用户名: 密码: 验证码:
病毒载体技术的安全性研究及其在诱导性多能干细胞中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:逆转录病毒载体和慢病毒载体的安全性比较研究
     背景:逆转录病毒载体广泛应用人类基因治疗试验中。然而载体随机插入可能会引起宿主附近基因的激活。逆转录病毒和慢病毒载体越来越多的应用于干细胞基因矫正中。由于插入诱变导致的干细胞表型改变,可能会影响其子代细胞及其分化发育性能。
     目的:确定病毒载体插入部位的选择机制及对宿主基因表达的影响。
     方法:分类转染的Jurkat细胞克隆,用LM-PCR方法对病毒载体插入位点进行作图。并将获得的插入位点附近序列与人类基因组草图(UCSC Human Genome Project Working Draft)进行比对。用实时荧光定量逆转录PCR技术检测病毒载体插入对宿主基因表达的影响。
     结果:1)RV插入宿主基因组时偏好RIS,而LV没有类似倾向。2)RV喜好插入基因的转录起始区(TSS),而LV没有类似倾向。3)加入cHS4绝缘子后,使LV的插入模式向RV模式转变,即靠近TSS的增多。4)与LV不同,RV对宿主基因的活化频率较高,说明LV是较RV安全的载体。而且,RV可能会导致插入突变,这一特性可以用于研究基因是如何条件细胞增殖和分化的。5)宿主基因被活化与否,跟病毒载体插入位点与宿主基因启动子的远近无直接关系。
     结论:RV偏好插入RIS基因附近,该类基因多是调节细胞周期和凋亡的基因。宿主基因的活化可能与所在染色质的三维空间结构有关,使得RV增强子能够激活远处的宿主基因,而对就近的基因没有影响。RV和LV在对插入位点的选择上有显著的不同。
     第二部分:病毒载体技术在体细胞重编程阶段的应用
     背景:虽然逆转录病毒载体插入诱变的风险高于慢病毒载体,但是存在两个明显的优势,其一体细胞重编程效率较高,其二在于细胞阶段,逆转录病毒载体的MLV启动子自发沉默,有助于后继的iPSCs向各类终末细胞分化。脊髓肌肉萎缩症(SMA)是单基因遗传病,非常适合进行发病机制和基因矫正治疗的研究。SMA疾病特异性iPSCs细胞能够提供无限量的带有疾病特征的运动神经元细胞。
     目的:本实验室1)拟建立逆转录病毒载体转染正常人皮肤成纤维细胞,建立正常人iPSCs作为对照组。2)而后建立脊髓肌肉萎缩症(SMA)患者的iPSCs,探索疾病特异性iPSCs作为研究发病机制的细胞模型的可行性。3)进行重编程技术优化。
     方法:来自于正常人和SMA患者的皮肤成纤维细胞被染携带有4类转录调控因子的逆转录病毒载体。4周以后,iPSCs克隆被分离培养,并进行特性鉴定,包括:1)ES细胞特异性标记基因的表达,包括TRA-1-80, hBRIX, hDNMT, NODAL, TDGF1, GDF3, NANOG, REX13, hTERT, DPPA4,内源性Oct3/4, Sox2, Klf4 and C-myc。2)胚样体形成试验,及向三胚层的诱导分化,用于证实iPSCs细胞系的多向分化潜能。3)进行重编程技术优化。
     结果:(1)本实验室建立的正常iPSCs和SMA-iPSCs细胞系均具有自我更新和多向分化潜能。(2)在建立SMA-iPSCs细胞系的过程中,重编程效率类似于正常人成纤维细胞。(3)RV携带的外源基因在iPSCs细胞系中被沉默,而内源性转录因子被激活表达。(4)RV没有引起iPSCs细胞的分化阻滞。(5)重编程技术优化结果,把LV和转座子技术结合,具有可行性,但重编程效率显著降低。
     结论:(1)用RV成功重编程获得正常iPSCs细胞系和疾病特异性SMA-iPSCs细胞系。(2)重编程条件优化可考虑把病毒载体技术和非病毒技术结合起来,以达到高效安全的目的。
     第三部分:病毒载体技术在人诱导性多能干细胞基因矫正阶段的应用
     背景:基因矫正技术和小鼠胚胎干细胞技术结合,近年来进展显著。包括利用同源基因重组技术发展而来的“基因敲出”、“基因敲入”小鼠,以及体外基因矫正技术的临床试验。但是由于人类胚胎干细胞的伦理限制、成体干细胞来源受限,体外扩增技术尚无突破,以及基因矫正的安全性问题,使人类遗传性疾病的基因矫正研究进展缓慢。
     目的:1)在患者皮肤成纤维细胞中进行基因矫正的可行性;2)在疾病特异性SMA-iPSCs细胞系中进行基因矫正的可行性;3)矫正前后,细胞表型及运动神经元定向分化功能的改变。
     方法:构建LV-SMN-Neo载体,1)转染SMA成纤维细胞,而后进行Neo耐药基因筛选;2)建立无滋养细胞的iPSCs培养体系,并用上述载体转染SMA-iPSCs获得成功;3)建立iPSCs向运动神经元定向分化的方案,而后用免疫荧光技术,鉴定SMN蛋白的表达情况,及Tuj-1和HB9等神经元特异性蛋白的表达情况。
     结果:1)成功构建携带正常SMN基因、Neo耐药基因的慢病毒载体;2)在患者成纤维细胞水平,成功转染并筛选获得G418抗生素耐药的阳性克隆;3)转染细胞成功表达SMN蛋白,及细胞核内gem body数量的显著增加;5)在疾病特异性SMA-iPSCs水平进行转染时,成功获得SMN的特异性表达和细胞核内gem body数量的增加。6)运动神经元定向分化研究中,发现SMA-iPSCs细胞核内包含SMN蛋白的颗粒(gem body)明显减少。运动神经元定向分化过程中,正常人iPSCs可以形成正常的运动神经元,而SMA-iPSCs的运动神经元形成明显减少,神经元特异性蛋白(Tuj-1,HB9)表达减少,轴突形成减少,说明SMN蛋白缺失可能会导致运动神经元发育缺陷。7)进行基因矫正后的SMA-iPSCs向运动神经元定向分化能力明显改善,但仍低于正常对照组。
     结论:慢病毒载体转染体细胞和iPSCs细胞系进行基因矫正,均具有可行性。病毒转染后的阳性克隆,其神经元特异性蛋白表达谱及运动神经元定向分化功能均得到改善。
Part I:A comparative study of retroviral and lentiviral vector-induced genotoxicity
     Background:Retroviral vectors (RV) are widely used in human gene therapy trials. However, random vector integration can activate adjacent cellular genes. Study of genotoxicity has so far been limited to tumorigenesis through genetic selection. Other types of genotoxicity that permanently alter cell phenotypes receive much less attention. As RV and lentiviral vectors (LV) are increasingly used to modify stem cells, these phenotypic changes will have a long-term effect on the progeny derived from these stem cells. It is therefore important to study vector-induced genotoxicity in the absence of genetic selection.
     Objectives:To determine the effect of vector integration on host gene expression.
     Methods:Transduced Jurkat clones were isolated and vector integration site mapped by ligation-mediated PCR. The BLAT program was used to map sequences to the human genome (UCSC Human Genome Project Working Draft). Effect of vector integration on host gene expression was determined by Real time-PCR.
     Results:(1) RV integration into the human genome prefers retrovirus integration sites (RIS) previously mapped in rodent cells whereas LV integration does not show such a preference. (2) RV preferentially integrates near a transcription start site whereas LV does not, suggesting that the mechanism for vector integration between these two systems is different. (3) Insertion of the cHS4 insulator sequence alters the integration pattern of LV toward the transcription start site. (4) In contrast to LV, RV integration leads to host gene activation at high frequencies. This profound effect suggests that LV is a safer vector to use in gene and cell-based therapy. However, RV may serve to induce insertional mutagenesis in host cells, allowing the identification of genes important for the regulation of cell proliferation and differentiation. RV demonstrated preferential integration near a group of genes termed retroviral common integration sites (CIS) whereas LV exhibited no such preference. RV activated host gene expression more frequently than LV. However, gene activation was not correlated with how far the integration site was from the host gene promoter.
     Conclusions:RV prefers to integrate near CIS enriched for cell cycle and apoptosis genes. Since gene activation by RV did not depend on the distance between the promoter and the integration site, the three-dimensional architecture of the host gene might affect the RV enhancer to activate host gene transcription. These results also suggest that the process of selecting integration site or the mechanism of integration is different between RV and LV.
     PartⅡ:The application of viral vector in somatic cell reprogramming
     Background:Although the insertional mutagenesis in retroviral vector (RV) is more frequently than in lentiviral vector (LV), there are two advantages by using RV. First is the high efficiency of somatic cell reprogramming. Second, the MLV promoter in RV will be silenced during stem cell stage, which is helpful during the differentiation of iPSCs to lineage specific cells. Spinal muscular atrophy (SMA) is an inherited disease of single gene mutation, adapting to investigat the molecular mechanism of SMA and gene correction therapy. Development of induced pluripotent stem (iPS) cells provides an unprecedented opportunity to generate motor neurons.
     Objectives:(1) To generate normal iPSCs derived from normal human skin fibroblast cells by transduced with four key transcription factors deliveried by RV. (2) To establish SMA iPS cells, and investigate the feasibility of disease-specific iPSCs as mechanism research model. (2) To modify and optimize the reprogramming process.
     Methods:Fibroblasts from normal human and SMA patient were transduced with the four transcription factors (Oct3/4, Sox2, Klf4 and C-myc) by retroviral vectors respectively. iPS cell colonies were isolated four weeks after transduction and analyzed for the expression of ES cell-specific markers, including TRA-1-80, hBRIX, hDNMT, NODAL, TDGF1, GDF3, NANOG, REX13, hTERT, DPPA4, Oct3/4, Sox2, Klf4 and C-myc. Formation of embryoid bodies (EBs) and differentiation into three germ layers were carried out to confirm the pluripotent potential of these iPS cell lines. In addition, reprogramming process was optimized by combination of LV and transponse et al.
     Results:(1) iPS cell lines (from normal or patient fibroblast cells) with self renewal and pluripotent potential were established. (2) There is no significant diffience of reprogramming efficiency between normal and SMA patient fibroblast cells. (3) The transgene contained by RV was silenced and the endogenous key transcription factors were reactivated. (4) RV transduced normal or SMA-iPSCs showed no differentiation block. (5) When combination of LV and transponse, the reprogramming is successful, but the efficiency is poor.
     Conclusion:SMA disease specific iPSCs can be generated by the same way and same efficiency as normal iPSCs. Reprogramming comdition can be optimized by combinated both viral technique and non-viral technique, which will contribute to get safer and effective iPSCs.
     Part III:The application of viral vector in gene correction of induced pluripotent stem cells
     Background:Gene correction and mouse embryonic stem cells techeniques got together and developed faster during these two decades. Many gene knockout and knockin mouse models were developed by using homologous recombination (HR). Gene therapy in vitro were tested and clinic trial were designed. But due to the ethical problem and genotoxiticity issue of gene therapy, researches and application of gene correction in human monogenic disease is growing slowly.
     Objectives:(1) To test the feasibility of gene correction on patient's fibroblast cells. (2) To test the feasibility of gene correction on disease specific SMA-iPSCs. (3) Compare the cell phenotype and neural lineage differentiation between SMA-iPSCs and SMA-iPSCs post correction.
     Methods:(1) Successfully constructure the LV vector contained wild-type SMN gene and Neo drug resistant gene (LV-SMN-Neo). (2) Somatic cells (patient's skin fibroblast cells) were transduced with LV-SMN-Neo vector and positive clones were selected by G418 antibiotics. (3) Transduced cells expressed SMN protein and the specific "gem bodies" in nuclears were increased. (4) SMA-iPSCs was transduced with LV-SMN-Neo vector and positive clones were selected by G418 antibiotics. Positive clones expressed SMN protein and specific "gem bodies" in nuclears were increased. (5) During neural lineage differentiation study, we found motor neuron derived from normal iPSCs showed normal mortor neuron formation and neuron specific gene expression (Tuj-1, HB9). But the neuron derived from SMA-iPSCs showed sparse neuron formation and weak expression of neuron specific gene. Neurason formation was much less than normal iPSCs. (6) SMA-iPSCs corrected by LV-SMN-Neo vector were improved in their neural differentiation but still worse than normal iPSCs.
     Results:It is feasible to correct gene mutation by LV vector in both somatic cell and iPSCs level. LV transduced positive clones could improve the cell phenotype and lineage specific differentiation. Confirming the presence of abnormalities not only will validate the strategy of using iPS cell to study disease pathogenesis but may also provide a platform for drug validation and screening. The availability of SMA motor neurons will also provide an opportunity to study the cellular and molecular mechanisms of SMA pathogenesis.
引文
1. Personsl DA. Hematopoietic stem cell gene transfer for the treatment of hemoglobin disorders.ASH education Program 2009
    2. aldini L, Blomer U, Gage FH, et al:Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A 93:11382,1996
    3. Cavazzana-Calvo M, Hacein-Bey S, de Saint Basile G, et al:Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288:669, 2000
    4. Aiuti A, Slavin S, Aker M, et al:Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science 296:2410,2002
    5. O'Connor TP, Crystal RG. Genetic medicines:treatment strategies for hereditary disorders. Nat Rev Genet 2006;7:261-76.
    6. Somia N, Verma IM. Gene therapy:trials and tribulations. Nat Rev Genet 2000;1:91-9
    7. Hacein-Bey-Abina S, Garrigue A, Wang GP, et al:Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-Xl. J Clin Invest 118:3132, 2008
    8. Stein S, Ott MG, Schultze-Strasser S,et al.Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease.Nat Med.2010 Feb;16(2):198-204.
    9. Howe SJ, Mansour MR, Schwarzwaelder K, et al:Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Invest 118:3143,2008
    10. Lewinski MK, Yamashita M, Emerman M, Ciuffi A, Marshall H, et al. (2006) Retroviral DNA integration:Viral and cellular determinants of target-site selection. PLoS Pathog 2(6):e60
    11. Wu X, Li Y, Crise B, Burgess SM (2003) Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749-1751
    12. Schroder AR, Shinn P, Chen H, Berry C, Ecker JR, et al. (2002) HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521-529
    13. Beard BC, Dickerson D, Beebe K, Gooch C et al. Comparison of HIV-derived lentiviral and MLV-based gammaretroviral vector integration sites in primate repopulating cells. Mol Ther.2007 Jul;15(7):1356-65.
    14. Soto G, Fox R, Ayub N, et al. TIP5;1 is an aquaporin specifically targeted to pollen mitochondria and is probably involved in nitrogen remobilization in Arabidopsis thaliana. Plant J.2010 Dec;64(6):1038-47
    15. Lewinski MK, Yamashita M, Emerman M, et al. Retroviral DNA integration:viral and cellular determinants of target-site selection. PLoS Pathog.2006 Jun;2(6):e60.
    16. Lowry WE, et al. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci U S A 2008,105:2883-2888.
    17. Jaenisch R, Young R. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 2008; 132:567-82
    18. Park IH, et al. Disease-specific induced pluripotent stem cells. Cell 2008;134:877-886
    19. Dimos JT, et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008;;321:1218-1221.
    20. Hanna J, Markoulaki S, Schorderet P, et al. Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell.2008,133(2):250-264
    21. Coovert DD, et al. The survival motor neuron protein in spinal muscular atrophy. Hum Mol Gene1997;6:1205-1214.
    22. Ebert AD, Yu J, et al. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature.2009 January 15; 457(7227):277-28
    23. Akagi, K., T. Suzuki, R. M. Stephens, N. A. Jenkins, and N. G. Copeland.2004. RTCGD:retroviral tagged cancer gene database. Nucleic Acids Res 32:D523-7.
    24.2. Baum, C., J. Dullmann, Z. Li, B. Fehse, J. Meyer, D. A. Williams, and C. von Kalle.2003. Side effects of retroviral gene transfer into hematopoietic stem cells. Blood 101:2099-114.
    25.3. Bell, A. C., A. G. West, and G. Felsenfeld.1999. The protein CTCF is required for the enhancer blocking activity of vertebrate insulators. Cell 98:387-96.
    26.4. Boshart, M., F. Weber, G Jahn, K. Dorsch-Hasler, B. Fleckenstein, and W. Schaffner.1985. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus. Cell 41:521-30.
    27.5. Bushman, F., M. Lewinski, A. Ciuffi, S. Barr, J. Leipzig, S. Hannenhalli, and C. Hoffmann.2005. Genome-wide analysis of retroviral DNA integration. Nat Rev Microbiol 3:848-58.
    28.6. Caride, A. J., A. G. Filoteo, A. R. Penheiter, K. Paszty, A. Enyedi, and J. T. Penniston.2001. Delayed activation of the plasma membrane calcium pump by a sudden increase in Ca2+:fast pumps reside in fast cells. Cell Calcium 30:49-57.
    29.7. Check, E.2005. Gene therapy put on hold as third child develops cancer. Nature 433:561.
    30.8. Chung, J. H., M. Whiteley, and G Felsenfeld.1993. A 5'element of the chicken beta-globin domain serves as an insulator in human erythroid cells and protects against position effect in Drosophila. Cell 74:505-14.
    31.9. Ciuffi, A., M. Llano, E. Poeschla, C. Hoffmann, J. Leipzig, P. Shinn, J. R. Ecker, and F. Bushman.2005. A role for LEDGF/p75 in targeting HIV DNA integration. Nat Med 11:1287-9.
    32.10. Cullen, B. R., P. T. Lomedico, and G. Ju.1984. Transcriptional interference in avian retroviruses--implications for the promoter insertion model of leukaemogenesis. Nature 307:241-5.
    33.11. Du, Y, N. A. Jenkins, and N. G. Copeland.2005. Insertional mutagenesis identifies genes that promote the immortalization of primary bone marrow progenitor cells. Blood 106:3932-9.
    34.12. Du, Y, S. E. Spence, N. A. Jenkins, and N. G. Copeland.2005. Cooperating cancer-gene identification through oncogenic-retrovirus-induced insertional mutagenesis. Blood 106:2498-505.
    35.13. Emerman, M., and H. M. Temin.1984. Genes with promoters in retrovirus vectors can be independently suppressed by an epigenetic mechanism. Cell 39:449-67.
    36.14. Evans-Galea, M. V., M. M. Wielgosz, H. Hanawa, D. K. Srivastava, and A. W. Nienhuis.2007. Suppression of clonal dominance in cultured human lymphoid cells by addition of the cHS4 insulator to a lentiviral vector. Mol Ther 15:801-9.
    37.15. Felice, B., C. Cattoglio, D. Cittaro, A. Testa, A. Miccio, G Ferrari, L. Luzi, A. Recchia, and F. Mavilio.2009. Transcription factor binding sites are genetic determinants of retroviral integration in the human genome. PLoS One 4:e4571.
    38.16. Giudice, A., and A. Trounson.2008. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell 2:422-33.
    39.17. Hacein-Bey-Abina, S., C. von Kalle, M. Schmidt, F. Le Deist, N. Wulffraat, E. McIntyre, I. Radford, J. L. Villeval, C. C. Fraser, M. Cavazzana-Calvo, and A. Fischer.2003. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med 348:255-6.
    40.18. Hacein-Bey-Abina, S., C. Von Kalle, M. Schmidt, M. P. McCormack, N. Wulffraat, P. Leboulch, A. Lim, C. S. Osborne, R.Pawliuk, E. Morillon, R. Sorensen, A. Forster, P. Fraser, J. I. Cohen, G. de Saint Basile, I. Alexander, U. Wintergerst, T. Frebourg, A. Aurias, D. Stoppa-Lyonnet, S. Romana, I. Radford-Weiss, F. Gross, F. Valensi, E. Delabesse, E. Macintyre, F. Sigaux, J. Soulier, L. E. Leiva, M. Wissler, C. Prinz, T. H. Rabbitts, F. Le Deist, A. Fischer, and M. Cavazzana-Calvo.2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415-9.
    41.19. Hall, S. L., K. H. Lau, S. T. Chen, J. C. Felt, D. S. Gridley, J. K. Yee, and D. J. Baylink.2007. An improved mouse Sca-1+cell-based bone marrow transplantation model for use in gene-and cell-based therapeutic studies. Acta Haematol 117:24-33.
    42.20. Hargrove, P. W., S. Kepes, H. Hanawa, J. C. Obenauer, D. Pei, C. Cheng, J. T. Gray, G. Neale, and D. A. Persons.2008. Globin lentiviral vector insertions can perturb the expression of endogenous genes in beta-thalassemic hematopoietic cells. Mol Ther 16:525-33.
    43.21. Kim, T. H., Z. K. Abdullaev, A. D. Smith, K. A. Ching, D. I. Loukinov, R. D.. Green, M. Q. Zhang, V. V. Lobanenkov, and B. Ren.2007. Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231-45.
    44.22. Kwaks, T. H., P. Barnett, W. Hemrika, T. Siersma, R. G. Sewalt, D. P. Satijn, J. F. Brons, R. van Blokland, P. Kwakman, A. L. Kruckeberg, A. Kelder, and A. P. Otte.2003. Identification of anti-repressor elements that confer high and stable protein production in mammalian cells. Nat Biotechnol 21:553-8.
    45.23. Lai, L., H. Liu, X. Wu, and J. C. Kappes.2001. Moloney murine leukemia virus integrase protein augments viral DNA synthesis in infected cells. J Virol 75:11365-72.
    46.24. Lazo, P. A., J. S. Lee, and P. N. Tsichlis.1990. Long-distance activation of the Myc protooncogene by provirus insertion in Mlvi-1 or Mlvi-4 in rat T-cell lymphomas. Proc Natl Acad Sci U S A 87:170-3.
    47.25. Lund, A. H., G. Turner, A. Trubetskoy, E. Verhoeven, E. Wientjens, D. Hulsman, R. Russell, R. A. DePinho, J. Lenz, and M. van Lohuizen.2002. Genome-wide retroviral insertional tagging of genes involved in cancer in Cdkn2a-deficient mice. Nat Genet 32:160-5.
    48.26. Marshall, H. M., K. Ronen, C. Berry, M. Llano, H. Sutherland, D. Saenz, W. Bickmore, E. Poeschla, and F. D. Bushman.2007. Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS One 2:e1340.
    49.27. Modlich, U., J. Bohne, M. Schmidt, C. von Kalle, S. Knoss, A. Schambach, and C. Baum.2006. Cell-culture assays reveal the importance of retroviral vector design for insertional genotoxicity. Blood 108:2545-53.
    50.28. Montini, E., D. Cesana, M. Schmidt, F. Sanvito, C. C. Bartholomae, M. Ranzani, F. Benedicenti, L. S. Sergi, A. Ambrosi, M. Ponzoni, C. Doglioni, C. Di Serio, C. von Kalle, and L. Naldini.2009. The genotoxic potential of retroviral vectors is strongly modulated by vector design and integration site selection in a mouse model of HSC gene therapy. J Clin Invest 119:964-75.
    51.29. Montini, E., D. Cesana, M. Schmidt, F. Sanvito, M. Ponzoni, C. Bartholomae, L. Sergi Sergi, F. Benedicenti, A. Ambrosi, C. Di Serio, C. Doglioni, C. von Kalle, and L. Naldini.2006. Hematopoietic stem cell gene transfer in a tumor-prone mouse model uncovers low genotoxicity of lentiviral vector integration. Nat Biotechnol 24:687-96.
    52.30. Niwa, R., K. Nagata-Ohashi, M. Takeichi, K. Mizuno, and T. Uemura.2002. Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell 108:233-46.
    53.31. Ohta, Y., K. Kousaka, K. Nagata-Ohashi, K. Ohashi, A. Muramoto, Y. Shima, R. Niwa, T. Uemura, and K. Mizuno.2003. Differential activities, subcellular distribution and tissue expression patterns of three members of Slingshot family phosphatases that dephosphorylate cofilin. Genes Cells 8:811-24.
    54.32. Puthenveetil, G, J. Scholes, D. Carbonell, N. Qureshi, P. Xia, L. Zeng, S. Li, Y. Yu, A. L. Hiti, J. K. Yee, and P. Malik.2004. Successful correction of the human beta-thalassemia major phenotype using a lentiviral vector. Blood 104:3445-53.
    55.33. Sauvageau, M., M. Miller, S. Lemieux, J. Lessard, J. Hebert, and G. Sauvageau. 2008. Quantitative expression profiling guided by common retroviral insertion sites reveals novel and cell type specific cancer genes in leukemia. Blood 111:790-9.
    56.34. Schroder, A. R., P. Shinn, H. Chen, C. Berry, J. R. Ecker, and F. Bushman. 2002. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110:521-9.
    57.35. Stahl, W. L., T. J. Eakin, J. W. Owens, Jr., J. F. Breininger, P. E. Filuk, and W. R. Anderson.1992. Plasma membrane Ca(2+)-ATPase isoforms:distribution of mRNAs in rat brain by in situ hybridization. Brain Res Mol Brain Res 16:223-31.
    58.36. Steinrigl, A., D. Nosek, R. Ertl, W. H. Gunzburg, B. Salmons, and D. Klein. 2007. Mutations in the catalytic core or the C-terminus of murine leukemia virus (MLV) integrase disrupt virion infectivity and exert diverse effects on reverse transcription. Virology 362:50-9.
    59.37. Strehler, E. E., and D. A. Zacharias.2001. Role of alternative splicing in generating isoform diversity among plasma membrane calcium pumps. Physiol Rev 81:21-50.
    60.38. Suzuki, T., K. Minehata, K. Akagi, N. A. Jenkins, and N. G. Copeland.2006. Tumor suppressor gene identification using retroviral insertional mutagenesis in Blm-deficient mice. Embo J 25:3422-31.
    61.39. Suzuki, T., H. Shen, K. Akagi, H. C. Morse, J. D. Malley, D. Q. Naiman, N. A. Jenkins, and N. G Copeland.2002. New genes involved in cancer identified by retroviral tagging. Nat Genet 32:166-74.
    62.40. van Lohuizen, M., S. Verbeek, B. Scheijen, E. Wientjens, H. van der Gulden, and A. Berns.1991. Identification of cooperating oncogenes in E mu-myc transgenic mice by provirus tagging. Cell 65:737-52.
    63.41. von Kalle, C., B. Fehse, G. Layh-Schmitt, M. Schmidt, P. Kelly, and C. Baum. 2004. Stem cell clonality and genotoxicity in hematopoietic cells:gene activation side effects should be avoidable. Semin Hematol 41:303-18.
    64.42. Wang, G. P., A. Ciuffi, J. Leipzig, C. C. Berry, and F. D. Bushman.2007. HIV integration site selection:analysis by massively parallel pyrosequencing reveals association with epigenetic modifications. Genome Res 17:1186-94.
    65.43. Wu, X., Y. Li, B. Crise, and S. M. Burgess.2003. Transcription start regions in the human genome are favored targets for MLV integration. Science 300:1749-51.
    66.44. Yam, P. Y, S. Li, J. Wu, J. Hu, J. A. Zaia, and J. K. Yee.2002. Design of HIV vectors for efficient gene delivery into human hematopoietic cells. Mol Ther 5:479-84.
    67.45. Yanagida, M., M. Osato, N. Yamashita, H. Liqun, B. Jacob, F. Wu, X. Cao, T. Nakamura, T. Yokomizo, S. Takahashi, M. Yamamoto, K. Shigesada, and Y. Ito. 2005. Increased dosage of Runxl/AML1 acts as a positive modulator of myeloid leukemogenesis in BXH2 mice. Oncogene 24:4477-85.
    68.46. Zychlinski, D., A. Schambach, U. Modlich, T. Maetzig, J. Meyer, E. Grassman, A. Mishra, and C. Baum.2008. Physiological promoters reduce the genotoxic risk of integrating gene vectors. Mol Ther 16:718-25.
    69. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K.2008. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci 105:2883-2888
    70. Liu L, Luo GZ, Yang W, Zhao X, Zheng Q, Lv Z, Li W, Wu HJ, Wang L, Wang XJ, Zhou Q.2010. Activation of the imprinted Dlk1-Dio3 region correlates with pluripotency levels of mouse stem cells. J Biol Chem.285:19483-19490
    71. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K.2010. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175-181
    72. Takahashi K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors.Cell 2007;131:861-872
    73. Park IH, et al. Reprogramming of human somatic cells to pluripotency with defined factors. Nature 2008;451:141-146
    74. Yu J, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science 2007;318:1917-1920.
    75. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K.2008b. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230-240.
    76. Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, Li E.1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195-3205.
    77. Huangfu DW, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nature Biotechnology.2008, 26(11):1269-1275
    78. Takahashi K, Yamanaka S.2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676
    79. Okita K, Ichisaka T, Yamanaka S.2007. Generation of germlinecompetent induced pluripotent stem cells. Nature 448:313-317
    80. Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H, Jaenisch R. 2008. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2:151-159
    81. Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton DN, Mostoslavsky G.2010. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28:64-74
    82. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K.2008b. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230-240.
    83. Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA 2009; 106:157-62
    84. Stadtfeld M, Hochedlinger K. Induced pluripotency:history, mechanisms, and applications. GENES & DEVELOPMENT 24:2239-2263,2010
    85. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K.2008c. Induced pluripotent stem cells generated without viral integration. Science 322:945-949.
    86. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S.2008. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949-953
    87. Varas F, Stadtfeld M, de Andres-Aguayo L, Maherali N, di Tullio A, Pantano L, Notredame C, Hochedlinger K, Graf T.2009. Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells 27: 300-306
    88. Winkler T, Cantilena A, Metais JY, Xu X, Nguyen AD, Borate B, Antosiewicz-Bourget JE, Wolfsberg TG, Thomson JA, Dunbar CE.2010. No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stern cells. Stem Cells 28:687-694
    89. Zhou W, Freed CR.2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667-2674
    90. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M.2009. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad 85:348-362
    91. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K.2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771-775
    92. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA.2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797-801
    93. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K.2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771-775
    94. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, et al.2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766-770.
    95. Ye L, Chang JC, Lin C, et al. Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. PNAS,2009,106:9826-9830
    96. Maehr R, Chen S, Snitow M, et al. Generation of pluripotent stem cellsfrom patients with type 1 diabetes. PNAS,2009,106:15768-15773
    97. Lee G, Papapetrou EP, Kim H, et al. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature,2009, 461(7262):402-406.
    98. Li XJ, et al. Specification of motoneurons from human embryonic stem cells. Nat Biotechnol 2005;23:215-221
    99. Capecchi MR. Generating mice with targeted mutations. Nat Med 2001;7:1086-90
    100.Smithies O. Forty years with homologous recombination. Nat Med 2001;7:1083-6
    101.Harper SQ. Progress and challenges in RNA interference therapy for Huntington disease.Arch Neurol 2009;66:933-8.
    102.Marcaida MJ, Munoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010;67:727-48.
    103.Goncz KK, Prokopishyn NL, Abdolmohammadi A, Bedayat B, Maurisse R, Davis BR, et al. Small fragment homologous replacement-mediated modification of genomic betaglobin sequences in human hematopoietic stem/progenitor cells. Oligonucleotides 2006;16:213-24
    104.Raya, A. et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460,53-59 (2009)
    105.Raya A, Rodriguez-Piza, Navarro S, et al. A protocol describing the genetic correction of somatic human cells and subsequent generation of iPS cells. Nature Protocols 2010,5(4):647-660.
    106.Markoulaki S, Hanna J, Beard C, Carey BW, Cheng AW, Lengner CJ, Dausman JA, Fu D, Gao Q, Wu S, et al.2009. Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat Biotechnol 27:169-171
    107.Wong G.K.Y, Chiu A.T. Gene therapy, gene targeting and induced pluripotent stem cells:Applications in monogenic disease treatment Biotechnology Advances 29 (2011) 1-10
    108.Marcaida MJ, Munoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010;67:727-48.
    109.Mitsui K, Suzuki K, Aizawa E, Kawase E, Suemori H, Nakatsuji N, et al. Gene targeting in human pluripotent stem cells with adeno-associated virus vectors. Biochem Biophys Res Commun 2009;388:711-7.
    1. Takahashi K, Yamanaka S.2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676.
    2. Maherali N, Sridharan R, Xie W, Utikal J, Eminli S, Arnold K, Stadtfeld M, Yachechko R, Tchieu J, Jaenisch R, et al.2007. Directly reprogrammed fibroblasts show global epigenetic remodeling and widespread tissue contribution. Cell Stem Cell 1:55-70.
    3. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K.2008b. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230-240.
    4. Lei H, Oh SP, Okano M, Juttermann R, Goss KA, Jaenisch R, Li E.1996. De novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. Development 122:3195-3205.
    5. Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H, Kimura H, Tachibana M,Lorincz MC, Shinkai Y.2010. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927-931.
    6. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A.2008. Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49-55.
    7. Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S, Zhou Q, Plath K.2009. Role of the murine reprogramming factors in the induction of pluripotency. Cell 136:364-377.
    8. Okita K, Ichisaka T, Yamanaka S.2007. Generation of germlinecompetent induced pluripotent stem cells. Nature 448:313-317.
    9. Brambrink T, Foreman R, Welstead GG, Lengner CJ, Wernig M, Suh H, Jaenisch R. 2008. Sequential expression of pluripotency markers during direct reprogramming of mouse somatic cells. Cell Stem Cell 2:151-159.
    10. Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton DN, Mostoslavsky G.2010. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28:64-74.
    11. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K.2008b. Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230-240.
    12. Carey BW, Markoulaki S, Hanna J, Saha K, Gao Q, Mitalipova M, Jaenisch R. 2009. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci 106:157-162.
    13. Sommer CA, Stadtfeld M, Murphy GJ, Hochedlinger K, Kotton DN, Mostoslavsky G.2009. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem Cells 27:543-549.
    14. Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R.2008. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3:346-353.
    15. Maherali N, Ahfeldt T, Rigamonti A, Utikal J, Cowan C, Hochedlinger K.2008. A high-efficiency system for the generation and study of human induced pluripotent stem cells. Cell Stem Cell 3:340-345.
    16. Markoulaki S, Hanna J, Beard C, Carey BW, Cheng AW, Lengner CJ, Dausman JA, Fu D, Gao Q, Wu S, et al.2009. Transgenic mice with defined combinations of drug-inducible reprogramming factors. Nat Biotechnol 27:169-171.
    17. Carey BW, Markoulaki S, Beard C, Hanna J, Jaenisch R.2010. Single-gene transgenic mouse strains for reprogramming adult somatic cells. Nat Methods 7: 56-59.
    18. Stadtfeld M, Maherali N, Borkent M, Hochedlinger K.2010. A reprogrammable mouse strain from gene-targeted embryonic stem cells. Nat Methods 7:53-55.
    19. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K.2008c. Induced pluripotent stem cells generated without viral integration. Science 322:945-949.
    20. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S.2008. Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949-953
    21. Varas F, Stadtfeld M, de Andres-Aguayo L, Maherali N, di Tullio A, Pantano L, Notredame C, Hochedlinger K, Graf T.2009. Fibroblast-derived induced pluripotent stem cells show no common retroviral vector insertions. Stem Cells 27: 300-306
    22. Winkler T; Cantilena A, Metais JY, Xu X, Nguyen AD, Borate B, Antosiewicz-Bourget JE, Wolfsberg TG, Thomson JA, Dunbar CE.2010. No evidence for clonal selection due to lentiviral integration sites in human induced pluripotent stem cells. Stem Cells 28:687-694
    23. Zhou W, Freed CR.2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667-2674
    24. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M.2009. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad 85:348-362
    25. Jia F, Wilson KD, Sun N, Gupta DM, Huang M, Li Z, Panetta NJ, Chen ZY, Robbins RC, Kay MA, et al.2010. A nonviral minicircle vector for deriving human iPS cells. Nat Methods 7:197-199
    26. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA.2009. Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797-801
    27. Kaji K, Norrby K, Paca A, Mileikovsky M, Mohseni P, Woltjen K.2009. Virus-free induction of pluripotency and subsequent excision of reprogramming factors. Nature 458:771-775
    28. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M, et al.2009. Parkinson's disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964-977
    29. Chang CW, Lai YS, Pawlik KM, Liu K, Sun CW, Li C, Schoeb TR, Townes TM. 2009. Polycistronic lentiviral vector for'hit and run'reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells 27:1042-1049
    30. Sommer CA, Sommer AG, Longmire TA, Christodoulou C, Thomas DD, Gostissa M, Alt FW, Murphy GJ, Kotton DN, Mostoslavsky G.2010. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector. Stem Cells 28:64-74
    31. Woltjen K, Michael IP, Mohseni P, Desai R, Mileikovsky M, Hamalainen R, Cowling R, Wang W, Liu P, Gertsenstein M, et al.2009. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature 458:766-770.
    32. Yusa K, Rad R, Takeda J, Bradley A.2009. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods 6:363-369
    33. StadtfeldM, Hochedlinger K.2009.Without a trace? PiggyBac-ing toward pluripotency. Nat Methods 6:329-330
    34. Zhou W, Freed CR.2009. Adenoviral gene delivery can reprogram human fibroblasts to induced pluripotent stem cells. Stem Cells 27:2667-2674
    35. Cho HJ, Lee CS, Kwon YW, Paek JS, Lee SH, Hur J, Lee EJ, Roh TY, Chu IS, Leem SH, et al.2010. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 116: 386-395
    36. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R, et al.2009. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472-476
    37. Warren L, Manos PD, Ahfeldt T, Loh Y, Li H, Lau F, Ebina W, Smith ZD, Meissner A, Daley GQ, et al.2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA. Cell Stem Cell 7(5):618-630
    38. Desponts C, Ding S.2010. Using small molecules to improve generation of induced pluripotent stem cells from somatic cells. Methods Mol Biol 636:207-218
    39. Li W, Ding S.2010. Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 31:36-45
    40. Lowry WE, Richter L, Yachechko R, Pyle AD, Tchieu J, Sridharan R, Clark AT, Plath K.2008. Generation of human induced pluripotent stem cells from dermal fibroblasts. Proc Natl Acad Sci 105:2883-2888
    41. Chan EM, Ratanasirintrawoot S, Park IH, Manos PD, Loh YH, Huo H, Miller JD, Hartung O, Rho J, Ince TA, et al.2009. Live cell imaging distinguishes bona fide human iPS cells from partially reprogrammed cells. Nat Biotechnol 27:1033-1037
    42. Liu L, Luo GZ, Yang W, Zhao X, Zheng Q, Lv Z, Li W, Wu HJ, Wang L, Wang XJ, Zhou Q.2010. Activation of the imprinted Dlkl-Dio3 region correlates with pluripotency levels-of mouse stem cells. J Biol Chem.285:19483-19490
    43. Stadtfeld M, Apostolou E, Akutsu H, Fukuda A, Follett P, Natesan S, Kono T, Shioda T, Hochedlinger K.2010. Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature 465:175-181
    44. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R.2007. Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318: 1920-1923
    45. Xu D, Alipio Z, Fink LM, Adcock DM, Yang J, Ward DC, Ma Y.2009. Phenotypic correction of murine hemophilia A using an iPS cell-based therapy. Proc Natl Acad Sci 106:808-813
    46. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K. 2008. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218-1221
    47. Park IH, Arora N, Huo H, Maherali N, Ahfeldt T, Shimamura A, Lensch MW, Cowan C, Hochedlinger K, Daley GQ.2008a. Disease-specific induced pluripotent stem cells. Cell 134:877-886
    48. Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E, et al.2009. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53-59
    49. Stadtfed M, Hochedlinger K.2009. Induced pluripotency:history mechanisms, and applications. Genes and development 24:2239-2263.
    50. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN. 2009. Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277-280
    51. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A, et al.2009. Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402-406
    52. Carvajal-Vergara X, Sevilla A, D'Souza SL, Ang YS, Schaniel C, Lee DF, Yang L, Kaplan AD, Adler ED, Rozov R, et al.2010. Patient-specific induced pluripotent stem-cell-derived models of LEOPARD syndrome. Nature 465:808-812
    53. Wernig M, Zhao JP, Pruszak J, Hedlund E, Fu D, Soldner F, Broccoli V, Constantine-Paton M, Isacson O, Jaenisch R.2008c. Neurons derived from reprogrammed fibroblasts functionally integrate into the fetal brain and improve symptoms of rats with Parkinson's disease. Proc Natl Acad Sci 105:5856-5861.
    54. Hockemeyer D, Soldner F, Cook EG, Gao Q, Mitalipova M, Jaenisch R.2008. A drug-inducible system for direct reprogramming of human somatic cells to pluripotency. Cell Stem Cell 3:346-353
    55. Zou J, Maeder ML, Mali P, Pruett-Miller SM, Thibodeau-Beganny S, Chou BK, Chen G, Ye Z, Park IH, Daley GQ, et al.2009. Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell 5: 97-110
    56. Buecker C, Chen HH, Polo JM, Daheron L, Bu L, Barakat TS, Okwieka P, Porter A, Gribnau J, Hochedlinger K, et al.2010.A murine ESC-like state facilitates transgenesis and homologous recombination in human pluripotent stem cells. Cell Stem Cell 6:535-546
    57. Kim K, Doi A, Wen B, Ng K, Zhao R, Cahan P, Kim J, Aryee MJ, Ji H, Ehrlich LI, et al.2010. Epigenetic memory in induced pluripotent stem cells. Nature doi: 10.1038/nature09342
    58. Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T, et al.2010. Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848-855
    59. Di Giorgio FP, Carrasco MA, Siao MC, Maniatis T, Eggan K.2007. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat Neurosci 10:608-614
    60. Di Giorgio FP, Boulting GL, Bobrowicz S, Eggan KC.2008. Human embryonic stem cell-derived motor neurons are sensitive to the toxic effect of glial cells carrying an ALScausing mutation. Cell Stem Cell 3:637-648
    61. Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR.2009. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PLoS ONE 4:e7076. doi:10.1371/journal.pone.0007076
    1. O'Connor TP, Crystal RG. Genetic medicines:treatment strategies for hereditary disorders. Nat Rev Genet 2006;7:261-76.
    2. Harper SQ. Progress and challenges in RNA interference therapy for Huntington disease.Arch Neurol 2009;66:933-8.
    3. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Invest 2008;118:3132-42.
    4. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 2003;302:415-9.
    5. Raper SE, Chirmule N, Lee FS, Wivel NA, Bagg A, Gao GP, et al. Fatal systemic inflammatory response syndrome in a ornithine transcarbamylase deficient patient following adenoviral gene transfer. Mol Genet Metab 2003;80:148-58.
    6. Schultz BR, Chamberlain JS. Recombinant adeno-associated virus transduction and integration. Mol Ther 2008;16:1189-99.
    7. Bell P, Moscioni AD,McCarter RJ,WuD,Gao G, HoangA, et al.Analysis of tumors arising in male B6C3F1 mice with and without AAV vector delivery to liver. Mol Ther2006;14:34-44.
    8. Donsante A, Miller DG, Li Y, Vogler C, Brunt EM, Russell DW, et al. AAV vector integration sites in mouse hepatocellular carcinoma. Science 2007;317:477.
    9. Montier T, Delepine P, Pichon C, Ferec C, Porteous DJ, Midoux P. Non-viral vectors in cystic fibrosis gene therapy:progress and challenges. Trends Biotechnol 2004;22:586-92.
    10. VandenDriessche T, Ivics Z, Izsvak Z, Chuah MK. Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood 2009; 114:1461-8.
    11. Duncan A, Hadlaczky G. Chromosomal engineering. Curr Opin Biotechnol 2007;18:420-4.
    12. Macnab S, Whitehouse A. Progress and prospects:human artificial chromosomes. Gene Ther 2009;16:1180-8.
    13. Marcaida MJ, Munoz IG, Blanco FJ, Prieto J, Montoya G. Homing endonucleases: from basics to therapeutic applications. Cell Mol Life Sci 2010;67:727-48.
    14. Wilson JM. Medicine. A history lesson for stem cells. Science 2009;324:727-8.
    15. Capecchi MR. The new mouse genetics:altering the genome by gene targeting. Trends Genet 1989b;5:70-6.
    16. Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S. Differential usage of nonhomologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst) 2006;5:1021-9.
    17. Bruscia E, Sangiuolo F, Sinibaldi P, Goncz KK, Novelli G, Gruenert DC. Isolation of CF cell lines corrected at DeltaF508-CFTR locus by SFHR-mediated targeting. Gene Ther 2002;9:683-5.
    18. Goncz KK, Prokopishyn NL, Abdolmohammadi A, Bedayat B, Maurisse R, Davis BR, et al. Small fragment homologous replacement-mediated modification of genomic betaglobin sequences in human hematopoietic stem/progenitor cells. Oligonucleotides 2006;16:213-24
    19. Mitsui K, Suzuki K, Aizawa E, Kawase E, Suemori H, Nakatsuji N, et al. Gene targeting in human pluripotent stem cells with adeno-associated virus vectors. Biochem Biophys Res Commun 2009;388:711-7.
    20. Okada Y, Ueshin Y, HasuwaH, Takumi K, Okabe M, Ikawa M. Targeted genemodification in mouse ES cells using integrase-defective lentiviral vectors. Genesis 2009;47:217-23.
    21. Paiboonsukwong K, Ohbayashi F, Shiiba H, Aizawa E, Yamashita T, Mitani K. Correction of mutant Fanconi anemia gene by homologous recombination in human hematopoietic cells using adeno-associated virus vector. J Gene Med 2009;11:1012-9.
    22. Yamanaka S. A fresh look at iPS cells. Cell 2009;137:13-7.
    23. Sun N, Longaker MT, Wu JC. Human iPS cell-based therapy:considerations before clinical applications. Cell Cycle 2010;9.
    24. Wong G.K.Y, Chiu A.T. Gene therapy, gene targeting and induced pluripotent stem cells:Applications in monogenic disease treatment Biotechnology Advances 29 (2011) 1-10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700