem. Rev.2008. 108,2952-3015.
    [101]Himo, F.; Lovell, T.; Hilgraf, R.; Rostovtsev, V. V.; Noodleman, L.; Sharpless, K. B.; Fokin, V. V. Copper(Ⅰ)-catalyzed synthesis of azoles. DFT study predicts unprecedented reactivity and intermediates. J. Am. Chem. Soc.2005,127,210-216.
    [102]Hanni, K. D.; Leigh, D. A.; Hilgraf. R. The application of CuAAC'click'chemistry to catenane and rotaxane synthesis. Chem. Soc. Rev.2010,39,1240-1251.
    [103]Aucagne, V.; Hanni, K. D.; Leigh, D. A.; Lusby, P. J.; Walker, D. B. Catalytic "Click" rotaxanes:A substoichiometric metal-template pathway to mechanically interlocked architectures. J. Am. Chem. Soc.2006,128,2186-2187.
    [104]Liu, Y.; Yang, Z. X.; Chen, Y. Syntheses and self-assembly behaviors of the azobenzenyl modified β-Cyclodextrins isomers. J. Org. Chem.2008.73,5298-5304.
    [105]Megiatto Jr. J. D.; Schuster. D. I. General method for synthesis of functionalized macrocycles and catenanes utilizing "Click" chemistry. J. Am. Chem. Soc.2008,130, 12872-12873.
    [106]Mullen, K. M.; Gunter, M. J. Toward multistation rotaxanes using metalloporphyrin coordination templating. J. Org. Chem.2008,73,3336-3350.
    [107]Yagci, Y.; Tasdelen. M. A. Mechanistic transformations involving living and controlled/living polymerization methods. Prog. Polym. Sci.2006,31,1133-1170.
    [108]Kolb. H. C.; Sharpless, K. B. The growing impact of click chemistry on drug discovery. Drug. Discov. Today.2003,8,1128-1137.
    [109]Wu, P.; Feldman, A. K.; Nugent. A. K.; Hawker, C. J.; Scheel, A.; Voit. B.; Pyun, J.; Frechet. J. M. J.; Sharpless. K. B.; Fokin, V. V. Efficiency and fidelity in a Click-chemistry route to triazole dendrimers by the Copper(Ⅰ)-catalyzed ligation of azides and alkynes. Angew. Chem. Int. Ed.2004,43,3928-3932.
    [110]Lutz, J. F.; Borner. H. G.; Weichenhan, K. Combining ATRP and "Click" chemistry:a promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules 2006.39,6376-6383.
    [111]Thomas, E. L.; Anderson. D. M.; Henkee, C. S.; Hoffman, D. Periodic area-minimizing surfaces in block copolymers. Nature 1988,334,598-601.
    [112]Laurent, B. A.; Grayson. S. M. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization. J. Am. Chem. Soc.2006.128,4238-42389.
    [113]Stiriba, S. E.; Frey, H.; Haag, R. Dendritic polymers in biomedical applications:from potential to clinical use in diagnostics and therapy. Angew. Chem. Int. Ed.2002,41, 1329-1334.
    [114]Ossipov, D. A.; Hilborn, J. Poly(vinyl alcohol)-based hydrogels formed by "Click Chemistry". Macromolecules 2006,39,1709-1718.
    [115]Droumaguet. B. L.; Velonia, K. Click Chemistry:a powerful tool to create polymer-based macromolecular chimeras. Macromol. Rapid. Commun.2008.29, 1073-1089.
    [116]Sivakova, S.; Rowan, S. J. Nucleobases as supramolecular motifs. Chem. Soc. Rev.2005, 34,9-21.
    [117]Punna, S.; Kuzelka, J.; Wang, Q.; Finn, G. Head-to-tail peptide cyclodimerization by copper-catalyzed azide-alkyne cycloaddition. Angew. Chem. Int. Ed.2005,44, 2215-2220.
    [118]Seeberger, P. H.; Haase. W. C. Solid-phase oligosaccharide synthesis and combinatorial carbohydrate libraries. Chem. Rev.2000,100,4349-4394.
    [119]Thordarson, P.; Droumaguet, B. L.; Velonia, K. Well-defined protein-polymer conjugates-synthesis and potential applications. Appl. Microbiol. Biotechnol.2006,73, 243-254.
    [120]Wang, Q.; Tang, L.; Johnson, J. E.; Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Ed.2002,41,459-462.
    [121]Lewis, W. G.; Green, L. G.; Grynszpan, F.; Radic, Z.; Carlier, P. R.; Taylor, P.; Finn, M. G.; Sharpless, K. B. Click chemistry in situ:Acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed. Engl.2002,41,1053-1057.
    [122]Schlossbauer, A; Schaffert, D.; Kecht, J.; Wagner, E.; Bein, T. Click Chemistry for high-density biofunctionalization of mesoporous silica. J. Am. Chem. Soc.2008,130, 12558-12559.
    [123]Balamurugan, S. S.; Soto-Cantu, E.; Cueto, R.; Russo, P. S.; Preparation of organosoluble silica-polypeptide particles by "Click" Chemistry. Macromolecules 2010. 43,62-70.
    [124]Rana, S.; Yoo, H. J.; Cho, J. W.; Chun, B. C.; Park, J. S. Functionalization of multi-walled carbon nanotubes with poly(e-caprolactone) using Click Chemistry. J. Appl. Polym. Sci.2011,119,31-37.
    [125]Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci.2006.31,576-602.
    [126]Salim, N. V.; Hameed, N.; Guo, Q. P. Competitive hydrogen bonding and self-assembly in poly(2-vinyl pyridine)-block-poly(methyl methacrylate)/poly(hydroxyether of bisphenol A) blends. J. Polym. Sci. Pol. Phys.2009,47.1894-1905.
    [127]Feng, F.; Ye, L. Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J. Appl. Polym. Sci.2011,119,2778-2783.
    [128]Das, A.; Hayvaci, H. T.; Tiwari, M. K.; Bayer, I. S.; Erricolo, D.; Megaridis. C. M. Superhydrophobic and conductive carbon nanofiber/PTFE composite coatings for EMI shielding. J. Colloid. Interf. Sci.2011,353,311-315.
    [129]Yun, Y. H.; Wee, Y. J.; Byun, H. S.; Yoon, S. D. Biodegradability of Chemically Modified Starch (RS4)/PVA BlendFilms:Part 2. J. Polym. Environ.2008,16,12-18.
    [130]Agari, Y.; Sakai, K.; Kano, Y. Nomura, R. Preparation and properties of the biodegradable graded blend of poly(L-lactic acid) and poly(ethylene oxide). J. Polym.Sci.Pol.Phys.2007,45,2972-2981.
    [131]Wang. G.; Tong, X.; Zhao, Y. Preparation of azobenzene-containing amphiphilic diblock copolymers for light-responsive micellar aggregates. Macromolecules 2004.37. 8911-8917.
    [132]Alvarez-Lorenzo, C.; Deshmukh, S.; Bromberg, L.; Hatton, T. A.; Sandez-Macho. I.; Concheiro, A. Temperature-and light-tesponsive blends of Pluronic F127 and poly(N,N-dimethylacrylamide-co-methacryloyloxyazobenzene). Langmuir 2007,23, 11475-11481.
    [133]Espigares,I.; Elvira. C.; Mano, J. F.; Vazquez, B.; San Roman,J.; Reis, R. L. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials 2002,23,1883-1895.
    [134]Carvalho, A.; Job, A.; Alves, N.; Curvelo, A.; Gandini, A. Thermoplastic starch/natural rubber blends. Carbohyd. Polym.2003.53.95-99.
    [135]Hartmann. M. H.; Kaplan, D. L. Biopolymers from renewable resources. Berlin: Springer.1998.367-411.
    [136]Kang. X. H.; Mai. Z. B.; Zou. X. Y.; Cai. P. X.; Mo, J. Y. A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal. Biochem.2007.363,143-150.
    [137]Svrcek, V.; Turkevych, I.; Kondo. M. Filtering and assembly of Si nanocrystals/conjugated polymer blend with reduced oxygen penetration. J. Electrochem. Soc.2010.157. K194-K200.
    [138]Li. Y. L.; Yoo. K.; Lee, D. K.; Kim, J. H.; Park, N. G.; Kim. K.:Ko. M. J. Highly bendable composite photoelectrode prepared from TiO2/polymer blend for low temperature fabricated dye-sensitized solar cells. Curr. Appl. Phys.2010.10, e171-e175.
    [139]Sontjens, S. H. M.;Sijbesma, R. P.; van Genderen, M. H. P.; Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4[1H]-pyrimidinone dimers. J. Am. Chem. Soc.2000.122.7487-7493.
    [140]Lipatov, Y. S. Polymer blends and interpenetrating polymer networks at the interface with solids. Prog. Polym. Sci.2002,27,1721-1801.
    [141]Noro, A.; Nagata. Y.; Takano, A.; Matsushita. Y. Diblock-type supramacromolecule via biocomplementary hydrogen bonding. Biomacromolecules 2006,7,1696-1699.
    [142]Orfanou, K.; Topouza. D.; Sakellariou, G.; Pispas, S. Graftlike interpolymer complexes from poly(2-vinylpyridine) and end-sulfonic acid polystyrene and polyisoprene: intermediates to noncovalently bonded block copolymer-like micelles. J. Polym. Sci. Pol. Chem.2003.41,2454-2461.
    [143]Park. T.; Zimmerman, S. C. Formation of a miscible supramolecular polymer blend through self-assembly mediated by a quadruply hydrogen-bonded heterocomplex. J. Am. Chem. Soc.2006,128,11582-11590.
    [144]Csaba, N.; Caamano, P.; Sanchez, A.; Dominguez, F.; Alonso, M. J. PLGA:poloxamer and PLGA:poloxamine blend nanoparticles:new carriers for gene delivery. Biomacromolecules 2005,6,271-278.
    [145]Lyons, J. G.; Blackie, P.; Higginbotham, C. L. The significance of variation in extrusion speeds and temperatures on a PEO/PCL blend based matrix for oral drug delivery. Int. J. Pharm.2008,351,201-208.
    [146]Salehi, P.; Sarazin, P.; Favis B. D. Porous devices derived from co-continuous polymer blends as a route for controlled drug release. Biomacromolecules 2008.9,1131-1138.
    [147]Wan, Y.; Wu, H.; Yu, A.; Wen, D. J. Biodegradable polylactide/chitosan blend membranes. Biomacromolecules 2006,7,1362-1372.
    [148]Lecomte, F.; Siepmann, J.; Walther, M.; MacRae, R. J.; Bodmeier, R. pH-sensitive polymer blends used as coating materials to control drug release from spherical beads: importance of the type of core. Biomacromolecules 2005,6,2074-2083.
    [149]Chang, Y. W.; Mishra, J. K.; Kim, S. K.; Kim, D. K. Effect of supramolecular hydrogen bonded network on the properties of maleated ethylene propylene diene rubber/maleated high density polyethylene blend based thermoplastic elastomer. Mater. Lett.2006,60. 3118-3121.
    [I]Flohe, L.; Loschen, G.; Gunzler, W. A.; Eichele, E. Glutathione peroxidase, V the kinetic mechanism. Hoppe-Seyler's Z Physiol. Chem.1972,353,987-999.
    [2]Sies, H. Oxidative Stress:Introductory Remarks. In Oxidative Stress:Sies, H., Ed.; Academic Press:London,1985, p 1.
    [3]Sies, H. Biochemistry of oxidative stress. Angew. Chem. Int. Ed. Engl.1986,25, 1058-1072.
    [4]Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm Resolution. Eur. J. Biochem.1983,133.51-69.
    [5]Mugesh, G.; Singh, H. B. Heteroatom-directed aromatic lithiation:a versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res.2002,35,226-236.
    [6]Mugesh, G.; Singh, H. B. Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem. Soc. Rev.2000,29,347-357.
    [7]Back, T. G.; Moussa, Z. Diselenides and allyl selenides as glutathione peroxidase mimetics. remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl co-hydroxyalkyl selenides. J. Am. Chem. Soc.2003,125,13455-13460.
    [8]You. Y.; Ahsan, K.; Detty, M. Mechanistic studies of the tellurium(Ⅱ)/tellurium(Ⅳ) redox cycle in thiol peroxidase-like reactions of diorganotellurides in methanol. J. Am. Chem. Soc.2003,125,4918-4927.
    [9]McNaughton, M.; Engman, L.; Birmingham, A.; Powis, G.; Cotgreave, I. A. Cyclodextrin-derived diorganyl tellurides as glutathione peroxidase mimics and inhibitors of thioredoxin reductase and cancer cell growth. J. Med. Chem.2004,47,233-239.
    [10]Mugesh, G.; du Mont, W. W.; Sies, H., Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev.2001,101,2125-2180.
    [11]Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Huang, X.; Yang, B.; Ren, X. J.; Luo. G. M.; Shen, J. C. Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2. 2'-ditellurobis(2-deoxy-beta-cyclodextrin).J. Am. Chem. Soc.2004,126.16395-16404.
    [12]Huang. X.; Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Luo. G. M.;Shen. J. C. Tellurium-based polymeric surfactants as a novel seleno-enzyme model with high activity. Macromol. Rapid. Commun.2006,27,2101-2106.
    [13]Huang, X.; Dong, Z. Y.; Liu. J. Q.; Mao. S. Z.; Xu, J. Y.; Luo, G. M.; Shen. J. C. Selenium-mediated micellar catalyst:An efficient enzyme model for glutathione peroxidase-like catalysis. Langmuir 2007.23,1518-1522.
    [14]Huang, X., Liu, Y., Liang, K., Tang. Y. and Liu. J.Q. Construction of the active site of glutathione peroxidase on polymer-based nanoparticles. Biomacromolecules 2008. 9.1467-1473.
    [15]Huang, X.; Yin, Y. Z.; Liu, Y.; Bai, X. L.; Zhang, Z. Z.; Xu, J. Y.; Liu, J. Q. Incorporation of glutathione peroxidase active site into polymer based on imprinting strategy. Biosens. Bioelectron.2009,25,657-660.
    [16]Huang, X.; Yin, Y. Z.;Tang, Y.; Bai. X. L.; Zhang, Z. Z.; Xu. J. Y.; Liu, J. Q.;Shen, J. C Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter 2009,5,1905-1911.
    [17]Huang, X.; Yin, Y. Z.; Jiang. X.; Tang. Y.; Xu, J. Y.; Liu, J. Q.; Shen. J. C. Construction of smart glutathione peroxidase mimic based on hydrophilic block copolymer with temperature responsive activity. Macromol. Biosci.2009,9,1202-1210.
    [18]Yu. H. J.; Liu. J. Q.;August. B.; Li. J.;Luo, G. M.; Shen. J. C. Engineering glutathione transferase to a novel glutathione peroxidase mimic with high catalytic efficiency. J. Biol. Chem.2005.280,11930-11935.
    [19]Liu. X. M.; Silks. L. A.; Liu, C. P.; Ollivault-Shiflett, M.; Huang, X.; Li. J.; Luo. G. M.; Hou, Y. M.; Liu, J. Q.; Shen. J. C. Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew. Chem. Int. Ed.2009. 48.2020-2023.
    [20]Ge, Y.; Qi, Z. H.; Wang, Y.; Liu, X. M.; Li, J.; Xu, J. Y.; Liu. J. Q.; Shen, J. C. Engineered selenium-containing glutaredoxin displays strong glutathione peroxidase activity rivaling natural enzyme. Int. J. Biochem. Cell. Biol.2009,41,900-906.
    [21]Tian, M.; Qu, C. D.; Feng, Y. X.; Zhang, L. Q. Structure and properties of fibrillar silicate/SBR composites by direct blend process. J. Mater. sci.2003,38,4917-4924.
    [22]Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci.2006,31,576-602.
    [23]Coleman, M. M.; Painter, P. C. Hydrogen bonded polymer blends. Prog. Polym. Sci.1995. 20,1-59.
    [24]Gil, E. S.; Frankowski. D. J.; Bowman, M. K.; Gozen, A. O.; Hudson, S. M.; Spontak, R. J. Mixed protein blends composed of gelatin and bombyx mori silk fibroin:effects of solvent-induced crystallization and composition. Biomacromolecules 2006,7,728-735.
    [25]Kenawy, E. R.; Bowlin, G. L.; Mansfield, K. J. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release.2002,81.57-64.
    [26]He. Y.; Zhu. B.; Inoue. Y. Hydrogen bonds in polymer blends. Prog. Polym. Sci.2004,29, 1021-1051.
    [27]Marra, K. G.; Szem, J. W.; Kumta. P. N.; DiMilla, P. A.; Weiss, L. E. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J. Biomed. Mater. Res.1999,47.324-335.
    [28]Meredith, J. C.; Karim, A.; Amis, E. J. High-Throughput Measurement of Polymer Blend Phase Behavior. Macromolecules 2000,33.5760-5762.
    [29]Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz. T.; Hummelen. J. C.2.5% efficient organic plastic solar cells. Appl. Phys. Lett.2001,78,841-843.
    [30]Chuang, W. Y.; Young, T. H.; Yao, C. H.; Chiu, W. Y. Properties of the poly (vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 1999,20,1479-1487.
    [31]Wu, Z. P.; Hilvert, D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc.1990,112,5647-5648.
    [32]Kyeremateng, S. O.; Amado, E.; Blume, A.; Kressler, J. Synthesis of ABC and CABAC triphilic block copolymers by ATRP combined with'Click'chemistry. Macromol. Rapid. Commun.2008.29.1140-1146.
    [33]Munteanu, M.; Choi, S.W.; Ritter, H. Cyclodextrin methacrylate via microwave-assisted Click reaction. Macromolecules 2008,41,9619-9623.
    [34]Saha, A.; Ramakrishnan, S. Site-specific functionalization of hyperbranched polymers using "Click" chemistry. Macromolecules 2009,42,4028-4037.
    [35]Abraham, S.; Ha, C. S.; Kim, I. L. Synthesis of poly(styrene-block-tert-butyl acrylate) star polymers by Atom Transfer Radical Polymerization and micellization of their hydrolyzed polymers. J. Polym. Sci. Pol. Chem.2005,43,6367-6378.
    [36]Davis, K. A.; Matyjaszewski, K. Atom Transfer Radical Polymerization of tert-Butyl acrylate and preparation of block copolymers. Macromolecules 2000,33,4039-4047.
    [37]Ramakrishnan, A.; Dhamodharan, R. Facile synthesis of ABC and CBABC multiblock copolymers of styrene, tert-butyl acrylate, and methyl methacrylate via room temperature ATRP of MMA. Macromolecule 2003.36,1039-1046.
    [38]Coessens, V.; Pintauer. T.; Matyjaszewski. K. Functional polymers by Atom Transfer Radical Polymerization. Prog. Polym. Sci.2001.26,337-377.
    [39]Hua, M.; Kaneko, T.; Liu, X. Y.; Chen, M. Q.; Akashi, M. Successful ATRP syntheses of amphiphilic block copolymers poly(styrene-block-N,N-dimethylacrylamide) and their self-assembly. Polym. J.2005,37,59-64.
    [40]Edmondson, S.; Osborne, V. L.; Huck, W. T. S. Polymer brushes via surface-initiated polymerizations. Chem. Soc. Rev.2004,33,14-22.
    [41]Theato, P.; Zentel, R.; Schwarz, S. Synthesis of end-functionalized lipopolymers and their characterization with regard to polymer supported lipid membranes. Macromol. Biosci. 2002.2,387-394.
    [42]Zhou. W.;Dai, X. H.;Dong, C. M. Biodegradable and biomimetic poly(caprolactone)/poly(lactobionamidoethylmethacrylate) biohybrids:synthesis, lactose-Installed nanoparticles and recognition properties. Macromol. Biosci.2008,8. 268-278.
    [43]Xu. J. P.; Ji, J.; Chen, W. D.; Shen. J. C. Novel biomimetic surfactant:synthesis and micellar characteristics. Macromol. Biosci.2005.5,164-171.
    [44]Liu. S. Y. Weaver. J. V. M.; Tang, Y. Q.; Billingham. N. C.; Armes. S. P.;Tribe. K. Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers. Macromolecules 2002,35,6121-6131.
    [45]Zhou. L.; Gao, C.; Xu, W. J.; Wang, X.; Xu, Y. H. Enhanced biocompatibility and biostability of CdTe quantum dots by facile surface-Initiated dendritic polymerization. Biomacromolecules 2009.10.1865-1874.
    [46]Kirby, A. J. Enzyme Mechanisms, Models, and Mimics. Angew. Chem. Int. Ed. Engl. 1996,35,707-724.
    [47]D'souza, V. T.; Bender, M. L. Miniature Organic Models of Enzymes. Acc. Chem. Res. 1987.20,146-152.
    [1]Sies, H. Oxidative Stress:Introductory Remarks. In Oxidative stress; Sies, H., Ed.; Academic Press:London,1985, p 1.
    [2]Sies, H. Biochemistry of oxidative stress. Angew. Chem. Int. Ed. Engl.1986.25. 1058-1072.
    [3]Flohe, L.; Loschen, G.; Giinzler. W. A.; Eichele, E. Glutathione peroxidase. V the kinetic mechanism. Hoppe-Seyler's Z Physiol. Chem.1972,353,987-999.
    [4]Epp, O.; Ladenstein, R.; Wendel, A. The refined structure of the selenoenzyme glutathione peroxidase at 0.2-nm Resolution. Eur. J. Biochem.1983,133,51-69.
    [5]Mugesh, G.; Singh, H. B. Heteroatom-directed aromatic lithiation:a versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res.2002,35,226-236.
    [6]Mugesh. G.; Singh, H. B. Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem. Soc. Rev.2000,29,347-357.
    [7]Back, T. G.; Moussa. Z. Diselenides and allyl selenides as glutathione peroxidase mimetics. remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl ω-hydroxyalkyl selenides. J. Am. Chem. Soc.2003,125,13455-13460.
    [8]Riley. D. P.; Weiss. R. H. Manganese macrocyclic ligand complexes as mimics of superoxide dismutase. J. Am. Chem. Soc.1994,116,387-388.
    [9]McNaughton, M.; Engman. L.; Birmingham, A.; Powis, G.; Cotgreave, I. A. Cyclodextrin-derived diorganyl tellurides as glutathione peroxidase mimics and inhibitors of thioredoxin reductase and cancer cell growth. J. Med. Chem.2004,47,233-239.
    [10]Mugesh, G.; du Mont. W. W.; Sies. H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev.2001,101,2125-2180.
    [11]Dong. Z. Y.; Liu. J. Q.; Mao. S. Z.; Huang. X.; Yang. B.; Ren. X. J.; Luo, G. M.; Shen, J. C. Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2, 2'-ditellurobis(2-deoxy-beta-cyclodextrin). J. Am. Chem. Soc.2004,126,16395-16404.
    [12]Huang, X.; Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Luo, G. M.; Shen, J. C. Tellurium-based polymeric surfactants as a novel seleno-enzyme model with high activity. Macromol. Rapid. Commun.2006,27,2101-2106.
    [13]Yu. S. J.; Yin. Y. Z.; Zhu. J. Y.; Huang, X.; Luo, Q.; Xu, J. Y.; Shen, J. C.; Liu, J. Q. A modulatory bifunctional artificial enzyme with both SOD and GPx activities based on a smart star-shaped pseudo-block copolymer. Soft Matter 2010,6,5342-5350.
    [14]Huang, X., Liu, Y., Liang, K., Tang, Y. and Liu, J.Q. Construction of the active site of glutathione peroxidase on polymer-based nanoparticles. Biomacromolecules 2008,9. 1467-1473.
    [15]Huang. X.; Yin, Y. Z.; Liu. Y.; Bai. X. L.; Zhang, Z. Z.; Xu, J. Y.; Shen, J. C.; Liu, J. Q. Incorporation of glutathione peroxidase active site into polymer based on imprinting strategy. Biosens. Bioelectron.2009,25,657-660.
    [16]Huang, X.; Yin, Y. Z.; Tang, Y.; Bai. X. L.; Zhang, Z. Z.; Xu, J. Y.; Liu, J. Q.; Shen. J. C. Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter 2009,5,1905-1911.
    [17]Huang, X.; Yin, Y. Z.; Jiang, X.; Tang, Y.; Xu, J. Y.:Liu. J. Q.; Shen, J. C. Construction of smart glutathione peroxidase mimic based on hydrophilic block copolymer with temperature responsive activity. Macromol. Biosci.2009,9,1202-1210.
    [18]Tang, Y.; Zhou. L. P.; Li, J. X.; Huang, X.; Wu, P.; Wang, Y. G.; Xu. J. Y.; Shen, J. C.; Liu. J. Q. Giant nanotubes loaded with artificial peroxidase centers:self-assembly of supramolecular amphiphiles as a tool to functionalize nanotubes. Angew. Chem. Int. Ed. 2010.49.3920-3924.
    [19]Yin, Y. Z.; Huang, X.; Lv, C. Y.; Wang, L.; Yv, S. J.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Construction of artificial glutathione peroxidase active site on copolymer vesicles. Macromol. Biosci.2010,10,1505-1516.
    [20]Yu, H. J.; Liu, J. Q.; August, B.; Li, J.; Luo, G. M.; Shen, J. C., Engineering glutathione transferase to a novel glutathione peroxidase mimic with high catalytic efficiency. J. Biol. Chem.2005,280,11930-11935.
    [21]Liu, X. M.; Silks, L. A.; Liu. C. P.; Ollivault-Shiflett, M.; Huang. X.; Li, J.; Luo. G. M.: Hou, Y. M.; Liu, J. Q.; Shen, J. C. Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew. Chem. Int. Ed.2009, 48,2020-2023.
    [22]Ge, Y.; Qi, Z. H.; Wang, Y.; Liu, X. M.; Li. J.; Xu, J. Y.; Shen, J. C.; Liu, J. Q. Engineered selenium-containing glutaredoxin displays strong glutathione peroxidase activity rivaling natural enzyme. Int. J. Biochem. Cell. Biol.2009,41,900-906.
    [23]Sies, H. Oxidative stress:oxidants and antioxidants. Exp. Physiol.1997,82,291-295.
    [24]Tian. M.; Qu, C. D.; Feng, Y. X.; Zhang, L. Q. Structure and properties of fibrillar silicate/SBR composites by direct blend process. J. Mater. sci.2003,38,4917-4924.
    [25]Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci.2006,31,576-602.
    [26]Coleman, M. M.; Painter, P. C. Hydrogen bonded polymer blends. Prog. Polym. Sci.1995, 20,1-59.
    [27]Gil, E. S.; Frankowski, D. J.; Bowman, M. K.; Gozen, A. O.; Hudson, S. M.; Spontak. R. J. Mixed protein blends composed of gelatin and bombyx mori silk fibroin:effects of solvent-induced crystallization and composition. Biomacromolecules 2006,7,728-735.
    [28]Kenawy, E. R.; Bowlin, G. L.; Mansfield, K. J. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate). poly(lactic acid), and a blend. J. Control. Release.2002.81.57-64.
    [29]He. Y.; Zhu, B.; Inoue, Y. Hydrogen bonds in polymer blends. Prog. Polym. Sci.2004.29. 1021-1051.
    [30]Marra, K. G.; Szem, J. W.; Kumta, P. N.; DiMilla, P. A.; Weiss, L. E. In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering. J. Biomed. Mater. Res.1999,47,324-335.
    [31]Meredith, J. C.; Karim. A.; Amis, E. J. High-throughput measurement of polymer blend phase behavior. Macromolecule 2000,33,5760-5762.
    [32]Shaheen, S. E.; Brabec, C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C.2.5% efficient organic plastic solar cells. Appl. Phys. Lett.2001.78.841-843.
    [33]Chuang. W. Y.; Young, T. H.; Yao, C. H.; Chiu. W. Y. Properties of the poly (vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 1999,20,1479-1487.
    [34]Ciampolini, M.; Nardi. N. Five-coordinated high-spin complexes of bivalent cobalt, nickel, and copper with tris(2-dimethylaminoethyl)amine. Inorg. Chem.1966,5,41-44.
    [35]Wu. Z. P.; Hilvert, D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc.1990.112,5647-5648.
    [36]You. Y.; Ahsan, K.; Detty, M. Mechanistic studies of the tellurium(Ⅱ)/tellurium(Ⅳ) redox cycle in thiol peroxidase-like reactions of diorganotellurides in methanol. J. Am. Chem. Soc.2003.125.4918-4927.
    [37]Masci, G.;Giacomelli. L.; Crescenzi, V. Atom Transfer Radical Polymerization of N-isopropylacrylamide. Macromol. Rapid. Commun.2004.25.559-564.
    [38]Coessens. V.;Pintauer. T.; Matyjaszewski, K. Functional polymers by Atom Transfer Radical Polymerization. Prog. Polym. Sci.2001,26,337-377.
    [39]Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization:Features, developments, and perspectives. Prog. Polym. Sci.2007.32.93-146.
    [40]Edmondson. S.; Osborne, V. L.; Huck, W. T. S. Polymer brushes via surface-initiated polymerizations. Chem. Soc. Rev.2004,33,14-22.
    [41]Kong, H.; Gao, C.; Yan, D. Y. Controlled functionalization of multiwalled carbon nanotubes by in situ Atom Transfer Radical Polymerization. J. Am. Chem. Soc.2004,126, 412-413.
    [42]Pyun. J.; Kowalewski T.; Matyjaszewski, K. Synthesis of polymer brushes using Atom Transfer Radical Polymerization. Macromol. Rapid. Commun.2003,24,1043-1059.
    [43]Matyjaszewski, K. Transition metal catalysis in controlled radical polymerization:Atom Transfer Radical Polymerization. Chem. Eur. J.1999,5,3095-3102.
    [44]Liu, S. Y.. Weaver. J. V. M.; Tang, Y. Q.; Billingham, N. C.; Armes, S. P.; Tribe, K. Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers. Macromolecules 2002,35,6121-6131.
    [45]Yoshida, H.; Klinkhammer, K.; Matsusaki, M.; Moller, M.; Klee, D.; Akashi, M. Disulfide-crosslinked electrospun poly(g-glutamic acid) nonwovens reduction-responsive scaffolds. Macromol. Biosci.2009,9,568-574.
    [46]Lu, Y.; Mei, Y.; Drechsler, M.; Ballauff, M. Thermosensitive core-shell particles as carriers for Ag nanoparticles:modulating the catalytic activity by a phase transition in networks. Angew. Chem. Int. Ed.2006,45,813-816.
    [47]Nayak, S.; Lyon, L. A. Soft nanotechnology with soft nanoparticles. Angew. Chem. Int. Ed.2005,44,7686-7708.
    [48]Hoffman, A. S.; Stayton, P. S. Conjugates of stimuli-responsive polymers and proteins. Prog. Polym. Sci.2007,32,922-932.
    [49]Stadermann, J.; Fleischmann, S.; Messerschmidt, M.; Komber, H.; Voit, B. Multifunctional block copolymers based on styrene derivatives. Macromol. Symp.2009. 35,275-276.
    [1]Sontjens, S. H. M.; Sijbesma, R. P.:van Genderen, M. H. P.; Meijer, E. W. Stability and lifetime of quadruply hydrogen bonded 2-ureido-4[1H]-pyrimidinone dimers. J. Am. Chem. Soc.2000,122,7487-7493.
    [2]Noro, A.; Nagata, Y.; Takano. A.; Matsushita, Y. Diblock-type supramacromolecule via biocomplementary hydrogen bonding. Biomacromolecules 2006,7,1696-1699.
    [3]Orfanou, K.; Topouza, D.; Sakellariou, G.; Pispas, S. Graftlike interpolymer complexes from poly(2-vinylpyridine) and end-sulfonic acid polystyrene and polyisoprene: intermediates to noncovalently bonded block copolymer-like micelles. J. Polym. Sci. Pol. Chem.2003,41,2454-2461.
    [4]Wintgens, V. Amiel. C. Surface plasmon resonance study of the interaction of a a-cyclodextrin polymer and hydrophobically modified poly(N-isopropylacrylamide). Langmuir 2005,21,11455-11461.
    [5]Rimawi, F. A.; Pyell, U. Study of the complexation of different methacrylates with cyclodextrins employing a combination of electrophoretic, chromatographic, and NMR-spectroscopic methods. J. Sep. Sci.2007,30,761-771.
    [6]Taura, D.; Taniguchi, Y.; Hashidzume, A.; Harada, A. Macromolecular recognition of cyclodextrin:inversion of selectivity of β-cyclodextrin toward adamantyl groups induced by macromolecular chains. Macromol. Rapid. Commun.2009,30.1741-1744.
    [7]Guo. X. H.; Wang, J.; Li, L.; Pham, D. T.; Clements. P.; Lincoln. S. F.:May. B. L.; Chen. Q. C.; Zheng. L.; Prudhomme, R. K. Tailoring polymeric hydrogels through cyclodextrin host-guest complexation. Macromol. Rapid. Commun.2010,31,300-304.
    [8]Takahashi, H.; Takashima,Y.; Yamaguchi. H.; Harada, A. Selection between pinching-type and supramolecular polymer-type complexes by y-cyclodextrin-a-cyclodextrin hetero-dimer and hetero-cinnamamide guest dimers. J. Org. Chem.2006,71,4878-4883.
    [9]Ogoshi, T.; Nishida, Y.; Yamagishi, T. A.; Nakamoto. Y. High yield synthesis of polyrotaxane constructed from pillar[5]arene and viologen polymer and stabilization of its radical cation. Macromolecules 2010,43,7068-7072.
    [10]Zhang. Z. X.:Liu. X.; Xu. F. J.; Loh. X. J.; Kang. E. T.; Neoh. K. G.; Li. J. Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide) with α-cyclodextrin core and guest-bearing PEG:controlling thermoresponsivity through supramolecular self-assembly. Macromolecules 2008,41,5967-5970.
    [11]Wang. J.; Jiang, M. Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation. J. Am. Chem. Soc.2006,128, 703-3708.
    [12]Burckbuchler. V.; Wintgens, V.; Leborgne. C.;Lecomte. S.; Leygue, N.; Scherman. D.; Kichler. A.:Amiel, C. Development and characterization of new cyclodextrin polymer-based DNA delivery systems. Bioconjugate. Chem.2008,19,2311-2320.
    [13]Zhou. J. W.; Ritter. H. Cyclodextrin functionalized polymers as drug delivery systems. Polym. Chem.2010,1,1552-1559.
    [14]Fang, G.; Xu, M. Y.;Zeng, F.; Wu, S. Z. β-Cyclodextrin as the vehicle for forming ratiometric mercury ion sensor usable in aqueous media, biological fluids, and live cells. Langmuir 2010,26,17764-17771.
    [15]Flohe. L.; Loschen, G.; Giinzler. W. A.; Eichele. E. Glutathione peroxidase. V the kinetic mechanism. Hoppe-Seyler's Z Physiol. Chem.1972,353,987-999.
    [16]Mugesh. G.; Singh. H. B. Heteroatom-directed aromatic lithiation:a versatile route to the synthesis of organochalcogen (Se, Te) compounds. Acc. Chem. Res.2002,35,226-236.
    [17]Mugesh, G.; Singh, H. B. Synthetic organoselenium compounds as antioxidants: glutathione peroxidase activity. Chem. Soc. Rev.2000,29,347-357.
    [18]Back. T. G.; Moussa, Z. Diselenides and allyl selenides as glutathione peroxidase mimetics. remarkable activity of cyclic seleninates produced in situ by the oxidation of allyl ω-hydroxyalkyl selenides. J. Am. Chem. Soc.2003,125,13455-13460.
    [19]Dong, Z. Y.; Liu, J. Q.; Mao. S. Z.; Huang, X.; Yang, B.; Ren, X. J.; Luo, G. M.; Shen, J. C. Aryl thiol substrate 3-carboxy-4-nitrobenzenethiol strongly stimulating thiol peroxidase activity of glutathione peroxidase mimic 2, 2'-ditellurobis(2-deoxy-beta-cyclodextrin). J. Am. Chem. Soc.2004,126,16395-16404.
    [20]Yu. S. J.; Yin, Y. Z.; Zhu. J. Y.; Huang, X.; Luo, Q.; Xu. J. Y.; Shen. J. C.; Liu, J. Q. A modulatory bifunctional artificial enzyme with both SOD and GPx activities based on a smart star-shaped pseudo-block copolymer. Soft Matter 2010,6,5342-5350.
    [21]Huang, X.; Liu, Y.; Liang, K.; Tang, Y; and Liu, J.Q. Construction of the active site of glutathione peroxidase on polymer-based nanoparticles. Biomacromolecules 2008,9, 1467-1473.
    [22]Huang, X.; Yin. Y. Z.; Tang, Y.; Bai, X. L.;Zhang, Z. Z.; Xu, J. Y.; Liu, J. Q.; Shen, J. C. Smart microgel catalyst with modulatory glutathione peroxidase activity. Soft Matter 2009,5.1905-1911.
    [23]Huang, X.; Yin. Y. Z.; Jiang, X.; Tang, Y.; Xu, J. Y.; Liu, J. Q.; Shen, J. C. Construction of smart glutathione peroxidase mimic based on hydrophilic block copolymer with temperature responsive activity. Macromol. Biosci.2009,9,1202-1210.
    [24]Tang. Y.; Zhou, L. P.; Li, J. X.; Huang, X.; Wu, P.; Wang, Y. G.; Xu, J. Y.; Shen, J. C.: Liu, J. Q. Giant nanotubes loaded with artificial peroxidase centers:self-assembly of supramolecular amphiphiles as a tool to functionalize nanotubes. Angew. Chem. Int. Ed. 2010.49,3920-3924.
    [25]Liu, X. M.; Silks. L. A.; Liu, C. P.; Ollivault-Shiflett, M.; Huang, X.; Li. J.; Luo, G. M.; Hou, Y. M.; Liu. J. Q.; Shen, J. C. Incorporation of tellurocysteine into glutathione transferase generates high glutathione peroxidase efficiency. Angew. Chem. Int. Ed.2009. 48,2020-2023.
    [26]Yin, Y. Z.; Huang, X.; Lv, C. Y.; Wang, L.; Yv, S. J.; Luo, Q.; Xu, J. Y.; Liu, J. Q. Construction of artificial glutathione peroxidase active site on copolymer vesicles. Macromol. Biosci.2010,10,1505-1516.
    [27]Yin, Y Z.;Wang, W.; Jin, H. Y.; Lv, C. Y.; Yv, S. J.; Huang, X.; Luo, Q.; Xu, J. Y.; Liu. J. Q. Construction of smart glutathione peroxidase mimic with temperature responsive activity based on block copolymer. Soft Matter 2011,7,2521-2529.
    [28]Yu, S. J.; Huang, X.; Miao, L.; Zhu, J. Y.; Yin, Y. Z.; Luo, Q.; Xu, J. Y.; Shen, J. C.; Liu, J. Q. A supramolecular bifunctional artificial enzyme with superoxide dismutase and glutathione peroxidase activities. Bioorg. Chem.2010,38,159-164.
    [29]Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci.2006,31,576-602.
    [30]Coleman, M. M.; Painter, P. C. Hydrogen bonded polymer blends. Prog. Polym. Sci.1995, 20,1-59.
    [31]Kenawy, E. R.; Bowlin, G. L.; Mansfield, K. J. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release.2002,81,57-64.
    [32]Shaheen. S. E.; Brabec. C. J.; Sariciftci, N. S.; Padinger, F.; Fromherz, T.; Hummelen, J. C.2.5% efficient organic plastic solar cells. Appl. Phys. Lett.2001,78,841-843.
    [33]Chuang, W. Y.; Young, T. H.; Yao, C. H.; Chiu. W. Y. Properties of the poly (vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 1999.20,1479-1487.
    [34]Ciampolini, M.; Nardi, N. Five-coordinated high-spin complexes of bivalent cobalt, nickel, and copper with tris(2-dimethylaminoethyl)amine. Inorg. Chem.1966.5,41-44.
    [35]Wu, P.; Xiao, R. Q.; Zhang, C. Q.; Zhou, L. P.; Luo, Q.; Xu, J. Y.:Liu, J. Q. Photoregulating catalytic activity of cyclodextrin-based artificial glutathione peroxidase by charged azobenzene. Catal. Lett.2010,13.62-67.
    [36]Huang, X.; Dong, Z. Y.; Liu, J. Q.; Mao, S. Z.; Luo. G. M.; Shen, J. C. Tellurium-based polymeric surfactants as a novel seleno-enzyme model with high activity. Macromol. Rapid. Commun.2006,27,2101-2106.
    [37]Wu, Z. P.; Hilvert, D. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc.1990,112,5647-5648.
    [38]Masci, G.; Giacomelli. L.; Crescenzi. V. Atom Transfer Radical Polymerization of N-isopropylacrylamide. Macromol. Rapid. Commun.2004.25,559-564.
    [39]Munteanu, M.; Choi, S. W.; Ritter, H. Cyclodextrin-click-cucurbit[6]uril:combi-receptor for supramolecular polymer systems in water. Macromolecules 2009.42,3887-3891.
    [40]Ge. Z. S.; Xu. J.; Hu. J. M.; Zhang. Y. F.; Liu. S. Y. Synthesis and supramolecular self-assembly of stimuli-responsive water-soluble Janus-type heteroarm star copolymers. Soft Matter 2009,5,3932-3939.
    [41]Garska, B.; Tabatabai, M.; Ritter, H. Calix[4]arene-click-cyclodextrin and supramolecular structures with watersoluble NIPAAM-copolymers bearing adamantyl units:"Rings on ring on chain". J. Org. Chem.2010,6,784-788.
    [42]Coessens, V.; Pintauer, T.; Matyjaszewski, K. Functional polymers by Atom Transfer Radical Polymerization. Prog. Polym. Sci.2001.26,337-377.
    [43]Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization:Features, developments and perspectives. Prog. Polym. Sci.2007,32,93-146.
    [44]Hua, M.; Kaneko, T.; Liu, X. Y.; Chen. M. Q.;Akashi. M. Successful ATRP syntheses of Amphiphilic block copolymers poly(styrene-block-N,N-dimethylacrylamide) and their self-assembly. Polym. J.2005,37.59-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700