用户名: 密码: 验证码:
云南澜沧老厂隐伏花岗斑岩岩石学、年代学及成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
澜沧老厂矿区于上世纪八十年代末在钻孔中相继揭露到花岗斑岩细脉及矽卡岩带,但直至2008年,因揭露隐伏岩体的工程很少,获得的岩芯有限,对花岗斑岩岩石学、地球化学、年代学及其与矿化关系的研究进展缓慢,相关成果稀少。2007年在危机矿山接替资源找矿专项—云南省澜沧县澜沧铅矿接替资源勘查项目实施中,ZK153101钻孔再次揭露到三段花岗斑岩脉,ZK14824等钻孔中揭露到矽卡岩带及钼矿体,2009年又在ZK14827、ZK14830、ZK15501孔中揭露到多段斑岩脉,终孔处揭露到主岩体。为查明老厂矿区隐伏花岗斑岩特征,本文从花岗斑岩的岩体地质、岩石学、地球化学、年代学及锆石标型特征等方面入手,综合研究其成因类型和形成的构造环境。
     本区揭露到的隐伏花岗斑岩岩体及与之有关的辉钼矿化、矽卡岩化主要分布在F3断裂以东、F4断裂以西的144线—9线之间,总体沿F1断层分布,出现的标高大致在900-1530m,有西高东低的趋势。
     岩石学研究表明,该区花岗斑岩呈浅灰、灰白色,斑状结构,块状构造,斑晶主要由正长石、石英、斜长石和黑云母组成,基质由等轴微细粒正长石、石英组成。岩石地球化学研究表明,老厂隐伏花岗斑岩体属偏铝质高钾钙碱性花岗岩;微量元素K、La、Hf、Tb相对富集,Nb、Ta、P、Ti相对亏损,反映了造山带花岗岩及大陆地壳特征;稀土元素总量较小,平均126.56x10-6,(La/Yb)N=12.01-24.85,为轻稀土中等富集;87Sr/86Sr为0.70835-0.71544,平均0.71。
     锆石SHRIMP U-Pb测年证实,澜沧老厂隐伏花岗斑岩的侵位结晶年龄为44.6±1.1Ma,与滇西地区喜山期陆内造山主碰撞期(65-41 Ma)末相当。而澜沧老厂矿区辉钼矿Re-Os同位素测年结果(43.78±0.78Ma)与花岗斑岩中锆石SHRIMP U-Pb年龄(44.6士1.1Ma)很相近,都为喜山早期(始新世晚期)的产物,且年龄数据略新于岩体年龄,与斑岩热液成矿期总体晚于成岩期的基本规律相吻合。
     老厂花岗斑岩中的锆石群型简单,有4种主型,20种亚型。锆石晶形主要由{100}、{110}柱面和{101}、{211}锥面构成,其中柱面以{110}最为发育,锥面{]01}和{211}都较发育,但{101}较{211}更为发育,具低温过碱环境锆石特征。锆石标型指示矿区花岗斑岩是以壳源为主的壳幔源混合成因花岗斑岩。
     综合花岗斑岩地球化学、锆石标型以及同位素特征判断,老厂隐伏花岗斑岩应是以壳源重熔为主,有部分幔源物质参与的混合成因花岗斑岩。该区花岗斑岩形成于青藏高原新生代碰撞造山作用的主碰撞向晚碰撞转化时期,在空间上产于澜沧江断裂西侧的晚古生代裂谷带中,区域动力学环境属碰撞造山环境。
The granite porphyry veins and skarm had been exposed by drilling in the 80's of the last century in Laochang of Lancang, but the research progress for the granite-porphyry Petrology, geochemistry, geochronology and its relationship with mineralization were slow and relevant results were scarcity until 2008, because the projects of exposing concealed rock body were very little and the limited core was obtained. In the implementation of "the special projects of Superseding Resources Prospecting in Crisis Mines-the program of Superseding Resources exploration for Lancang lead ore of Yunnan Province" in 2007, three granite porphyry veins and the skarns belt, the molybdenum had been revealed in the ZK153101 and ZK14824 drillings hole respectively. In 2009, many granite porphyry veins and the final hole of main rock had been exposed in ZK14827, ZK14830 hole. In order to verify the Laochang concealed granite-porphyry characteristic, this article starts with granite-porphyry rock mass geology, petrology, geochemistry, chronology and zircon typomorphic characteristic, and comprehensive study on its genetic type and the formation of tectonic setting.
     The concealed granite-porphyry and the related molybdenite mineralization, skarn-based that had been revealed in this area mainly distributes between exploration line 145 to 9, east of the F3 break to west of the F4 break, and the overall distribution along the F1 fault, there are approximately elevation of 900-1530m, tendency of high east and low west.
     The petrology research indicated that this area granite porphyry show light gray, greyish white, the porphyritic texture, massive structure. The phenocrysts are mainly composed of the orthoclase, the quartz, the plagioclase feldspar and the biotite, the matrix are composed of the equiaxed particle-fine orthoclase, quartz. The rock geochemistry studies have shown that the Laochang concealed granite-porphyry body is the meta luminum high-K calc-alkaline granite, trace elements K, La, Hf, Tb is relatively enrichment, Nb, Ta, P, Ti depletion, they has reflected the characteristics of the orogenic granitoids and the continental crust. The total REE is low, with an average of 126.56×10-6, light REE enriched slightly with (La/Yb) N of 12.01 24.85,87Sr/86Sr of 0.70835~0.71544, with an average of 0.71.
     The SHRIMP zircon U-Pb dating results confirm that the crystallization age of the Laochang granite porphyry is 44.6±1.1 Ma, and equivalent with the main collision terminal stage(65~41Ma) of the Cenozoic intracontinental collision orogenics. The Re-Os age (43.78±0.78Ma) of molybdenites in the Laochang Mining Area is similar to the SHRIMP U-Pb zircon age (44.6±1.1 Ma) of granite porphyry, both are formed in the early Himalayan (late Eocene). The age of molybdenites is lightly new to the rock mass age, it is basically consistent with the Basic Law of porphyry hydrothermal metallogenic period later than diagenesis stages.
     The zircon crystal forms of the Laochang granite-porphyry are Simple, including four main types and twenty Subtypes. The zircon crystals were composed of cylinder{110},{100}and cone{101},{211}. With{100} cylinder and{101},{211} cone being very well developed, and{101} more developed than{211}. The zircon typomorphic characteristics suggest that the zircon in Laochang granite-porphyry were formed in a low-temperature and too alkaline environment, and the Laochang granite porphyry was formed mainly by crust source petrogenesis with the addition of mantle source composition.
     A comprehensive analysis of chemical composition, chronology and zircon typomorphic of Laochang granite-porphyry shows that the Laochang granite-porphyry should be formed mainly by crustal remelting with the addition of mantle-derived materials, with mixing genesis. This area granite-porphyry forms in the transition period of the main collision stage to the late collision of the Qinghai-Tibet Plain Cenozoic intracontinental collision orogenics, occurred in a late Paleozoic rift zone in the west of the Lancangjiang fault in Space, the regional dynamics environment was a collision orogeny environment.
引文
[1]Chappell B W, White A J R. Two Contrasting granite type. Pacific Geol.1974.8:173-174.
    [2]White A J R. Sources of granite magmas Geological Society of America, Abstracts with Programs.1979,11:539.
    [3]Pitcher W S. Comments on the geological environments of granites. In origin of granite batholiths:geochemical evidence. Shiva publishing Limited.1979.1-8.
    [4]邓晋福,赵海玲,莫宣学等.1996.中国大陆根—柱构造—大陆动力学的钥匙[M].地质出版社,p110.
    [5]肖庆辉,邓晋福,马大铨.花岗岩研究思维与方法[M].地质出版社,2002.
    [6]Chappell B W and White A J R. I and S-type granites and the characterization fractionated hapogranites. Lithos,1992,46:535-551.
    [7]Loiselle M C and Wones D R. Characteristics and origin of anorogenic granites. Geol. Soc. Am. Abstr. Prog,1979.11:468.
    [8]Pitcher W S. The nature and Origin of granite (2nd edition). Chapman & Hall, London,1997, 386.
    [9]Collins W J. Evaluation of petrogenetic models for Lachlan Fold Belt granitoids:Implications for crustal architecture and tectonic models. Aust.J. Earth Sci,1998,45:483-500.
    [10]Clemens J D. s-tpye granitic magmas-petrogenetic issues:Models and evidence. Earth Sci. Rev,2003,61:1-18.
    [11]Coleman D S, Gray W and Glazner A F. Rethinking the emplacement and evolution of zoned plutons:Geochronologic evidence for incremental assembly of the Tuolumne Intrusive Suite, California. Geology,2004,32:433-436.
    [12]中国科学院地球化学研究所编.高等地球化学[M].北京:科学出版社,1998.
    [13]刘纯.铼—锇同位素测年法研究综述[J].矿产与地质,2009,23(3),273-281.
    [14]Yang J H, Wu F Y, Wilde S A, Xie L W, Yang Y H and Liu X M. Tracing magma mixing in granite genesis:In situ U-Pb dating and Hf-isotope analysis of zircons. Contrib. Mineral. Petrol,2007a,153:177-190.
    [15]Barbarin B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos,1999,46:605-626.
    [16]Pearce T A. Sources and settings of granitic rocks. Episodes,1996,19:120-125.
    [17]徐克勤,胡受奚,孙明志等.论花岗岩的成因系列—以华南中生代花岗岩为例[J].地质学报,1982,No.2,107-118.
    [18]莫宣学.花岗岩类岩石中浆混合作用的识别与研究方法,见肖庆辉,邓晋福,马大铨,花岗岩研究思维与方法.地质出版社,2002,p53-63.
    [19]洪大卫.兴蒙造山带ε(Nd, t)值花岗岩的成因和大陆地壳生长[J].地学前缘,2002,Vol.7,No.2.
    [20]NRC.2001. U.S.A. Basic research opportunities in the Earth Sciences. National Academy press. Washington.
    [21]徐楚明,欧阳成甫.云南澜沧老厂银铅锌矿床成因研究[J].桂梓冶金地质学院学报,1991,11(3),245-252.
    [22]欧阳成甫,徐楚明,胡承绮等.云南澜沧老厂银铅矿区隐伏花岗岩体预测及其意义[J].大 地构造与成矿学,1993,17(2):119-126.
    [23]薛步高.含锡花岗岩外带银铅多金属矿床的地质特征[J].矿产与地质,1995,9(3):12-23.
    [24]李雷,段嘉瑞,李峰等.澜沧老厂铜多金属矿床地质特征及多期同位成矿[J].云南地质,1996,15(3):246-256.
    [25]李雷,李峰,段嘉瑞等.兰坪—思茅地区铜矿找矿前景[R].西南有色地质研究所、昆明理工大学、中南工业大学科研报告,1995.
    [26]李峰等.滇西大型—超大型铜多金属矿床成矿条件及靶区优选[R].昆明理工大学科研报告,2000.
    [27]杨开辉,候增谦,莫宣学.“三江”地区火山成因块状硫化物矿床的基本特征与主要类型[J].矿床地质,1992,11(1):35-44.
    [28]刘本培,冯庆来,方念娇,贾进华,何馥香.滇西南昌宁—孟连带和澜沧江带古特提斯多岛洋构造演化[J].地球科学,1993,18(5):529-539.
    [29]王义昭.三江地区南段大地构造与成矿[M].北京:地质出版社,2000.
    [30]云南地质矿产局.中华人民共和国区域地质调查报告(1:20万孟连幅)[R].1984.
    [31]袁奎荣主编.隐伏花岗岩预测及深部找矿[M].北京:科学出版社,1990.
    [32]史长义等.中国花岗岩类化学元素丰度[M].地质出版社,2008.
    [33]Maniar P D, Piccolli P M, Tectonic discrimination of granitoids. Geol.Soc. Am.Butt,1989, 101:635-643.
    [34]Le Bas M J, Le Maitre R W, Streckeisen A and Zanettin B. A chemical classification of Vocanic rocks basedon the total alkali-silica diagram. Journal of Petrology,1986.27:745-750.
    [35]Peceerillo R and Taylor S R. Geochemistry of Eocene cale-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib. Mineral. Petrol.1976,58:63-81.
    [36]云南省地质矿产局.云南省区域地质志[M].北京:地质出版社,1990.
    [37]王登红,应汉龙,梁华英等.西南三江地区大陆动力学过程与大规模成矿[M].北京:地质出版社,2006.
    [38]Taylor S R and Mclennan S M.The Continental Crust:Its Composition and Evolution. London: Blackwell scientific Publications,1985, p312.
    [39]McDonough W F, Sun S S. Isotopic and geochemical systematics in Tertiary-Recent basalts from southeastern Australia and implication for the subcontinental lithesphers. Ceochim Cosmochim Acta,1985,49:2051-2067.
    [40]Williams I S, Claessons. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss from the Seve Nappes, Scandinavian Caledonides, Ⅱ. Ion microprobe zircon U-Th-Pb. Contributions to Mineralogy Petrology,1987,97:205-217.
    [41]宋彪,张玉海,万渝生.锆石SHRIMP样品靶制作、年龄测定及有关现象讨论[J].地质论评,2002,48(增刊):26-30.
    [42]Ludwig K R. Isoplot/Ex, version 2.0:A geochronological toolkit for Microsoft Excel. Geochronology Center, Berkeleyb Special Publication 1a.1999.
    [43]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
    [44]杜安道,何红蓼,殷宁万等.辉钼矿的铼—锇同位素地质年龄测定方法研究[J].地质学报,1994,68(4):339-347.
    [45]Andao Du, Shuqi Wu, Dezhong Sun, Shuxian Wang, Wenjun Qu, Richard Markey Holly Stein, John Morgan and Dmitry Malinovskiy. Preparation and Certification of Re-Os Dating Reference Materials:Molybdenite HLP and JDC. Geostandard and Geoanalytical Research,2004,28 (1):41-52.
    [46]屈文俊,杜安道.高温密闭溶样电感耦合等离子体质谱准确测定辉钼矿铼—锇地质年龄[J].岩矿测试,2003,22(4):254-257.
    [47]侯增谦,潘桂棠,王安建等.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用[J].矿床地质,2.006,25(4):337-358.
    [48]侯增谦,杨竹森,徐文艺等.青藏高原碰撞造山带:Ⅱ.晚碰撞造山成矿作用[J].矿床地质,2006,25(5):521-543.
    [49]曲景川等.澜沧江双断裂带及其与邻区的构造关系,青藏高原地质论文集(21)[M].北京:地质出版社,1991.
    [50]工濮等.系统矿物学(中册)[M].北京地质出版社,1984,169-173.
    [51]王寒竹.各岩类中锆石的标型性[J].矿物岩石,1991,11(3):7-14.
    [52]刘显凡.锆石形态特征及锆石生长机理探讨[J].岩石矿物学杂志,1997,16(2),179-184.
    [53]鲍学昭.锆石中两种成分变化趋势及其成因标型意义[J].矿物学报,1995,15(4):404-410.
    [54]孟繁聪,孙岱生,李胜荣,英基丰.胶东磁山花岗岩体的锆石形态群特征及其意义[J].岩石矿物学杂志,1999,18(1):87-94.
    [55]范春方,陈堵荣.赣南不同类型花岗岩体的锆石形态群特征及其意义[J].地质找矿论丛,2000,15(4):299-306.
    [56]Pupin J P.1980. Zircon and granite petrology. Contributions to Mineralogy and Petrogy.73.
    [57]廖忠礼,莫宣学,潘桂棠等.西藏过铝花岗岩锆石群型的成因信息[J].大地构造与成矿学.2006,37(1):63-71.
    [58]姚素珠,董宜宝,Pupin J P.川西高原几个花岗岩体的岩浆起源浅探[J].成都地质学院学报.1990,17(4):33-45.
    [59]Collins W J et al, Nature and origin of A type granites with particular reference to Southeastern Australia, Contrib. Miner, Petto.1982,80:189-200.
    [61]孙鼐.火成岩石学[M].地质出版社,1985.
    [62]毛景文,张作衡,张招崇等.北祁连山小柳沟钨矿床中辉钼矿Re-Os年龄测定及其意义[J].地质论评,1999,45(4):412-417.
    [63]Stein H J, Markey R J, Morgan J W, Du A, Sun Y. Highly precise and accurate Re-Os ages for molybdenum from the East Qinling molybdenum belt, Shanxi Province, China. Econ. Geol.,1997,92:827-835.
    [64]芮宗瑶,黄崇轲,齐国明等著.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984.
    [65]韩海涛,刘继顺,董新等.西秦岭温泉斑岩型钼矿床地质特征及成因浅析[J].地质与勘探,2008,44(4):1-7.
    [66]黄典豪,王义昌,聂风军等.一种新的钼矿床类型—陕西黄龙铺碳酸盐脉型铝(铅)矿床地质特征及成矿机制[J].地质学报,1985,59:241-257.
    [67]Altherr R, Holl A, Hegner E et al. High-potassium. calc-alkaline Ⅰ-type plutonism in the European Variscides:northern Vosges (France) and northern Schwarzwald (Germany). Lithos, 2000,50:51-73.
    [68]Sylvester P J. Post-collisional strongly peraluminous granites. Lithos.1998,45:29-44.
    [69]Pearce T A, Harris NBW and Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol,1984,25:956-983.
    [70]Roberts M P, Clemens J D, Origin of high-potasslum, calc-alkaline Ⅰ-type Granitoids. Geology, 1993,21:825-828.
    [71]谢应雯,张玉泉.云南洱海东部新生代岩浆岩岩石化学[J].岩石学报,1995a, (4):423-433.
    [72]傅德明.扬子地台西南缘陆内造山带有色、稀贵金属矿床成矿系列及成矿规律,见骆耀南主编,扬子地台西南缘陆内造山带地质与矿产论文集.成都:四川科学技术出版社,1996,120-128.
    [73]陈吉深,林文信,陈良忠.腾冲—梁河地区含锡花岗岩序列—单元研究[J].云南地质,1991,10(3):241-289.
    [74]薛步高.南主要金属矿产开发史研究[J].矿产与地质,1999,13(2):70-74.
    [75]庸仁鲤,罗怀松.西藏玉龙斑岩铜(钼)矿带地质[M].北京:地质出版社,1995,320.
    [76]胡祥昭,黄震.扬子地台西缘富碱花岗斑岩特征及成因探讨[J].大地构造与成矿学,1997,21(2):173-180.
    [77]张玉泉,谢应雯.哀牢山—金沙江富碱侵人岩年代学和Nd、Sr同位素特征[J].中国科学,1997,D辑,27(4):289-293.
    [78]谭雪春.滇西东部斑岩和斑岩铜矿.科学技术研究报告(46),1985.
    [79]范嗣昆等.云南腾冲火山岩K-Ar计时,见:第二届全国同位素地球化学讨论会论文(摘要)汇编.1982.
    [80]《全国同位素地质年龄数据汇编(第二册)》编纂小组.全国同位索地质年龄数据汇编(第三册)[M].北京:地质出版社,1983.
    [81]张旗,王焰,李承东等.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006,22:2249-2269.
    [82]Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multi-cationic parameters. Chem. Geol,1985,48(1):43-55.
    [83]陈新跃,王岳军,范蔚铭等.云南崇山剪切断裂系显微构造特征及其40Ar-39Ar年代约束[J].大地构造与成矿学,2006,30(1):41-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700