用户名: 密码: 验证码:
油田管线内腐蚀控制及石油烃类污染物微生物降解研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田现场存在两类重要问题,其一是污水系统中机械和化学的联合作用导致管道设备的严重腐蚀,其二是由于腐蚀穿孔引起的石油类有机污染物外泄而造成的严重环境污染。为了研究油田现场的CO2腐蚀,通常采用3%NaCl溶液作为模拟溶液,但这会造成与现场工况的偏离,而针对油气井缓蚀剂的研究主要是静态和低流速的室内模拟,这将明显偏离于高流速含砂的多相流条件下的腐蚀状况。而在现场高流速和含砂的腐蚀介质中,缓蚀剂已无法发挥其保护作用,需要选用耐冲刷腐蚀的涂层保护技术。环氧树脂涂覆是常用的对冲刷腐蚀进行修复处理的技术,但在油田高温和含酚条件下,易鼓泡硬化,达不到应有的效果。没有改性的双马来酰亚胺由于双键间距短,其固化交联密度高而脆性大,难溶解,工艺窗口窄,不能单独用于制备防腐涂料。因此,亟需研究新型的抗冲刷腐蚀涂层。而面对腐蚀穿孔而造成的石油污染,微生物降解技术因其成本低廉、原位性和无二次污染,得到越来越广泛应用。协同作用是有机污染物的微生物降解研究的重点。
     本论文用失重法、电化学法和表面分析等方法研究了金属在流动和含砂的腐蚀介质中的腐蚀行为和缓蚀剂抑制效果以及缓蚀剂现场应用过程中的室内综合评价方法;用IR, DSC, TGA, ESEM等方法研究了BMI/1,3-PBO/油酸三元共聚对提高双马来酰亚胺(BMI)的工艺性、韧性和耐热性的影响;用摩擦磨损、剪切强度和多相流冲刷等试验对环氧树脂/改性双马来酰亚胺胶粘涂料的性能进行了研究;利用自建的气相色谱与紫外分光光度法联合评价微生物对柴油降解过程的方法,分别研究了分支杆菌和枝孢属菌对柴油的降解以及两种微生物之间的协同作用。旨在探讨缓蚀剂在含砂的高流速腐蚀介质中的腐蚀抑制和室内评价方法的建立,极端腐蚀条件下改性环氧涂料的性能,以及柴油的微生物处理过程中细菌的协同作用机理,为管道系统的内腐蚀防护应用和石油烃处理提供理论依据和技术支持。主要研究结果如下:
     腐蚀介质中临界流速为3~4m/s。在不同流速下,介质中砂的存在明显促进了腐蚀。同一种缓蚀剂不同浓度下其临界流动强度有所不同。腐蚀介质流速为1m/s和3m/s时,缓蚀剂的极值浓度为120mg/L,流速为4m/s和5m/s时缓蚀剂的极值浓度增加为160mg/L,而流速为7m/s时缓蚀剂的极值浓度为200mg/L。极值浓度随砂的加入而进一步升高。当缓蚀剂浓度为120mg/L时其临界流速大约为3m/s,缓蚀剂浓度为200mg/L和280mg/L时其临界流速大约为3.5m/s和4.5m/s。在流速7m/s的含砂体系中,即使浓度高达280mg/L的缓蚀剂也无法有效控制腐蚀速率。
     通过对混合抑制型缓蚀剂与在用缓蚀剂的静态腐蚀评价、高压动态评价和电化学测试等性能评价,本文发现,缓蚀剂投加量为30mg/L时的腐蚀速率控制达到了在用药剂效果;缓蚀剂具有乳化倾向小、起泡倾向小、与在用阻垢剂和破乳剂配伍性较好等特点,同时具有一定的协同效应;现场腐蚀挂片结果表明,该药剂比较适合番禺油田油水介质和工况条件,能满足现场腐蚀防护的需要。现场应用的实践表明了应用不同评价手段的一致性原则发展起来的缓蚀剂室内综合研究方法的有效性和适用性。
     利用BMI和噁唑啉的反应将柔性链导入BMI体系,并且油酸具有长的柔性链和反应基团(碳碳双键和羧基),能与BMI和1,3-PBO发生共聚反应。BMI,1,3-PBO和油酸的三元共聚能提高BMI聚合物的工艺性和韧性,并且保持一定的耐热性。试验结果表明,1,3-PBO和油酸在低温时对BMI树脂起到稀释作用,在高温时,BMI、1,3-PBO、油酸之间的共聚反应增加了固化物的交联密度,固化树脂保持高的玻璃化转变温度。SEM表面形貌观察结果证实1,3-PBO、油酸能增韧BMI树脂,主要由于形成了酯-酰胺键和油酸长的脂肪链。从环氧和改性环氧三种涂层在不同介质存在的条件下拉伸剪切强度的数据变化可知,除了BMI-B/EP涂层在碱性条件下性能较差外,其在其它情况下的耐介质性能是最好的。研制的改性双马来酰亚胺/环氧基粘接膜在室温至120℃范围内具有优良的摩擦学性能。经高温多相流冲刷试验,改性后的环氧树脂涂层耐高温冲刷效果优于环氧涂层。
     当分支杆菌菌株和枝孢属菌株混合使用时,柴油在五天后的生物降解率高达80%;通过分支杆菌菌株和枝孢属菌株的协同降解作用可完全除去水体中的柴油污染物;协同作用主要涉及到枝孢属菌株对芳香烃的降解而促进了分支杆菌菌株的生长。
Equipment corrosion and environmental pollution caused by leaked crude oil are two main problems in oilfields. 3% NaCl solution was commonly used to investigate CO2 corrosion as simulation medium under static and lower flowing conditions, which was different from on-site corrosive medium at high flow velocity under multiphase containing sand in oilfields. Under those conditions, corrosion inhibitor could not perform effectively and protective coating of anti-erosion wearing and corrosion resistance is widely used to control corrosion. Epoxy resin coating was used to protect erosion wearing inside equipment, which was easy to bubble, harden and lost its performance under high temperature and medium containing hydroxybenzene. However, unmodified bismaleimide (BMI) resins could not be solely used for anti-corrosion coating because of their high crosslinking densities after curing, poor solubility, and narrow processing window; and therefore a new type of anti-erosion wearing coating is anticipated to research. For the increasingly serious petroleum pollute, the biodegradation technology was used more widely because of the advantage of low cost, in-situ degradation and no pollution products. Synergic effect is always the important spot of research in the field of biodegradation of organic pollutants.
     In this dissertation, corrosive behavior of carbon steel under flowing condition and corrosive solution containing sand, corrosion inhibitor’s inhibition performance, and lab comprehensive evaluation of corrosion inhibitor, were investigated by weigh lost method, electrochemical techniques (electrochemical impedance spectroscopy (EIS), linear polarization resistance), surface analysis(scanning electron microscope (SEM), X-ray diffraction (XRD)), etc; by ternary copolymerization of BMI, 1,3-PBO and oleic acid, the curing behavior and some properties of the processibility, toughness and heat resistance were focused on by IR, DSC, TGA, ESEM, etc; properties of adhesive coating of modified epoxy resin with BMI were investigated by friction wear, shear strength, multiphase erosion-wearing testing; by combination of the two analytical techniques, gas chromatography and UV spectrophotometry to evaluate the microorganisms biodegradation of diesel, the biodegradation process of diesel by bacteria Mycobacterium hyalinum (MH) , by fungi Cladosporium, and their synergic effect were studied, respectively. Our aims are to discuss inhibition performance of corrosion inhibitor under high flowing corrosive solution containing sand, establishment lab comprehensive evaluation method and properties of modified coatings under extreme corrosive conditions, mechanism of synergic effect of biodegradation of diesel, which can provide academic explanation and technical support for protection of inner corrosion in pipeline systems and the bioremedy of leaked crude oil. The main conclusions are as follow:
     Critical flow velocity in uninhibited corrosive solution is between 3m/s and 4m/s at testing conditions. At different flow velocity, corrosion rate is further increased by the entrained sand in the medium. Corrosion inhibitor shows the peak-value-phenomenon in corrosive solution under flowing condition. The optimum concentration is 120mg/L as the flow velocity is less than 3m/s, in contrast with the concentration of 160mg/L when flow velocity is between 4m/s and 5m/s and the concentration of 200mg/L when flow velocity is 7m/s. The optimum concentration is further increased when adding sand. Critical flow velocity is different in inhibited corrosive solution at different concentration. Critical flow velocities are 3m/s, 3.5m/s, 4.5m/s in inhibited corrosive solution at the concentration of 120mg/l, 200mg/l and 280mg/l, respectively. Corrosion rate of medium containing sand at the flow velocity of 7m/s could not effectively controlled by corrosion inhibitor with the concentration of 280mg/l or higher.
     Compared mixed corroison inhibitor with incumbent corrosion inhibitor by static coupon testing, dynamic high pressure coupon testing, electrochemical techniques, compatability test with incumbent scale inhibitor and demulsifier, and on-site application, all the results have demonstrated that this corrosion inhibitor is a mixed type of absorptive inhibitor, which can effectively inhibit locale corrosion with characteristics of low emulsification and better compatability, and also meet anti-corrosion’s requirements. On-site monitoring results show that lab comprehensive evaluation is effective and applicable to settle the discrepancy of lab screening on corrosion inhibitor.
     By spontaneous reaction between BMI and oxazoline, flexible linkage or chain was introduced into BMI. Oleic acid, which presents long flexible chain and reactive groups (C=C double bond and -COOH), was copolymerized with BMI and 1,3-PBO. By ternary copolymerization of BMI, 1,3-PBO and oleic acid , the processibility and toughness of BMI was improved while keeping their good heat resistance. The results indicates that 1,3-PBO and oleic acid play a role in diluting to BMI at lower temperatures. At higher temperatures, the copolymerization between BMI, oleic acid and 1,3-PBO increases the crosslinking density in the resultant materials. The cured resin still remains high Tg. SEM results confirm that 1,3-PBO and oleic acid could toughen BMI system because of the formation of ester-amide bonds and the long fat chain of oleic acid. By testing tensile-shear strength of epoxy resin coatings at different corrosive media, it gains that BMI-B/EP has the best performance under different conditions except in alkaline medium. Modified epoxy adhesive resins show fine friction property at temperature range from 20℃to 120℃. Testing results under conditions of multiphase corrosive media and high flow velocity at high temperature show that modified epoxy coatings exhibited excellent performances of erosion resistance and high wear resistance than epoxy resin coating.
     When the mixture of bacteria strain MH and fungi strain Cladosporium is used, the extent of diesel biodegradation is significantly increased by 80% after five days; Diesel pollutants in aqueous solution can be completely removed by synergistic use of these MH and Cladosporium; The observed synergistic effect is closely related to the aromatics-resistance of the fungi strain Cladosporium, which in turn favors the growth of the MH.
引文
[1] Ikeda A., Ueda M., Mukai S. CO2 corrosion behavior and mechanism of carbon steel and alloy steel. Corrosion/83, NACE, 1983(45) (Houston, TX: NACE, 1983)
    [2] Stenzenberger H.D., Roemer W., Herzog M., et al. The development of tough bismaleimide resins. International SAMPE Symposium and Exhibition 31st (Mater. Sci. Future), 1986: 920~932
    [3] Dao B., Hawathorne D.G., Hodgkin J.H. et al. Preparation and characterization of some novel bismaleimide monomers and polymers based on diaminobisimides. High Performance Polymers, 1996, 8(2):243~263
    [4] Stenzenber H.D. Toughened bismaleimides: modification with thermplastic[C]. 33th Int. SAMPE Symp. Exhibit Proc., 1988, 33: 1546
    [5] Hu X., Fan J., Yue C.Y., et al. Enhancement of the processibility of bismaleimide resins via copolymerization with allyl organo-boron compounds. Journal of Materials Processing Technology, 1999, 89-90: 544~549
    [6] Vanloocke R., De Borger R., Voets J. P., et al. Soil and groundwater contamination by oil spills: problems and remedies. International Journal of Environmental Studies, 1975, 8(1–4): 99~111
    [7] Márquez-Rocha F.J., Olmos-Soto J., Rosano-Hernández M.C., et al. Determination of the hydrocarbon-degrading metabolic capabilities of tropical bacterial isolates. Intern. Biodeterior. Biodegrad., 2005, 55: 17~23
    [8] Giraud F., Guiraud P., Kadri M., et al. Biodegradation of anthracene and fluoranthene by fungi isolated from an experimental constructed wetland for wastewater treatment. Wat. Res., 2001, 35: 4126~4136
    [9] Madsen E.L. Determining in situ biodegradation: Facts and challenges. Environ. Sci. Technol., 1991, 25: 1663~1673
    [10] Stout S.A., Lundegard P.D. Intrinsic biodegradation of diesel fuel in an interval of separate phase hydrocarbons. Appl. Geochem., 1998, 13: 851~859
    [11] AMS Handbook, Corrosion, 9th ed., Vol.13, USA, ASM International, 1992: 669
    [12]魏宝明主编.金属腐蚀理论及应用.北京:化学工业出版社, 2001: 2
    [13] Mao X., Liu X., W.X. Revie. Pitting corrosion of pipeline steel in dilute bicarbonate solution with chloride ions. Corrosion, 1994, 50(9): 651~657
    [14]杨武,黎樵编.金属的局部腐蚀.北京:化学工业出版社, 1995
    [15] Xia Z., Chou K.C., Szklarska-Smialowska Z. Pitting corrosion of carbon steel in CO2-containing NaCl brine. Corrosion, 1989, 45(8): 636~642
    [16]陈跃.碳钢在含有CO2的NaCl卤水中的点蚀.全面腐蚀控制, 1992, 6(3): 9~14
    [17] Schmitt G. Advance in CO2 corrosion. Corrosion/84, NACE, 1984(1) (NewOrleans,Louisiana: NACE, 1984)
    [18] Ikeda A., Ueda M., Mukai S. Corrosion behavior of carbon and Cr steels. In: Hausler R H, Giddard H P (Eds). Advances in CO2 Corrosion, Vol. 1, NACE, Houston, Texas, 1984:39
    [19]陈卓元,王凤平,张学元,杜元龙.二氧化碳腐蚀防护对策及发展趋势.材料开发与应用, 1998, 13(6): 40~44
    [20] Nice P.I., Ueda M. The effect of microstructure and Cr Alloying content to the corrosion Resistance of low-alloy steel well tubing in seawater injection service. Corrosion/98, NACE, 1998(3) (Houston, TX: NACE, 1998)
    [21] Alhajji J.N., Reda M.R. The effect of alloying elements on the electrochemical corrosion of low residual carbon steels in stagnant CO2-Saturated. Corrosion Science, 1993, 34: 1899~1912
    [22] Ikeda A., Mukai S., Ueda M. Corrosion behavior of 9 to 25% chromium steels in wet carbon dioxide environments. Corrosion, 1985, 41(4): 185~192
    [23] Wang C., Neville A., Ramachandran S., et al. Alleviation of erosion–corrosion damage by liquid–sand impact through use of chemicals. Wear, 2005, 258(1-4): 649~658
    [24] Kang C., Gopal M., Jepson W.P. Localized corrosion in multiphase pipelines. Corrosion/2004, NACE, 2004(04381) (Houston, TX: NACE, 2004)
    [25] Robert J.K.W. Erosion–corrosion interactions and their effect on marine and offshore materials. Wear, 2006, 261(9): 1012~1023
    [26]林宗虎.气液固多相流测量.北京:中国计量出版社, 1998: 4~12
    [27] Butterworth D., Hewitt G.F. Two-phase flow and heat transfer. Oxford University Press, 1977
    [28]盖德·希特斯洛尼.多项流动和传热手册.钟琪等译.北京:机械工业出版社, 1993: 47.
    [29] Lotz U. Velocity effect in flow-induced corrosion. Corrosion/90, NACE, 1990(27) (Houston, TX: NACE, 1990)
    [30] Latt B.W., Kohley T., Lotz U., et al. Influence of hydrodynamics on erosion-corrosion in two-phase liquid-particle flow. Corrosion, 1989, 45(10): 793~803
    [31] Truscot G.F. A literature survey on abrasive wear in hydraulic machinery. Wear, 1972, 20(1): 29~50
    [32] Shadley J.R., Shirazi S.A., Dayalan E., et al. Prediction of erosion-corrosion penetration rate in a carbon dioxide environment with sand. Corrosion, 1998, 54(12): 972~978
    [33] Postlethwaite J., Nesic S. Erosion in disturbed liquid/particle pipe flow: Effect of flow geometry and particle surface roughness. Corrosion, 1993, 49(10): 850~857
    [34]郑家燊.油井酸化缓蚀剂的研究及其应用概况.腐蚀与防护, 1997, 18(2): 36~40
    [35]俞敦义,叶康民. 7701缓蚀剂的缓蚀作用.化工腐蚀与防护, 1988, 16(4): 5
    [36]马金鼎,王建华.见:中国石油学会石油腐蚀与防护委员会主编.石油腐蚀与防护学术论文选集(第二集), 1985: 60
    [37]曹楚南,陈家坚.缓蚀剂在油气田的应用.石油化工腐蚀与防护, 1997, 14(4): 34~36
    [38]刘世川,马兰.我国石油天然气工业缓蚀剂.见:中国腐蚀与防护学会主编(北京).第十一届全国缓蚀剂学术讨论会论文集.深圳:中国腐蚀与防护学会, 1999: 180~185
    [39]王佳,曹楚南,陈家坚.缓蚀剂理论与研究方法的进展.腐蚀科学与防护技术, 1992, 4(2): 80~87
    [40]中国腐蚀与防护学会主编.腐蚀科学与防腐蚀工程技术新进展.北京:化学工业出版社: 384
    [41] DeWaard C., Lotz U., Dugstad A. Influence of liquid flow velocity on CO2 corrosion: A Semi-Empirical Model. Corrosion/95, NACE, 1995(128) (Houston, TX: NACE, 1995)
    [42] Dougherty J.A., Stegmann D.W. Effects of flow on corrosion inhibitor performance. Materials Performance, 1996, 35(4): 47~59
    [43] Hausler R.H., Stegmann D.W. Studies relating to the predictiveness of corrosion inhibitor evaluations in laboratory and field environment. European Petroleum Conference, SPE paper No.18369 (Richardson, TX: SPE, 1988)
    [44] Schmitt G. Drag reduction by corrosion inhibitors-a neglected option for Mitigation of flow induced localized corrosion. Materials and Corrosion, 2001, 52: 329~343
    [45]叶康民.缓蚀剂的协同效应.材料保护, 1990, 23(1-2): 37~39
    [46] Singh I. Inhibition of steel corrosion by thiourea derivatives. Corrosion, 1993, 49(6): 473~478
    [47]王佳.有机缓蚀剂作用机理和脱附行为的研究: [博士学位论文].保存地点:中国科学院金属研究所图书馆, 1990
    [48] Ateya B.G., El-Anadouli B.E., Niizamy F.M., et al. The effect of thiourea on the corrosion kinetics of mild steel in H2SO4. Corrosion Science, 1984, 24(6): 497~507
    [49] Durnie W.H., Marco R.D., Jeferson A., et al. Development of a structure-activity relationship for oil field corrosion inhibitors. Journal of the Electrochemical Society, 1999, 146(5): 1751
    [50] Hackerman N., Justice D.D., Mecaferty E. Homopiperazine as a corrosion inhibitor. Corrosion, 1975, 31(7): 240~242
    [51]章燕豪.吸附作用.上海:上海科学技术文献出版社, 1994: 32
    [52]杨玉昆.合成胶粘剂.北京:科学出版社, 1980
    [53]刁晓刚,李赫亮,李智超等.三种环氧胶粘剂耐蚀性能研究.中国胶粘剂, 2005(07): 12~14
    [54]梁正国,顾媛娟.双马来酰亚胺树脂[M].北京:化学工业出版社, 1997: 11
    [55] Liang G.Z., Gu A.J. Modification of BMI with Ally Compounds[J]. J. Adv. Mater., 1996: 61~64
    [56] Li Y., Feng L., Zhang L.C. Mechanical, thermal, and morphological properties ofbismaleimide/unsaturated polyester copolymers. J. Appl. Polym. Sci., 2006, 100: 593~598
    [57] Hwang H.J., Li C.H., Wang C.H. Dielectric and thermal properties of dicyclopentadiene containing bismaleimide and cyanate ester. Part IV. Polymer, 2006, 47: 1291~1299
    [58] Fang Q., Li G.Z., Zeng X., et al. Investigation on the properties of a three-component copolymer consisting of tris(allylphenoxy) triazine monomer and a diamine-chain-extension bismaleimide. J. Appl. Polym. Sci., 2004, 93: 475~480
    [59] Liu Y.L., Tsai S.H., Wu C.S., et al. Preparation and characterization of hyperbranched polyaspartimides from bismaleimides and triamines. J. Polym. Sci.: Part A: Polym. Chem., 2004, 42: 5921~5928
    [60] Kriegel R.M., Saliba K.L., Jones G., et al. The rapid chain extension of anthracene-functional polyesters by the Diels-Alder reaction with bismaleimides. Macromol. Chem. Phys., 2005, 206: 1479~1487
    [61] Gu A.J. Novel high performance RTM bismaleimide resin with low cure temperature for advanced composites. Polym. Adv. Technol., 2005, 16: 563~566
    [62] Yao Y., Zhao T., Yu Y.Z. Novel thermosetting resin with a very high glass-transition temperature based on bismaleimide and allylated novolac. J. Appl. Polym. Sci., 2005, 97: 443~448
    [63] Lu G.T., Huang Y., Yan Y.H., et al. Morphology transition of bismaleimide-modified novolac resin. J. Appl. Polym. Sci., 2006, 102: 76~83
    [64] Kumar R.S., Alagar M. Studies on mechanical, thermal, and morphology of diglycidylether-terminated polydimethylsiloxane-modified epoxy–bismaleimide matrices. J. Appl. Polym. Sci., 2006, 101: 668~674
    [65] Musto P., Ragosta G., Russo P., et al. Thermal-oxidative degradation of epoxy and epoxy-bismaleimide networks: kinetics and mechanism. Macromol. Chem. Phys., 2001, 202(18): 3445~3458
    [66] Jeng R.J., Lo G.S., Chen C.P., et al. Enhanced thermal properties and flame retardancy from a thermosetting blend of a phosphorus-containing bismaleimide andepoxy resins. Polym. Adv. Technol., 2003, 14: 147~156
    [67] Lin R.H., Lu W.H., Lin C.W. Cure reactions in the blend of cyanate ester with maleimide. Polymer, 2004, 45: 4423~4435
    [68] Liu X.Y., Yu Y.F., Li S.J. Study on cure reaction of the blends of bismaleimide and dicyanate ester. Polymer, 2006, 47: 3767~3773
    [69] Yu X.B., Wei C., Zhang F.A. Studies on the mechanical and dynamic mechanical properties of thermotropic liquid crystalline polymer/unsaturated polyester/glass fiber in situ hybrid composites. Polym. Adv. Technol., 2006, 17: 534~539
    [70] Varma I.K., Choudhary V., GaurB., et al. Curing and thermal behavior of poly(allyl azide) and bismaleimides. J. Appl. Polym. Sci., 2006, 101: 779~786
    [71] Lin K.F., Chen C.J. Curing, compatibility, and fracture toughness for blends of bismaleimide and a tetrafunctional epoxy resin. Polym. Eng. Sci., 1996, 36(2): 211~217
    [72]梁国正,顾嫒娟,蓝立文.二烯丙基双酚S改性BMI的研究[J].高分子材料, 1993, 58(4): 24
    [73]李玲,梁国正,范儆.烯丙基酚氧树脂改性BMI的研究[J].高分子材料科学与工程, 1999, 15(2): 116~119
    [74] Qin H.H., Mather P.T., Baek J.B., et al. Modification of bisphenol-A based bismaleimide resin(BPA-BMI) with an allyl-terminated hyperbranched polyimide (AT-PAEKI). Polymer, 2006, 47(8): 2813~2821
    [75] Phelan J.C., Sung C.S.P. Spectroscopic and model compound studies in the cure characterization of a bismaleimide/diallylbisphenol A thermoset resin[J]. Polymer Preprints ACS American Chemical Society, 1997, 38(1): 227~228
    [76] Phelan J.C., Sung C.S.P. Cure characterization in bis(maleimide)/diallylbisphenol A resin by fluorescence, FT-IR, and UV reflection spectroscopy[J]. Macromolecules, 1997, 30(22): 6845~6851
    [77]席红安,刘润山.烯丙基醚化酚醛树脂/双马来酰亚胺共聚物性能的研究[J].高分子材料科学与工程, 1998, 14(4): 117
    [78] Shaw S.J., Kinloch A.J. Toughened bismaleimide adhesive[J]. Int. J. Adhesion Adhesives, 1985, 5(3): 123~127
    [79]白永平,魏月贞. 96年全国复合材料会议论文集.北京:北京航空航天大学出版社, 1996: 146.
    [80]黄发荣,焦扬声,祖志城.双马来酰亚胺树脂增韧研究II[J].功能高分子学报, 1994, 7(1): 47~54
    [81]袁荞龙,黄发荣,王井岗等.改性双马来酰亚胺树脂的研究[J].高分子材料科学与工程, 1998, 14(2): 86~89
    [82] Wilkinson S.P. Effect of thermoplastic modifier variables on toughness a bismaleimide martrix resin for high-performance composite materials[J]. Polymer, 1993, 34(34): 870~884
    [83]张宝艳,李萍,陈祥宝.新型改性双马来酰亚胺树脂体系[J].高分子材料科学与工程, 2000, 16(2): 67~69
    [84] Xie W.F., Li J.J., Huang Z.X. Research on the Curing Process of Bismaleimide and Epoxy Resin Modified Cyanate Ester. Journal of Wuhan University of Technology (Materials Science Edition), 2007, 29(2): 16~19
    [85] Sung P.H., Lin C.Y. Polysiloxane modified epoxy polymer network-I: Graft interpenetrating polymeric networks. Eur Polym J., 1997, 33: 903~906
    [86] Shenoy M.A., Mrinalini P., Aditya S. Modification of epoxy resin by addition of bismaleimide and diallyl phthalate. Polym. Eng. SCI., 2007, 47(11): 1881~1888
    [87] Gu A.J., Liang G.Z., Lan L.W. Modification of polyaralkyl phenolic resin and its copolymer with bismaleimide[J]. J. Appl. Polym. Sci., 1996, 59: 975~979
    [88] Iijima T., Shiono H., Fukuda W., et al. Toughening of bismaleimide resin by modification with poly(ethylene phthalate) and poly(ethylene phthalate-co-ethylene isophthalate). Journal of Applied Polymer Science (J. Appl. Polym. Sci.), 1997, 65(7): 1349~1357
    [89] Shibahara S., Hayashi S. Thermal reactions of N-phenylmaleimide and mono or difunctional allylphenol[J]. Polym. J., 1998: 30(5): 404~409
    [90] Iijima T., Yuasa N., Tomoi M. Modification of two-componets bismaleimide resin by blendind (meth) allyl compounds as third componets[J]. Polym. Int., 1999, 48: 587~592
    [91] Gawdzik B., Matynia T. Modification of unsaturated polyester resin with bismaleimide. Journal of Applied Polymer Science, 2001, 82(8): 2003~2007
    [92] Lin K.F., Lin J.S., Cheng C.H. High temperature resins based on allylamine-bismaleimides. Polymer, 1996, 37(21): 4729~4737
    [93] Li W.W., Liu F., Wei L.H., et al. Synthesis, morphology and properties of polydimethylsiloxane-modified allylated novolac/4,4'-bismaleimidodiphenylmethane. European Polymer Journal, 2006, 42: 580~592
    [94]中国腐蚀与防护学会主编.防腐蚀涂料和涂装.北京:化学工业出版社出版, 1994
    [95] Dennis D.T., Ronald B., Joseph H.S. Bench-scale studies of reactor-based treatment of fuel-contaminated soils. Waste Management [J], 1995, 15(5-6): 351~357
    [96]金志刚,张彤,朱怀兰.污染物生物降解[M].上海:华东理工大学出版社, 1997
    [97] Ronald M.A. Bioremediation of petroleum pollutants. International Biodeterioration & Biodegradation[J], 1995, 35(1-3): 317~327
    [98]顾传辉,陈桂珠.石油污染土壤生物修复.重庆环境科学[J], 2001, 23(2): 42~45
    [99]李丽,张利平,张元亮.石油烃类化合物降解菌的研究概况.微生物学通报[J], 2001, 28(5): 89~92
    [100]任磊,黄廷林.石油污染土壤的生物修复技术.安全与环境学报[J], 2001, 1(2): 50~53
    [101]周嘉玺,倪方天,苏荣国等.微生物对石油烃的降解机理及影响因素.化工环保[J], 2001, 21(4): 205~208
    [102] Christof H., Alexander J.B.Z. Anaerobic biodegradation of hydrocarbons. Current Opinion in Biotechnology[J], 1996, 7(3): 326~330
    [103] R.M.阿特拉斯.石油微生物学[M].黄第藩等译.北京:石油工业出版社, 1991: 87~105
    [104] Leahy J.G. Microbia degradation of hydrocarbons in environment. Microbiological Reviews, 1990, 54: 305~315
    [105] Jensen V. Decomposition of oily wastes in soil. In: Kilbertus G., Reisinger O., Mourey A., da Fonseca J. (eds). Proceedings of the first international conference on biodegradation and humification. France: Nancy, 1974: 278~287
    [106] George S.C., Boreham C.J., Minifie S.A., et al. The effect of minor to moderate biodegradation on C5 to C9 hydrocarbons in crude oils. Organic Geochemistry[J], 2002, 33(12): 1293~1317
    [107] Lazar I., Dobrota S., Voicu A., et al. Microbial degradation of waste hydrocarbons in oily sludge from some Romanian oil fields. Journal of Petroleum Science and Engineering[J], 1999, 22: 151~160
    [108] Watson J.S., Jones D.M., Swannell R.P.J., et al. Formation of carboxylic acids during aerobic biodegradation of crude oil and evidence of microbial oxidation of hopanes. Organic Geochemistry[J], 2002, 33: 1153~1169
    [109] Raymond J.W., Rogers T.N., David R.S., et al. A review of structure-based biodegradation estimation methods. Journal of Hazardous Materials B[J], 2001, 84: 189~215
    [110] Macnaughton S.J., Swannell R., Daniel F., et al. Biodegradation of Dispersed Forties Crude and Alaskan North Slope Oils in Microcosms Under Simulated Marine Conditions. Spill Science & Technology Bulletin[J], 2003, 8(2): 179~186
    [111] Rahman K.S.M., Banat I.M., Thahira J., et al. Bioremediation of gasoline contaminated soil by a bacterial consortium amended with poultry litter, coir pith and rhamnolipid biosurfactant. Bioresource Technology[J], 2002, 81: 25~32
    [112] Boopathy R. Effect of food-grade surfactant on bioremediation of explosives-contaminated soil. Journal of Hazardous Materials[J], 2002, 92: 103~114
    [113] Troquet J., Larroche C., Dussap C.G. Evidence for the occurrence of an oxygen limitation during soil bioremediation by solid-state fermentation. Biochemical Engineering Journal[J], 2003, 13: 103~112
    [114] Ijah U.J.J. Studies on relative capabilities of bacterial and yeast isolates from tropical soil in degrading crude oil[J]. Waste Management, 1998, 18: 293~299
    [115] Ambrosoli R., Petruzzelli L., Minati J.L., et al. Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions[J]. Chemosphere, 2005, 60: 1231~1236
    [116] Trindade P.V.O., Sobral L.G., Rizzo A.C.L., et al. Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study[J]. Chemosphere, 2005, 58: 515~522
    [117] Hashimoto T., Nakata Y. Synergistic degradation of arabinoxylan with -L-arabinofuranosidase, xylanase and -xylosidase from a soy sauce koji mold, Asperigillus oryzae, in high salt concentration[J]. Journal of Bioscience and Bioengineering, 2003, 95: 164~169
    [118] Glick B.R. Phytoremediation: synergistic use of plants and bacteria to clean up the environment[J]. Biotechnology Advances, 2003, 21: 383~393
    [119] Osipowicz B., Jabloński L., Siewiński A., et al. Screening tests of the biodegradation of organic coal extract by selected fungi[J]. Bioresource Technology, 1996, 55: 195~200
    [120] Coulon F., Pelletier E., Gourhant L., et al. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in contaminated sub-Antarctic soil[J]. Chemosphere, 2005, 58: 1439~1448
    [121]郭兴蓬,付朝阳.缓蚀剂和CO2腐蚀产物膜的相互作用.见:华中理工大学主编.第十二届全国缓蚀剂学术讨论会论文集.青岛:中国腐蚀与防护学会缓蚀剂专业委员会, 2001: 8~10
    [122]刘小武,彭芳明,郑家燊.输油管线缓蚀剂的研究,材料保护, 2000, 33(8): 3~5
    [123] Chen Y., Jepson W.P. EIS measurement for corrosion monitoring under multiphase flow condition. Electrochimica Acta, 1999, 44(24): 4453~4464
    [124] Wang H.B., Hong T., Jepson W.P., et al, Characterization of inhibitor and corrosion product film using electrochemical impedance spectroscopy(EIS). Corrosion/2001, paper No.23 (Houston, TX: NACE, 2001)
    [125] Smart J.S. The meaning of the API-RP-14-E formula for erosion corrosion in oil and gas production. Corrosion/91, paper No.468 (Houston, TX: NACE, 1991)
    [126] DeWaard C., Lotz U., Millams D.E. Predictive model for CO2 corrosion engineeringin wet natural gas pipelines. Corrosion/91, paper No.577 (Houston, TX: NACE, 1991)
    [127] DeWaard C., Lotz U. Predictive of CO2 corrosion of carbon steel. Corrosion/93, paper No.69 (Houston, TX: NACE, 1993)
    [128] Nyborg R. Initiation and growth of mesa corrosion attack during CO2 corrosion of carbon steel. Corrosion/98, paper No. 48(Houston, TX: NACE, 1998)
    [129] Gopal M., Rajappa S. Effect of multiphase slug flow on the stability of corrosion product layer. Corrosion/99, paper No. 46 (Houston, TX: NACE, 1999)
    [130] Heuer J.K., Srubbins J.F., Microstructure analysis of coupons exposed to carbon dioxide corrosion in multiphase flow, Corrosion 1998, 54 (7): 566~575
    [131] Neville A., Hodgkiess T. An assessment of the corrosion behaviour of high-grade alloys in seawater at elevated temperature and under a high velocity impinging flow. Corrosion Science, 1996, 38(6): 927~956
    [132] Codaroa E.N., Nakazatoa R.Z., Horovistizb A.L, et al. An image processing method for morphology characterization and pitting corrosion evaluation. Materials Science and Engineering A, 2002, 334(1-2): 298~306
    [133]陈丽华,缪昕,魏宝和.扫描电镜在石油地质上的应用.北京:石油工业出版社,1990.
    [134]杨帆,郑玉贵,姚治铭,柯伟.铜镍合金BFe30-1-1在流动人工海水中的腐蚀行为.中国腐蚀与防护学报, 1999, 19(4): 207~213
    [135] Zheng Y.G., Yang F., Yao Z.M.,et al. On the critical flow velocity of Cu-Ni alloy Bfe30-1-1 in flowing artificial seawater. Zeitschrift Fur Metallkunde (Materials Research and Advanced Techniques), 2000, 91(4): 323~328
    [136] Neilson J.H., Gilchrist A. Erosion by a stream of solid particles. Wear, 1968, 11: 111~122
    [137] Brenton S.M., Siamack A.S. An alternate method to API RP 14E for predicting solids erosion in multiphase flow. Journal of Energy Resources Technology, 2000, 122(3): 115~122
    [138] Forder A., Thew M., Harrison D. A numerical investigation of solid particle erosion experienced within oilfield control valves. Wear, 1998, 216: 184~193
    [139] Humphrey J.A.C. Fundamentals of fluid motion in erosion by solid particle impact. Int. J. Heat and Fluid Flow, 1990, 11(3): 170~195
    [140] Morsi S.A., Alexander A.J. An investigation of particle trajectories in two-phase flow systems. Journal of Fluid Mechanics, 1972, 52(2): 193~208
    [141]柳伟.耐多相流损伤的金属材料及作用机制研究: [博士学位论文].保存地点:中国科学院金属研究所, 2001
    [142] Jiang X., Zheng Y.G., Ke W. Corrosion inhibitor performances for carbon dioxide corrosion of N80 steel under static and flowing conditions. Corrosion, 2005, 61(4): 326
    [143] Chetouani A., Hammouti B., Benhadda T., et al. Inhibitive action of bipyrazolic type organic compounds towards corrosion of pure iron in acidic media. Appl. Surf. Sci., 2005, 249: 375~385
    [144] Neville A., Hodgkiess T., Dallas J.T. A study of the erosion-corrosion behaviour of engineering steels for marine pumping applications. Wear, 1995, 186-187: 497~507
    [145] Schmitt G., Simon T., Hausler R.H. CO2 erosion corrosion and its inhibition under extreme shear stress I. Development of methodology. Corrosion/90, paper No.22 (Houston, TX: NACE, 1990)
    [146] Zhao L., Teng H.K, Yang Y.S., et al. Corrosion inhibition approach of oil production systems in offshore oilfields[J]. Materials and Corrosion, 2004, 55(9): 684~688
    [147] Zav’yalov V.V. Corrosion of oilfield pipelines. Protection of Metals, 2003, 39(3): 274~277
    [148] Chouparova E., Lanzirotti A., Marinkovic N. Characterization of petroleum deposits formed in a producing well by synchrotron radiation-based microanalyses[J]. Energy & Fuels, 2004, 18(4): 1199~1212
    [149]郑家燊.二氧化碳腐蚀状况研究[J].断块油气田, 1996, 3(1): 62~65
    [150]陈平,孔庆宝.改性双马来酰亚胺基体树脂及其复合材料的研究.纤维复合材料, 1995, 3: 21~22
    [151] Liu F., Li W.W., Wei L.H., et al. Blended resins based on a new propargyl-functional resin: Synthesis, cure, and thermal properties. J. Appl. Polym. Sci., 2006, 102: 4207~4212
    [152] Wang H.S., Zhao T., Yu Y.Z. Synthesis of bismaleimide-modified novolac resin/clay nanocomposites using p-phenylenediamine as swelling agent. J. Appl. Polym. Sci., 2005, 96: 466~474
    [153] Gu A.J. High performance bismaleimide/cyanate ester hybrid polymer networks with excellent dielectric properties. Composites Science and Technology, 2006, 66: 1749~1755
    [154]战凤昌.专用涂料[M].北京:化学工业出版社, 1996
    [155] Wilson D.M., Huang S.J. Bisoxazoline-phenolic resin low flammability composites for aircraft interiors. Polymer Preprints, 1987, 28: 73~74
    [156] Wilson D.M., Huang S.J. Electron-rich comonomeric reactants and bismaleimides. Polym. Mater. Sci. and Eng., 1988, 58: 570~574
    [157] Wilson D.M., Huang S.J. Spontaneous copolymerization of electron-rich comonomeric reactants and maleimides. Polym Mater Sci and Eng 1989, 60: 88~92
    [158] Kimura H., Matsumoto A., Hasegawa K., et al. New thermosetting resin from bisphenol A-based benzoxazine and bisoxazoline. J. Appl. Polym. Sci., 1999, 72: 1551~1558
    [159] Kimura H., Hasegawa K., Matsumoto A. Studies on new type of phenolic resin (IX) curing reaction of bisphenol A-based benzoxazine with bisoxazoline and the properties of the cured resin.II. Cure reactivity of benzoxazine. J. Appl. Polym. Sci., 2001, 79: 2331~2339
    [160] Li S.F., Wang L.L. J. Curing Behavior of 4,4’-diamonodiphenyl Methane-based Benzoxazine Oligomers(Oligo-Da)/Bisoxazoline Copolymers and the Properties of their Cured Resin. Appl. Polym. Sci., 2006, 99: 1359~1366
    [161]张向宇.胶接与胶补[M].武汉:湖南科学技术出版社, 1994: 58~70
    [162] Maity T., Samanta B.C., Dalai S., et al. Curing study of epoxy resin by new aromatic amine functional curing agents along with mechanical and thermal evaluation. Material Science and Engineering: A, 2007, 464(1-2): 38~46
    [163] Bauer R.S. Epoxy Resin Chemistry II. Amer Chemical Society (June 1983): 1~310
    [164]王承鹤.塑料摩擦学.北京:机械工业出版社, 1994
    [165]吴人洁.现代分析技术[M].上海:上海科学技术出版社, 1990
    [166] Nery L., Lefebvre H., Fradet A. Kinetic and mechanistic studies of carboxylic acid–bisoxazoline chain-coupling reactions. Macromol. Chem. Phys., 2003, 204(14): 1755~1764
    [167] Vanaja A., Rao R. Synthesis and characterization of epoxy-novolac/bismaleimide networks. Euro. Polym. J., 2002, 38: 187~193
    [168]周钟瑔,李劲,李京等.介质种类、浓度对环氧基复合涂膜传输的影响,材料保护[J], 1997(10): 1~3
    [169]杨学稳,田中华,郑俊萍等.环氧树脂/蒙脱土纳米复合改性的研究.工程塑料[J],2002(4): 5
    [170] Boopathy R. Anaerobic degradation of No. 2 diesel fuel in the wetland sediments of Barataria-Terrebonne estuary under various electron acceptor conditions. Bioresour. Technol., 2003, 86: 171~175
    [171] Mukherji S., Jagadevan S., Mohapatra G., et al. Biodegradation of diesel oil by an Arabian Sea sediment culture isolated from the vicinity of an oil field. Bioresour. Technol., 2004, 95: 281~286
    [172] Margesin R., Schinner F. Biodegradation of diesel oil by cold-adapted microorganism in presence of sodium dodecyl sulfate. Chemosphere, 1999, 38: 3463~3472
    [173] Banat I.M. Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour. Technol., 1995, 51: 1~12
    [174] Sandrin T.R., Maier R.M. Impact of metals on the biodegradation of organic pollutants. Environ. Health Perspec., 2003, 111: 1095~1101
    [175] Pieper D.H., dos Santos V.A.M., Golyshin P.N. Genomic and mechanistic insights into the biodegradation of organic pollutants. Curr. Opin. Biotechnol., 2004, 15: 215~224
    [176] Sarkar D., Ferguson M., Datta R., et al. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environmental Pollution, 2005, 136: 187~195
    [177] Parrish Z.D., Banks M.K., Schwab A.P. Assessment of contaminant lability during phytoremediation of polycyclic aromatic hydrocarbon impacted soil. Environmental Pollution, 2005, 137: 187~197
    [178] Borde X., Guieysse B., Delgado O., et al. Synergistic relationships in algal–bacterial microcosms for the treatment of aromatic pollutants. Bioresour. Technol., 2003, 86: 293~300
    [179] Guieysse B., Viklund G., ToesA.-C., et al. Combined UV-biological degradation of PAHs. Chemosphere, 2004, 55: 1493~1499
    [180] Mannana S., Fakhru’l-Razia A., Alam M.Z. Use of fungi to improve bioconversion of activated sludge. Wat. Res., 2005, 39: 2935~2943
    [181] Chávez-Gómez B., Quintero R., Esparza-García F.,et al. Removal of phenanthrene from soil by co-cultures of bacteria and fungi pregrown on sugarcane bagasse pith. Bioresour. Technol., 2003, 89: 177~183
    [182] Holt J.G., Krieg N.R., Sneath P.H.A., et al. Bergey’s Manual of Determinative Bacteriology, 9th ed. Williamsand Wilkins, Baltimore, 1994
    [183] Buchanan R.E., Gibbons N.E. Translated by the translation group of Institute of Microbiology Academia Sinica Bergey’s Manual of Determinative Bacteriology (8th)[M]. Beijing: Science Press, 1984
    [184] Gad M., Itoh A., Ikai A. Mapping cell wall polysaccharides of living microbial cells using atomic force microscopy, Cell Biology International, 1997, 21(11): 697~706
    [185] Liu H.F., Jiang D.S., Huang L., et al. Application of atomic force microscopy to evaluate the biocide effects on SRB biofilm. 14th Asian-pacific Corrosion Control Conference, 2006, Shanghai, China. Paper No. P-03-16
    [186] Atlas R.M. Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin, 1995, 31: 178~182

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700