用户名: 密码: 验证码:
典型多环芳烃在红树林湿地模拟系统中的迁移规律及其毒性效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红树林生态系统是热带、亚热带海岸重要的湿地生态系统。河口海岸带生态破坏性开发活动的日益频繁和大量的工农业废水和生活污水的长期直排入近岸海域使红树林湿地遭受极大的破坏。红树林湿地生态系统因生产力高、富含有机质以及强还原性环境条件等特性,使之成为吸收和积累多环芳烃(PolycyclicAromatic Hydrocarbons,PAHs)的重要场所。因此,深入开展红树林湿地中PAHs污染物的环境行为及其对红树林生境的生态效应的研究,具有重要意义。
     菲(Phenanthrene,PHE)和荧蒽(Fluoranthene,FLA)分别是16种优控PAHs中3环和4环芳烃的代表性化合物,已有的文献报道在红树林湿地水域和表层沉积物中含量较高。本论文通过模拟系统试验,对这两种典型PAHs在红树林生态系统各组成:沉积物、水、红树植物和藻类等多介质中的迁移、转化规律及其对红树植物和藻类的毒性效应进行研究,并探讨了红树林生态系统中优势藻种对PAHs的富集、降解。主要内容和结果包括以下几个方面:
     (1)研究砂土-红树植物体系中砂土对菲和荧蒽的吸附,以及菲和荧蒽在红树植物组织(根、茎、叶等)的分配转运。将秋茄(Kandelia candel(Linn.)Druce.)一年生幼苗种植在不同浓度菲(1、5、10、50和100μg·g~(-1))和荧蒽(2、20、40、80和100μg·g~(-1))污染砂土中进行胁迫处理。结果表明PAHs从植物根部向茎叶转运是植物地上部分(茎叶)积累PAHs的重要途径。随着处理浓度的增加和胁迫时间的延长,菲和荧蒽在植物体各组织中的富集量呈逐渐增加的趋势。处理13周后,从富集量来看,植物根、茎、叶中的,菲浓度分别为0.28~4.36μg·g~(-1),0.04~0.84μg·g~(-1)和0.03~0.19μg·g~(-1),荧蒽的浓度分别为0.79~35.76μg·g~(-1),0.07~1.49μg·g~(-1)和0.06~0.13μg·g~(-1)。植物根系对荧蒽的富集量和根富集系数(Rootconcentrationfactor,RCF)均大于菲,而菲的茎富集系数(Shoot concentrationfactor,SCF)、叶富集系数(Leaf concentration factor,LCF)及生物富集系数(Bioconcentration factor,BCF)均比荧蒽的高。秋茄植物有效地去除砂土中菲和荧蒽,平均去除率分别为31.7%和19.7%。
     (2)研究砂土-红树植物体系中不同浓度菲和荧蒽污染砂土对秋茄幼苗的生长量、叶绿素含量和光合作用、根系活力等生理生态指标的影响。结果表明,随着处理浓度的增加和胁迫时间的延长,幼苗根系受毒害严重,表现为肿大、变黑、腐烂。胁迫前6周根系活力随着处理浓度的增大而增大,第9周后则减小;幼苗根系活力随着胁迫时间的延长呈先增加后降低的趋势。PAHs处理浓度和胁迫时间对植株含水量和根冠比无显著影响,却明显降低了秋茄幼苗的根、茎、叶生物量,总生长量较对照组低,干物质积累量减少。增加PAHs浓度和胁迫时间使叶气孔阻力增加,细胞间隙CO_2浓度减少,叶绿素a、b的含量减少,从而降低了秋茄幼苗的净光合速率和蒸腾速率。菲对秋茄幼苗生长及光合作用的影响大于荧蒽,表明秋茄幼苗对不同类型PAHs有不同的耐受性。
     (3)研究了藻培养体系中藻类对PAHs的富集、降解以及PAHs对藻的毒性。藻种采自福建九龙江口红树林区,经分离、纯化和培养,将其暴露于含不同浓度菲和荧蒽的培养液中。结果表明,菲对中肋骨条藻和菱形藻的72h-EC_(50)分别为0.95mg·L~(-1)和0.32 mg·L~(-1),荧蒽的72h-EC_(50)分别为0.17 mg·L~(-1)和0.09 mg·L~(-1)。中肋骨条藻对菲和荧蒽的耐受性比菱形藻强,荧蒽对实验藻种的毒性比菲大。从藻对PAHs的富集、降解来看,胁迫6 h后,藻即快速地吸附和吸收PAHs;胁迫168 h后,中肋骨条藻和菱形藻对菲的降解率分别为16.4%和54.8%,而对荧蒽的降解仅有6.9%和2.7%,表明实验藻种对菲的降解能力强于荧蒽。在复合毒性实验中,荧蒽存在时中肋骨条藻对菲的降解效率更高,表现出复合污染下的协同作用。不同胁迫时间下,PAHs在培养液中的残留量均有变化;实验藻种对PAHs的富集和降解效率也随胁迫时间的不同而表现出差异。
     (4)通过水培体系,对PAHs在水体-植物-藻等多介质中的迁移规律进行研究。发现培养初期水相中的PAHs迅速向菱形藻、红树植物根系等介质分配,水里PAHs的浓度显著降低,在植物-藻体系中的下降幅度最大,植物体系次之,藻体系最小。如第1 d,植物-藻、植物、藻体系水相中菲下降幅度分别为78.5%、66.7%和12.1%;而荧蒽的下降幅度分别为88.8%、84.3%和18.2%;荧蒽在不同体系中的分配比菲快。PAHs对藻的毒害作用在胁迫初期就呈现,表现为藻细胞分裂受到抑制,但第4 d后逐渐恢复;胁迫10 d后水中低浓度PAHs反而有利于藻细胞活力的恢复。菲和荧蒽复合胁迫下,藻细胞的生长受抑制程度更加严重,表现为协同效应。菲或荧蒽单独胁迫下其在藻细胞中的富集量随时间的延长呈逐渐降低的趋势,藻细胞对荧蒽的富集量比对菲的高。菲和荧蒽复合胁迫下,植物-藻体系中菱形藻细胞对PAHs的富集量呈先增加后降低的变化。在菱形藻的作用下,水中菲和荧蒽的降解半衰期(T_(1/2))分别为105.5 h和120.7 h,联合毒性实验中菲和荧蒽的降解半衰期为74.1 h和108.2 h。从植物根吸收菲和荧蒽的含量-时间关系曲线中发现,在0~30 d内,根中菲和荧蒽含量(干重计)均先增加后逐渐降低,且植物-藻体系中根对菲和荧蒽的最大富集量比植物体系根的大。处理30 d后,红树植物的茎(木质部)、叶对培养液中菲和荧蒽有明显的吸收和积累,但其含量远远小于根中的含量;茎叶中菲的含量明显大于荧蒽。
     总之,在红树林湿地生态系统中,秋茄植物根系能吸收沉积物中PAHs并向茎叶转运,优势藻种也可快速地富集、降解水体中PAHs,最终起到修复红树林湿地PAHs污染的作用。另一方面,沉积物PAHs污染会使秋茄幼苗根肿大(通气组织的形成)、变黑、腐烂,根系脱氢酶活性降低,叶绿素合成和光合作用受抑制,总生长量和干物质积累量减少。PAHs对藻类有明显的毒害作用,使其光合色素含量减少,藻类可能成为海洋环境水体中PAHs污染的指示生物。该研究成果将为红树林湿地环境风险评价提供重要的科学依据,也为更好地保护和利用红树林资源提供一定的科技支撑。
The mangrove ecosystem,as one of the most important intertidal estuarinewetlands along tropical and subtropical coastlines,fulfills important ecosystemservice functions.With the increasing development of destructive activities in coastalecosystems,more and more industrial,agricultural wastewater and living sewage aredischarging directly into offshore marine areas.Human activities have seriously led tothe damage of many mangrove wetlands.The unique features of mangroves such ashigh primary productivity,rich organic carbon and anoxic conditions make them alocation for uptake and preservation of PAHs from anthropogenic inputs.It is veryimportant to investigate the behaviors and environmental effects of PAHs compoundsin mangrove swamps.
     Phenanthrene (PHE) and fluoranthene (FLA) were selected from 16 priorityPAHs (US EPA) because they were the main representatives of 3-ring and 4-ringPAHs,showing high concentration in mangrove sediments and water.Therefore,theintention of this study was to provide information of the transport and transformationof typical PAHs in simulation systems containing water,sandy soil,algae and plant.Simultaneously,toxicity of typical PAHs to plant and algae was studied.Accumulation and degradation of typical PAHs by the algae enriched from amangrove aquatic ecosystem were discussed.Some successful results have beenreceived.
     (1) Mangrove plant (Kandelia candel) propagules were obtained from JiulongRiver Estuary Mangrove Nature Reserve,China.K.candel seedlings were cultivatedin PHE or FLA contaminated sandy soil for determining the distribution andtransportation of PHE and FLA in a soil-plant system.The sandy soils withconcentrations of PHE (0,1,5,10,50 and 100μg·g~(-1)) and FLA (0,2,20,40,80 and100μg·g~(-1)) were prepared.The results showed that the translocation of PAHs fromroot to shoot was an important pathway for the PAHs intake by plant above-groundpart.The root,shoot and leaf accumulations of PHE and FLA were enhanced with theincrease of their concentrations in the sandy soil.As the exposing time passed,PHEand FLA concentrations of different plant tissues increased significantly in comparison with the control.PHE concentrations of root,shoot and leaf in 13 weeks'treatment were ranged between 0.28~4.36μg·g~(-1),0.04~0.84μg·g~(-1) and 0.03~0.19μg·g~(-1),respectively.And FLA accumulations of root,shoot and leaf were in the rangeof 0.79~35.76μg·g~(-1),0.07~1.49μg·g~(-1) and 0.06~0.13μg·g~(-1),respectively.Thiswork consistently showed that root accumulation of FLA was greater than that of PHE,as shown by root PAH concentrations or RCF.However,the shoot concentrationfactor (SCF) and the leaf concentration factor (LCF) of PHE were much higher thanthose of FLA.In this research,higher values of BCF were more often noted in thePHE treated pots than in the FLA treated pots.The percentage uptake of PHE andFLA by K.candel from sandy soil was 31.7% and 19.7% in average.
     (2) The influence of increasing concentrations of PHE and FLA on theeco-physiological responses of K.candel,including total biomass,chlorophyll content,photosynthesis and root activity,were investigated.Results were as follows:Afterexposure to PAHs,the roots of K.candel appeared swelling,and then turned blackand rotten.With increasing concentrations of PAHs,the root activity of K.candelseedlings increased gradually before 6 weeks and then decreased after 9 weeks.Withthe prolonging of culture time,the root activity of K.candel seedlings increased atfirst and then decreased;while water content and the root to shoot ratio of K.candelseedling showed no significant difference from the control group at variousconcentrations of PHE and FLA.However,the root biomass and above-groundbiomass of K.candel seedlings decreased significantly in comparison with the control,with an increase of PAHs concentration in the sandy soil.The chlorophyll a,bcontents in the leaves of K.candel decreased moderately with an increase of PAHsconcentration in the sandy soil.Moreover,decrease in stomatal conductance reducedthe input of CO_2,which may be one of the reasons for decreasing net photosyntheticrate of K.candel seedlings leaves.With increasing concentrations of PHE and FLA,decrease in the transpiration rate of K.candel seedling was observed.The effects ofPHE and FLA on the growth of K.candel seedling were similar.However,the toxiceffect of PHE on K.candel was more serious than that of FLA.The tolerance of K.candel to PHE and FLA depended on different physical and chemical properties of thePAHs.
     (3) In the algae culture system,this study focused on the toxic effect and accumulation and degradation of the two typical PAHs on diatoms found in mangrovearea in Jiulongjiang river estuary,Fujian.After separated,purified and cultured,Skeletonema costatum and Nitzschia sp.were exposed to different concentrations ofPHE and FLA,respectively.The results showed that the values of EC_(50) of 72 h forPHE to Skeletonema costatum and Nitzschia sp.were 0.95 mg·L~(-1) and 0.32 mg·L~(-1),respectively.While those of 72h-EC_(50) of FLA on inhibition of the growths ofSkeletonema costatum and Nitzschia sp.were calculated as 0.17 mg·L~(-1) and 0.09mg·L~(-1),respectively.The tolerance of Skeletonema costatum to PHE and FLA wasbetter than that ofNitzschia sp..The toxic effect of FLA on Skeletonema costatum andNitzschia sp.was higher than that of PHE.As for accumulation and degradation ofPAHs by diatoms,the results were as follows:After being added into the media for 6h,PAHs were found in both microalgal species,suggesting that Skeletonema costatumand Nitzschia sp.removed PAHs from the media through rapid adsorption andabsorption.For Skeletonema costatum and Nitzschia sp.,the percentage degradationof PHE reached 16.4% and 54.8% after 168 h incubation,and the degradation of FLAwas only up to 6.9% and 2.7%.The results showed that the degradation of PHE wasfaster than that of FLA.In this study,simultaneous degradation of a mixture of PHEand FLA in f/2 medium by Skeletonema costatum was observed,and a synergisticeffect was found.The percentages of PAHs remaining in the media were significantlydifferent at different incubation time,while the differences also found in the rates ofaccumulation and degradation of PAHs by the two microalgal species.
     (4) Dissipation of PAHs in water in the presence of mangrove plant and algaewas studied.The results indicated an initial rapid uptake of the PAHs by root of K.candel seedlings and Nitzschia sp.,and the corresponding water concentrations oftested PAHs decreased constantly,along with the uptake time.The decrease amplitudeof PAHs in water phase followed the order:plant-algae system>plant system>algaesystem.For example,at about 24 h,the concentrations of PHE in water phase ofplant-algae,plant,algae system decreased the amplitude of 78.5%,66.7% and 12.1%,respectively.While those of FLA decreased the amplitude of 88.8%,84.3% and18.2%,respectively.The results suggested that the dissipation of FLA was faster thanPHE in water of different culture systems.The effects of different PAHs andincubation time on cell densities ofNitzschia sp.were studied.The cells in the treated sample did not show any multiplication in 96 h,whereas those in the control hadsignificant division.As the culture time prolonged,low concentration of PAHs inwater was benefit to recovering the viability of Nitzschia sp..The density of cellstreated with single PAH was higher than that treated with mixed PAHs.The resultssuggested that the joint toxicity of FLA and PHE on Nitzschia sp.exhibited synergism.With the prolonging of culture time,accumulation of single PAH by Nitzschia sp.gradually increased.And FLA accumulated in Nitzschia sp.was higher than that ofPHE.With the treatment of PAH mixture,accumulation of PAHs by Nitzschia sp.increased at first and then decreased in the plant-algae system.And the half-lives (T_(1/2))for PHE and FLA degradation at the presence ofNitzschia sp.were 105.5 h and 120.7h,larger than those in PAH mixture (74.1 h and 108.2 h),respectively.After 30 dtreatment,root accumulation of PAH increased at first and then decreased,and higherPAH accumulations of root were more often noted in the plant-algae system than inthe plant culture systems.Distribution of PAH in different plant tissues wasinvestigated.The results showed that the accumulation of PAH in xylem and leaf wasobviously lower than that in root.Moreover,PHE accumulation in xylem and leaf waslarger than FLA.
     In mangrove wetland ecosystem,root of K.candel absorbed PAHs fromsediment and transmitted to shoot and leaf by transpiration of plant.And dominantmicroalgal species removed PAHs in the water environment through rapid adsorptionand absorption.On the other hand,after exposure to PAHs in sediment,the roots of K.candel appeared swelling,and then turned black and rotten.With increasingconcentrations of PAHs,the root activity,chlorophyll contents and net photosyntheticrate of K.candel decreased.Moreover,the root and above-ground biomass of K.candel decreased significantly in comparison with the control.The toxic effect ofPAHs on microalgal species was observed.The results suggested that microalgaecould be indicator organisms to PAHs pollution in marine environment.The researchprovides reliable information for environmental risk assessment of mangrove wetlandand a scientific support for protection of mangrove resources.
引文
[1]Edward B.B.,Mike A.,Duncan K.Economic valuation of wetlands:A guide for policy makers and planners[M].Ramsar Convention Bureau.Gland,Switzerland,1997.
    [2]林鹏.中国红树林研究进展[J].厦门大学学报.2001,40(2):592-603.
    [3]黄初龙,郑伟民.我国红树林湿地研究进展[J].湿地科学.2004,2(4):303-308.
    [4]FAO.The world's mangroves 1980-2005[R].Food and Agriculture Organization of the United Nations,Rome,2007.
    [5]陆健健.湿地生态学[M].北京:高等教育出版社.2006.
    [6]林鹏.中国红树林生态系[M].北京:科学出版社.1997.
    [7]Ewel K.C.,Twilley R.R.,Ong J.E.Different kinds of mangrove forests provides different goods and services[J].Global Ecol Biogeo Lett,1998,7(1):83-94.
    [8]Cole T.G.,Ewel K.C.,Devoe N.N.Structure of mangrove trees and forests in Micronesia[J].Forest Ecol Manage,1999,117(1-3):95-109.
    [9]Hader D.P.,Worrest R.C.,Kumar H.D.,et al.Effects of increased solar ultraviolet radiation on aquatic ecosystems[J].Ambio Stockholm[AMBIO],1995,24(3):174-180.
    [10]Hader D.P.,Kumar H.D.Smith R.C.,et al.Effects on aquatic ecosystems[J]J.Photochem.Photobiol.B:Biol,1998,46:53-68.
    [11]Falciatore A.,Bowler C.Revealing the molecular secrets of marine diatoms[J].Annu Rev Plant Biol,2002,53:109-130.
    [12]US EPA.Algal assay procedure:Bottle test.National Eutrophication Research Program,Pacific Northwest Water Laboratory,Corvallis Oregon US EPA,1971,82.
    [13]高玉荣.杀虫剂单甲脒对绿藻的毒性研究[J].环境科学学报.1995,15(2):92-98.
    [14]OECD guidelines for testing of chemicals,section 2:Effects on biotic systems-Algae growth inhibition test[M],1984,p.201.
    [15]Afnor.Essai d'inhibition de la croissance des algues d'eau douce avec Scenedesmus subspicatus et Selenastrum capricornutum[S].ISO 8692,Paris:Afnor,1992.
    [16]Wanberg S.A.,Bergstrom B.,Blanck H.,et al.,The relative sensitivity and sensitivity patterns of short-term toxicity tests applied to industrial wastewaters[J].Environ Toxicol Water Qual,1995,10(2):81-90.
    [17]Sacan M.T.,Balcioglu I.A.A case study on algal response to raw and treated effluents from an aluminum plating plant and a pharmaceutical plant[J].Ecotoxicol Environ Saf,2006,64:234-243.
    [18]Reish D.J.,Lemay J.A.Bioassay manual for dredged materials[R].Technical Report,DACW-09-83R-005,US Army Crops of Engineers,Los Angeles District,Los Angeles,CA.1988.
    [19]US EPA.Ecological effects test guidelines,OPPTS 850.5400:Algal toxicity,Tiers Ⅰ and Ⅱ[S].1996.
    [20]APHA,AWWA,WEF.Standard Methods for the Examination of Water and Wastewater,20th ed.APHA,AWWA,WEF,Washington,DC.1998.
    [21]严国安,沈国兴,严雪.农药对藻类的生态毒理学研究Ⅰ:毒性效应[J].环境科学进展.1999,7(5):96-106.
    [22]沈国兴,严国安,彭金量.农药对藻类的生态毒理学研究Ⅱ:毒性机理及其富集与降解[J].环境科学进展.1999,7(6):131-140.
    [23]赵玉艳,蔡磊明.几种藻类毒性试验统计方法的差异[J].农药.2004,43(17):298-299.
    [24]Blumer M.Polycyclic aromatic compounds in nature[J].Sci Am,1976,234:34-35.
    [25]Harvey R.G.Polycyclic Aromatic Hydrocarbons[M].Wiley Press:New York,1996.
    [26]Jacob K.W.Polcyclic aromatic hydrocarbons of environmental and importance[J].F Anal Chem,1986,323:1-10.
    [27]Arcos J.C.,Argus M.G.Chemical induction of Cancer.Structural bases and biological mechanisms[M].Academic Press,New York,1975,Vol.ⅡA.
    [28]Denissenko M.F.,Pao A.,Tang M.,et al.Preferential formation of benzo(a)pyrene adducts at lung cancer mutational hotspots in P53[J].Science,1996,274:430-432.
    [29]Jira W.Benzo(a)pyrene in smoked meat products-Leading substance for the PAH-related carcinogenic potential[J].Fleischwirtschaft,2005,85(9):112-116.
    [30]Keith L.H.,Telliard W.A.Priority pollutants Ⅰ:A perspective view[J].Environ Sci Technol,1979,13(4):416-423.
    [31]Edwards N.T.Polycyclic aromatic hydrocarbons(PAHs)in the terrestrial environment-a review[J].J Environ Qual,1983,12:427-441.
    [32]Zakaria M.P.,Takada H.,Tsutsumi S.,et al.Distribution of polycyclic aromatic hydrocarbons(PAHs)in rivers and estuaries in Malaysia:A widespread input of petrogenic PAHs[J].Environ Sci Technol,2002,36(9):1907-1918.
    [33]Bach H.K.,Rasmussen E.K.,Foster T.Eutrophication modelling of a tidally influenced mangrove area in Bali subject to major dredging and reclamation activities[J].Environ Coastal Regions,1998:251-261.
    [34]Hogarth P.J.The Biology of Mangroves[M].Oxford:Oxford University Press,1999.
    [35]Tam N.F.Y.,Wong Y.S.Mangrove soils as sink for wastewater borne pollutants[J].Hydrobiology,1995,295:231-241.
    [36]Tam N.F.Y.,Wong Y.S.Retention and distribution of heavy metals in mangrove soils receiving wastewater[J].Environ Poll,1996,94(3):283-291.
    [37]Cuong D.T.,Bayen S.,Wurl O.,et al.Heavy metal contamination in mangrove habitats of Singapore[J].Mar Poll Bull,2005,50(12):1732-1738.
    [38]Agoramoorthy G.,Chen F.A,Hsu M.J.Threat of heavy metal pollution in halophytic and mangrove plants of Tamil Nadu,India[J].Environ Poll,2008,155(2):320-326.
    [39]Hoffman E.J.Urban runoff as a source of polycyclic aromatic hydrocarbons to coastal waters[J].Environ Sci Technol,1984,18:580-587.
    [40]Jiries A.G.,Hussein H.H.,Lintelmann J.Polycyclic aromatic hydrocarbon in rain and street runoffin Amman,Jordan[J].J Environ Sci,2003,15(6):848-853.
    [41]Boxall A.B.A.,Maltby L.The effects of motorway runoff on freshwater ecosystems:3.Toxicant conformation[J].Arch Environ Contam Toxicol,1997,33:9-16.
    [42]Kimbrough K.L.,Dickhut R.M.Assessment of polycyclic aromatic hydrocarbon input to urban wetlands in relation to adjacent land use[J].Mar Poll Bull,2006,52(11):1355-1363.
    [43]Boer B.Anomalous pneumatophores and adventitious roots of Avicennia marina(Forssk.)Vierh.Mangroves two years after the 1991 Gulf War oil spill in Saudi Arabia[J].Mar Poll Bull,1993,27:207-211.
    [44]Farias C.O.,Hamacher C.,Wagener A.D.L.R.,et al.Origin and degradation of hydrocarbons in mangrove sediments(Rio de Janeiro,Brazil)contaminated by an oil spill[J].Org Geochem,2008,39(3):289-307.
    [45]卢昌义,林鹏.利用红树植物监测海岸油污染方法初探[J].生态学杂志.1990,9(1):57-59.
    [46]Grant D.L.,Clarke P.J.,Allaway W.G.The response of grey mangrove(Avicennia marina(Forsk.)Vierh.)seedlings to spills of crude oil[J].J Exp Mar Biol Ecol,1993,171:273-295.
    [47]王雪峰,陈桂珠,许夏玲.白骨壤对石油污染的生理生态响应[J].生态学报.2005,25(5):1095-1100.
    [48]Zhang C.G.,Leung K.K.,Wong Y.S.,et al.Germination,growth and physiological responses of mangrove plant(Bruguiera gymnorrhiza)to lubricating oil pollution[J].Environ Experi Bot,2007,60(1):127-136.
    [49]Klekowski E.J.,Corredor J.E.,Morell J.M.,et al.Petroleum pollution and mutation in mangroves[J].Mar Poll Bull,1994,28:166-169.
    [50]Bernard D.,Pascaline H.,Jeremie J.J.Distribution and origin of hydrocarbons in sediments from lagoons with fringing mangrove communities[J].Mar Poll Bull,1996,32:734-739.
    [51]Zheng G.J.,Richardson B.J.Petroleum hydrocarbons and polycyclic aromatic hydrocarbons(PAHs)in Hong Kong marine sediments[J].Chemosphere,1999,38(11):2625-2632.
    [52]Tam N.F.Y.,Ke L.,Wang X.H.,et al.Contamination of polycyclic aromatic hydrocarbons in surface sediments of mangrove swamps[J].Environ Poll,2001,114,(2):255-263.
    [53]Ke L.,Wong T.W.Y.,Wong Y.S.,et al.Fate of polycyclic aromatic hydrocarbon(PAH)contamination in a mangrove swamp in Hong Kong following an oil spill[J].Mar Poll Bull,2002,45:339-347.
    [54]Zhang J.,Cai L.Z.,Yuan D.X.Distribution and sources of polynuclear aromatic hydrocarbons in mangrove surficial sediments of Deep Bay,China[J].Mar Poll Bull,2004,49:479-486.
    [55]Ke L.,Yu K.S.H.,Wong Y.S.,et al.Spatial and vertical distribution of polycyclic aromatic hydrocarbons in mangrove sediments[J].Sci Total Environ,2005,340:177-187.
    [56] Guo C.L., Zhou H.W., Wong Y.S., et al. Isolation of PAH-degrading bacteria from mangrove sediments and their biodegradation potential [J]. Mar Poll Bull 2005, 51: 1054-1061.
    [57] Liang Y., Tse M.F., Young L., et al. Distribution patterns of polycyclic aromatic hydrocarbons (PAHs) in the sediments and fish at Mai Po Marshes Nature Reserve, Hong Kong [J]. Wat Res, 2007,41:1303-1311.
    [58] Tian Y., Liu H.J., Zheng T.L., et al. PAHs contamination and bacterial communities in mangrove surface sediments of the Jiulong River Estuary, China [J]. Mar. Poll. Bull, 2008,57:707-715.
    [59] Connell D. W., Wu R. S. S., Richardson B. J., et al. Occurrence of persistent organic contaminants and related substances in Hong Kong marine areas: An overview [J]. Mar. Poll.Bull, 1998, 36(5): 376-384.
    [60] Yang G.P. Polycyclic aromatic hydrocarbons in the sediments of the South China Sea [J].Environ. Poll, 2000, 108(2): 163-171.
    [61] Zhou J.L., Hong H.S., Zhang Z.L., Maskaoui K., Chen W.Q. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China [J]. Wat Res, 2000, 34: 2132-2150.
    [62] Yuan D.X., Yang D.N., Wade T. L., et al. Status of persistent organic pollutants in the sediment from several estuaries in China [J]. Environ Poll, 2001, 114(1): 101-111.
    [63] Gustafson K.E., Dickhut R.M. Distribution of polycyclic aromatic hydrocarbons in Southern Chesapeake Bay surface water: evaluation of three methods for determining freely dissolved water concentrations [J]. Environ Toxicol Chem, 1997, 16: 452-461.
    [64] Law R.J., Dawes V.J., Woodhead R.J., Matthiessen P. Polycyclic aromatic hydrocarbons (PAH) in seawater around England and Wales [J]. Mar Poll Bull, 1997, 34: 306-322.
    [65] Fernandes M.B., Sicre M.A., Boireau A., et al. Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its estuary [J]. Mar Poll Bull, 1997, 34: 857-867.
    [66] Maldonado C, Bayona J.M., Bodineau L. Sources, distribution and water column processes of aliphatic and polycyclic aromatic hydrocarbons in the Northwestern Black Sea water [J].Environ Sci Technol, 1999, 33:2693-2702.
    [67] Zhou J.L., Maskaoui K. Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China [J]. Environ Poll, 2003, 121: 269-281.
    [68] Luo X.J., Mai B.X., Yang Q.S., et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China [J]. Mar Poll Bull, 2004,48(11-12): 1102-1115.
    [69] Manodori L., Gambaro A., Piazza R., et al. PCBs and PAHs in sea-surface microlayer and sub-surface water samples of the Venice Lagoon (Italy) [J]. Mar Poll Bull, 2006, 52(2):184-192.
    [70] Cailleaud K., Forget-Leray J., Souissi S., et al. Seasonal variations of hydrophobic organic contaminant concentrations in the water-column of the Seine Estuary and their transfer to a planktonic species Eurytemora affinis (Calanoida, copepoda). Part 1: PCBs and PAHs [J].Chemosphere, 2007, 70(2): 270-280.
    [71] Grasset F.B., Grasset S.B., Safferman S.I. Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests [J]. Chemosphere, 1993, 26 (7): 1365-1374.
    [72] Lewis M.A. Use of freshwater plants for phytotoxicity testing: A review [J]. Environ Poll,1995, 87, (3): 319-336.
    [73] Kummerova M., Slovak L., Holoubek I. Growth response of spring barley to short- or long-period exposures to fluoranthene [J]. Rostlinna Vyroba, 1997,43(5): 209-215.
    [74] Kummerova M., Kmentova E., Koptikova J. Effect of fluoranthene on growth and primary processes of photosynthesis in faba bean and sunflower [J]. Rostlinna Vyroba, 2001, 47(8):344-351.
    [75] Henner P., Schiavon M, Druelle V., et al. Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination [J]. Org Geochem, 1999,30(8): 963-969.
    [76] Marwood C.A., Solomon K.R., Greenberg B.M. Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons [J]. Environ Toxicol Chem, 2001, 20: 890-898.
    [77] Sverdrup L.E., Krogh P.H., Nielsen T., et al. Toxicity of eight polycyclic aromatic compounds to red clover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba) [J]. Chemosphere, 2003, 53: 993-1003.
    [78] Alkio M., Tabuchi T.M., Wang X.C., et al. Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis included growth inhibition and hypersensitive response-like symptoms [J]. J Experi Bot, 2005, 56(421): 2983-2994.
    [79] Baldyga B., Wieczorek J., Smoczynski S., et al. Pea plant response to anthracene present in soil [J]. Polish J Environ Studies, 2005, 14(4): 397-401.
    [80] Lepsis J., Blanke M.M. Environmental effects, phytotoxicity and breakdown of tar oil from impregnated tree stakes [C]. Proceedings of the Eighth International Symposium on Canopy,Rootstocks and Environmental Physiology in Orchard Systems. Book Series: Acta Horticulturae, 2007, 732: 653-657.
    [81] Oleszczuk P. Phytotoxicity of municipal sewage sludge composts related to physico-chemical properties, PAHs and heavy metals [J]. Ecotoxicol Environ Saf, 2008, 69(3): 496-505.
    [82] Wittig R., Ballach H.J., Kuhn A. Exposure of the roots of Populus nigra L. cv. Loenen to PAHs and its effect on growth and water balance [J]. Environ Geochem Health, 2003, 10:235-244.
    [83] Flocco C.G., Lobalbo A., Carranza M.P., et al. Some physiological, microbial, and toxicological aspects of the removal of phenanthrene by hydroponic cultures of alfalfa (Medicago sativa L.) [J]. Int J Phytoremed, 2002, 4(3): 169-186.
    [84]刘建武,林逢凯,王郁.多环芳烃(萘)污染对水生植物生理指标的影响[J].华东理工大学学报. 2002, 28(5): 520-524.
    [85] Smreczak B., Maliszewska-Kordybach B. Seeds germination and root growth of selected plants in PAH contaminated soil [J]. F Environ Bull, 2003, 12(8): 946-949.
    [86] Song Y.F., Gong P., Zhou Q.X., et al. Phytotoxicity assessment of phenanthrene, pyrene and their mixtures by a soil-based seedling emergence test [J]. J Environ Sci, 2005, 17(4):580-583.
    [87] International Standard Organization (ISO 11269-2). Soil quality-determination of the effects of pollutants on soil flora-Part 2: effects of chemicals on the emergence and growth of higher plant [S], 1995.
    [88] Eom I.C., Rast C, Veber A.M., et al. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil [J]. Ecotoxicol Environ Saf, 2007, 67(2): 190-205.
    [89] Chouychai W., Thongkukiatkul A., Upatham S., et al. Phytotoxicity assay of crop plants to phenanthrene and pyrene contaminants in acidic soil [J]. Environ Toxicol, 2007, 22(6):597-604.
    [90] Wieczorek J.K., Wieczorek Z.J. Phytotoxicity and accumulation of anthracene applied to the foliage and sandy substrate in lettuce and radish plants [J]. Ecotoxicol Environ Saf, 2007,66(3): 369-377.
    [91] Cofield N., Banks M.K., Schwab A.P. Lability of polycyclic aromatic hydrocarbons in the rhizosphere [J]. Chemosphere, 2008, 70(9): 1644-1652.
    [92] Smith M.J., Flowers T.H., Duncan H.J., et al. Effects of polycyclic aromatic hydrocarbons on germination and subsequent growth of grasses and legumes in freshly contaminated soil and soil with aged PAHs residues [J]. Environ Poll, 2006, 141(3): 519-525.
    [93] Reynoso-Cuevas L., Gallegos-Martinez M.E., Cruz-Sosa F., et al. In vitro evaluation of germination and growth of five plant species on medium supplemented with hydrocarbons associated with contaminated soils [J]. Biores Technot, 2008, 99(14): 6379-6385.
    [94] Maliszewska-Kordybach B., Smreczak B. Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs) - Effect on plants [J]. Environ Technol, 2000,21(10): 1099-1110.
    [95] Xu S.Y., Chen Y.X., Wu W.X., et al. Protein changes in response to pyrene stress in maize (Zea mays L.) leaves [J]. J Integr Plant Biol, 2007,49 (2): 187-195.
    [96] De Voogt P., VanHattum P.B., Leonards P., et al. Bioconcentration of polycyclic aromatic hydrocarbons in the guppy (Poecilia reticulate) [J]. Aquat Toxicol, 1991,20: 169-194.
    [97] Christensen A.M., Nakajima F., Baun A. Toxicity of water and sediment in a small urban river (Store Vejlea, Denmark) [J]. Environ Poll, 2006, 144(2): 621-625.
    [98] Soto C, Hellebust J.A., Hutchinson T.C. Effect of naphthalene and aqueous crude oil extracts on the green flagellate Chlamydomonas angulosa I Growth [J]. Canadian J Botany, 1975, 53:109-117.
    [99] Schoeny R., Cody T., Warshawsky D., et al. Metabolism of mutagenic polycyclic aromatic hydrocarbons by photosynthetic algal species [J]. Mut Res, 1988, 197: 289-302.
    [100] Warshawsky D., Cody T., Radike M. Biotransformation of benzo(a)pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light [J]. Chemico-Biological Interactions, 1995, 97:131-148.
    [101] Lei A.P., Wong Y.S., Tam N.F.Y. Removal of pyrene by different m icroalgal species [J].Wat Sci Technol, 2002,46(11-12): 195-201.
    [102]Baun A., Justesen K.B., Nyholm N. Algal tests with soil suspensions and elutriates: A comparative evaluation for PAH-contaminated soils [J]. Chemosphere, 2002,46:251-258.
    [103]Djomo J. E., Dauta A., Ferrier V., et al. Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic sediments on Scenedesmus subspicatus [J]. Wat Res, 2004, 38(7): 1817-1821.
    [104]Nayar S., Goh B.P.L., Chou L.M. Environmental impacts of diesel fuel on bacteria and phytoplankton in a tropical estuary assessed using in situ mesocosms [J]. Ecotoxicol, 2005,14: 397-412.
    [105] Torres M.A., Barros M. P., Campos S. C.G. et al. Biochemical biomarkers in algae and marine pollution: A review [J]. Ecotoxicol Environ Saf, 2008, 71: 1-15.
    [106] Bennett A., Bianchi T.S., Means J.C., et al. The effects of polycyclic aromatic hydrocarbon contamination and grazing on the abundance and composition of microphytobenthos in salt marsh sediments (Pass Fourchon, LA) -Ⅰ. A microcosm experiment [J]. J Exp Mar Biol Ecol,1999,242:1-20.
    [107]Rimet F., Ector L., Dohet A., et al. Impacts of fluoranthene on diatom assemblages and frustule morphology in indoor microcosms [J]. Vie Et Milieu-Life and Environ, 2004,54(2-3): 145-156.
    [108]Marwood C. A., Smith R. E. H., Solomon K. R., et al. Intact and photomodified polycyclic aromatic hydrocarbons inhibit photosynthesis in natural assemblages of Lake Erie phytoplankton exposed to solar radiation [J]. Ecotoxicol Environ Saf, 1999,44: 322-327.
    [109]Duxbury C.L., Dixon D.G., Greenberg B.M. Effects of simulated solar radiation on the bioaccumulation of polycyclic aromatic hydrocarbons by the duckweed Lemna gibba [J].Environ Toxicol Chem, 1997, 16: 1739-1748.
    [110] Kelly S.A., Havrilla CM., Brady T.C, et al. Oxidative stress in toxicology: established mammalian and emerging piscine model systems [J]. Environ Health Perspect, 1998, 106:375-384.
    [111]Armbrust E.V. The genome of the diatom Thalassiosira pseudonana: ecology, evolution,and metabolism [J]. Science, 2004, 306: 79-86.
    [112]Bopp S.K., Lettleri T. Gene regulation in the marine diatom Thalassiosira pseudonana upon exposure to polycyclic aromatic hydrocarbons (PAHs) [J]. Gene, 2007, 396(2): 293-302.
    [113] Hutchinson T.C., Hellebust J.A., Mackay D., et al. Relationship of hydrocarbon solubility to toxicity in algae, cellular membrane effects [C]. In: Oil Spill Conference American Petroleum Institute, Washington DC, 1979. p. 541.
    [114]Lacaze J.C., Gutierrez P., Ducreux J. Toxicite des extraits aromatiques hydrosolubles issus de deux petroles et d'une coupe petroliere. Effets sur l'activite photosynthetique de la diatomee marine Phaeodactylum tricornutum et sur l'ingestion de cette algue par le Copepode Trigriopus brevicornis [J]. Sci. L'Eau 1987, 6: 415-33.
    [115] Geyer H., Viswanathan R., Freitag D., et al. Relationship between water solubility of organic chemicals and their bioaccumulation by the alga Chlorella [J]. Chemosphere, 1981, 10:1307-1313.
    [116] Vysotskaya N.A., Bortun L.N. The mechanism of radiation induced homolytic substitution of condensed aromatic hydrocarbons in aqueous solutions [J]. Rad Phys Chem, 1984, 23(6):731-738.
    [117]Zepp R.G., Hoigne J., Bader H. Nitrate-induced photooxidation of trace organic-chemical in water [J]. Environ Sci Technol, 1987,21(5): 443-450.
    [118]Mekenyan O.G., Ankley G.T., Veith G.D., et al. QSARs for photoinduced: acute lethality of polycyclic aromatic hydrocarbons to Daphnia magna [J]. Chemosphere, 1994, 28(3):567-582.
    [119]El-Alawi Y.S., Huang X.D., Dixon D.G., et al. Quantitative structure-activity relationship for the photoinduced toxicity of polycyclic aromatic hydrocarbons to the luminescent bacteria Vibrio fischeri [J]. Environ Toxicol Chem., 2002, 21(10): 2225-2232.
    [120]Ribeiro F.A.D., Ferreira M.M.C. QSAR model of the phototoxicity of polycyclic aromatic hydrocarbons [J]. J Mol Struct-Theochem, 2005, 719(1-3): 191-200.
    [121]Dirnitriou-Christidis P., Autenrierh R.L., Abraham M.H. Quantitative structure-activity relationships for kinetic parameters of polycyclic aromatic hydrocarbon biotransformation [J]. Environ Toxicol Chem, 2008, 27(7): 1496-1504.
    [122] Huang X.D., Dixon D.G., Greenberg B.M. Impacts of UV radiation and photomodification on the toxicity of PAHs to the higher plant Lemna gibbs (Duckweed) [J]. Environ Toxicol Chem, 1993, 12: 1067-1077.
    [123] Huang X.D., Dixon D.G., Greenberg B.M. Increased polycyclic aromatic hydrocarbon toxicity following their photomodification in natural sunlight: Impacts on the duckweed Lemna Gibba L. G-3 [J]. Ecotoxico Environ Saf, 1996, 32 (2): 194-200.
    [124] Arfsten D.P., Schaeffer D.J., Mulveny D.C. The effects of near ultraviolet radiation on the toxic effects of polycyclic aromatic hydrocarbons in animals and plants: a review [J].Ecotoxicol Environ Saf, 1996, 33: 1-24.
    [125] Wuertz S., Miller C.E., Pfister R.M., et al. Tributyltin-resistant bacteria from estuarine and freshwater sediments [J]. Appl Environ Microbiol, 1991, 57(10): 2783-2789.
    [126]Grote M., Schuurmann G., Altenburger R. Modeling photoinduced algal toxicity of polycyclic aromatic hydrocarbons [J]. Environ Sci Technol, 2005, 39,4141-4149.
    [127] Pelletier E., Sargian P., Payet J., et al. Ecotoxicological effects of combined UVB and organic contaminants in coastal waters: A review [J]. Photochem Photobiol, 2006, 82:981-993.
    [128]Petersen D.G., Reichenberg F., Dahllof I. Phototoxicity of pyrene affects benthic algae and bacteria from the arctic [J]. Environ Sci Technol, 2008,42(4): 1371-1376.
    [129] Chen C.Y., Yan Y.K., Yang C.F. Toxicity assessment of polycyclic aromatic hydrocarbons using an air-tight algal toxicity test [J]. Wat Sci Technol, 2006, 54 (11-12): 309-315.
    [130] 沈宏,周培疆.环境有机污染物对藻类生长作用的研究进展[J].水生生物学报.2002, 26(5): 529-535.
    [131 Lei A.P. Properties of polycyclic aromatic hydrocarbons and their toxicity on algae [J]. J Shen Univ Sci Eng, 2004, 21(3): 217-223.
    [132]Colleran E. Uses of bacteria in bioremediation [M]. In: Sheehan D, editor. Bioremediation protocols. Totowa, NJ: Humana Press, 1997. p. 3-5.
    [133]Bollag J.M., Mertz T., Otjen L. Role of microorganisms in soil bioremediation. In: Anderson TA, Coats JR, editors. Bioremediation through rhizosphere technology[M]. Washington, DC:Amer Chem Soci, 1994. p. 2-10.
    [134]Schnoor J.L., Licht L.A., McCutcheon S.C., Wolfe N.L., Carreira L.H. Phytoremediation of organic and nutrient contaminants [J]. Environ Sci Technol, 1995, 29: 318-323.
    [135] Cunningham S.D., Ow D.W. Promises and prospects of phytoremediation [J]. Plant Physiol, 1996,110:715-719.
    [136]Bakker M.I., Casado B., Koerselman J.W. Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery [J]. Sci Total Environ, 2000, 263: 91-100.
    [137]Riederer M. Estimating partitioning and transport of organic chemicals in the foliage/atmosphere system: discussion of a fugacity-based model [J]. Environ Sci Technol,1990,24:829-837.
    [138]Smith K.E.C., Jones K.C. Particles and vegetation: implications for the transfer of particle-bound organic contaminants to vegetation [J]. Sci Total Environ, 2000, 246:207-236.
    [139]Mclachlan M.S. Bioaccumulation of hydrophobic chemicals in agricultural food chains [J].Environ Sci Technol, 1996, 30: 252-259.
    [140]Fismes J., Perrin-Ganier C, Empereur-Bissonnet P. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils [J].J Environ Qual, 2002, 31: 1649-1656.
    [141]Oleszczuk P., Baran S. Polycyclic aromatic hydrocarbons content in shoots and leaves of willow (salix viminalis) cultivated on the sewage sludge-amended soil [J]. Water Air Soil Poll, 2005, 168:91-111.
    [142]Hulster A., Muller J.F. Soil-plant transfer of polychlorinated dibenzo-pdioxins and diberizofurans to vegetables of the cucumber family (cucubitaceae) [J]. Environ Sci Technol,1994,28:1110-1115.
    [143] Bell R.M. Higher plant accumulation of organic pollutants from soils [S]. Cincinnati: United States Environmental Protection Agency. EPA/600/R-92/138, 1992
    [144] Collins C, Fryer M., Grosso A. Plant uptake of non-ionic organic chemicals [J]. Environ Sci Technol, 2006,40:45-52.
    [145]Paterson S., Mackay D., Tam D., et al. Uptake of organic chemicals by plants: a review of processes, correlations and models [J]. Chemosphere, 1990, 21: 297-331.
    [146]McLachlan M.S., Welsch-Pausch K., Tolls J. Field validation of a model of the uptake of gaseous SOC in Lolium multiflorum (Ryegrass) [J]. Environ Sci Technol, 1995, 29:1998-2004.
    [147] Barber J.L., Thomas G.O., Kerstiens G., et al. Current issues and uncertainties in the measurement and modeling of air-vegetation exchange and within-plant processing of POPs [J]. Environ Poll, 2004, 128: 99-138.
    [148] Wild S.R., Jones K.C. Organic chemicals entering agricultural soils in sewage sludges:screening for their potential to transfer to crop plants and livestock [J]. Sci Total Environ,1992, 119:85-119.
    [149]Ewald G., Bremle G., Karlsson A. Differences between Bligh and Dyer and Soxhlet extractions of PCBs and lipids from fat and lean fish muscle: implications for data evaluation [J]. Mar Poll Bull, 1998, 36: 222-230.
    [150]Tao S., Jiao X.C., Chen S.H. Accumulation and distribution of polycyclic aromatic hydrocarbons in rice (Oryza sativa) [J]. Environ Poll, 2006, 140 (3): 406-415.
    [151] Lin H., Tao S., Zuo Q. Uptake of polycyclic aromatic hydrocarbons by maize plants [J].Environ Poll, 2007, 148:614-619.
    [152] Su Y.H., Zhu Y.G. Transport mechanisms for the uptake of organic compounds by rice (Oryza sativa) roots [J]. Environ Poll, 2007, 148: 94-100.
    [153]De Nicola F., Maisto G., Prati M.V., et al. Leaf accumulation of trace elements and polycyclic aromatic hydrocarbons (PAHs) in Quercus ilex L [J]. Environ Poll, 2008, 153(2):376-383.
    [154]Briggs G.G., Brotnilow R.H., Evans A.A. Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley [J]. Pestic Sci, 1982, 13: 495-504.
    [155]Briggs G.G., Bromilow R.H., Evans A.A., et al. Relationships between lipophilicity and the distribution of non-ionized chemicals in barley shoots following uptake by the roots [J].Pestic Sci, 1983, 14:492-500.
    [156] Polder M.D., Hulzebos E.M., Jager D.T. Validation of models on uptake of organic chemicals by plant roots [J]. Environ Toxicol Chem, 1995, 14: 1615-1623.
    [157]Burken J.G., Schnoor J.L. Predictive relationships for uptake of organic contaminants by hybrid poplar trees [J]. Environ Sci Technol, 1998, 32: 3379-3385.
    [158]Simonich S.L., Hites R.A. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere [J]. Nature, 1994 a, 370, 49-51.
    [159] Chiou C.T., Sheng G.Y., Manes M. A partition-limited model for the plant uptake of organic contaminants from soil and water [J]. Environ Sci Technol, 2001, 35: 1437-1444.
    [160] Gao Y.Z., Zhu L.Z. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils [J]. Chemosphere, 2004, 55: 1169-1178.
    [161] Wang M., Jones K.C. Uptake of chlorobenzenes by carrots from spiked and sewage sludge-amended soil [J]. Environ Sci Technol, 1994, 28: 1260-1267.
    [162]Petersen L.S., Larsen E.H., Larsen P.B., et al. Uptake of elements and PAHs by fruit and vegetables from contaminated soils [J]. Environ Sci Technol, 2002, 36: 3057-3063.
    [163]Trapp S., McFarlane J.C. Plant Contamination: Modelling and Simulation of Organic Chemical Processes [M]. Lewis Publishers, Boca Raton, FL, USA, 1995.
    [164]Trapp S., Matthies M., Scheunert I. Modeling the bioconcentration of organic chemicals in plants [J]. Environ Sci Technol, 1990, 24: 1246-1252.
    [165] Ryan J.A., Bell R.M., Davidson J.M. Plant uptake of no-ionic organic chemicals from soils [J]. Chemosphere, 1988, 17: 2299-2323.
    [166] Wild E., Dent J., Thomas G.O., et al. Direct observation of organic contaminant uptake,storage, and metabolism within plant roots [J]. Environ Sci Technol, 2005, 39: 3695-3702.
    [167]Simonich S.L., Hites R.A. Organic pollution accumulation in vegetation [J]. Environ Sci Technol. 1995, 29: 2905-2913.
    [168]Duarte-Davidson R., Jones K.C. Screening the environmental fate of organic contaminants in sewage sludge applied to agricultural soils: 2. the potential for transfers to plants and grazing animals [J]. Sci Total Environ, 1996, 185: 59-70.
    [169]Kipopoulou A.M., Manoli E., Samara C. Bioconcentration of PAHs in vegetables grown in an industrial area [J]. Environ Poll, 1999, 106: 369-380.
    [170] Fryer M.E., Collins CD. Model intercomparation for the uptake of organic chemicals by plants [J]. Environ Sci Technol, 2003, 37: 1617-1624.
    [171]Broman D.,N(?)f C.,Lunbergh I.,et al.An in situ study on the distribution,biotransformation and flux of polycyclic aromatic hydrocarbons(PAHs)in an aquatic food chain(Seston-Mytilus edulis L.-Somateria mollissima L.)from the Baltic Sea:an ecological perspective[J].Environ Toxicol Chem,1990,9:429-442.
    [172]Sarah J.T.,Ronald B.C.,Stefan S.Biotransformation of naphthalene and diaryl ethers by green microalgae[J].Biodegrad,2002,13:229-238.
    [173]周启星.生态毒理学[M].北京:科学出版社.2004.
    [174]Juhasz A.L.,Naidu R.Bioremediation of high molecular weight polycyclic aromatic hydrocarbons:a review of the microbial degradation of benzo(a)pyrene[J].Int Biodexterior Biodegrad,2000,45:57-88.
    [175]Tam N.F.Y.,Chong A.M.Y.,Wong Y.S.Removal of tributyltin(TBT)by live and dead microalgal cells[J].Mar Poll Bull,2002,45:362-371.
    [176]Mallick N.Biotechnological potential of chlorella vulgaris for accumulation of Cu and Ni from single and binary metal solutions[J].World J Microbiol Biotechnol,2003,19:695-701.
    [177]Casserly D.M.,Davis E.M.,Downs T.D.,et al.Sorption of organics by Selenastrum capricornutum[J].Wat Res,1983,17(11):1591-1594.
    [178]Swackhamer D.L.,Skoglund R.S.Bioaccumulation of PCBs by algae:Kinetics versus equilibrium[J].Environ Toxicol Chem,1993,12:831-838.
    [179]Semple K.T.,Cain R.B.,Schmidt S.MiniReview:biodegradation of aromatic compounds by microalgae[J].FEMS Microbiol Lett,1999,170:291-300.
    [180]Lei A.P.,Hu Z.L.,Wong Y.S.,et al.Removal of fluoranthene and pyrene by different microalgal species[J].Bioresource Technol,2007,98(2):273-280.
    [181]雷安平,胡章立,黄玉山.藻类对多环芳香烃(PAHs)的富集和代谢[J].武汉植物学研究.2005,23(3):291-298.
    [182]Canton J.H.,van Esch G.J.,Greve P.A.,et al.Accumulation and elimination of α-hexachlorocy-clohexane(α-HCH)by the marine algae Chlamydomonas and Dunaliella[J].Wat Res,1977,11:111-115.
    [183]Lederman T.C.,Rhee G.Y.Bioconcentration of a hexachloro-biphenyl in Great Lakes plank tonic algae[J].Can J Fish Aquat Sci,1982,39:380-387.
    [184]Kirso U.,Irha N.Role of algae in fate of carcinogenic polycyclic aromatic hydrocarbons in the aquatic environment[J].Ecotoxicol Environ Saf,1998,41(1):83-89.
    [185]Lei A.P.,Wong Y.S.,Tam N.F.Y.Pyrene-induced changes of Glutath-.ione S-transferase activities in different microalgal species[J].Chemosphere,2003,50(3):293-301.
    [186]Lee,R.E.Phycology[M].Cambridge University Press,Cambridge.1999.
    [187]Tang J.X.,Hoagland K.D.,Siegeried B.D.Uptake and bioconcentration of atrazine by selected freshwater algae[J].Environ Toxicol Chem,1998,17:1085-1090.
    [188]Sijm D.T.H.M., Middelkoop J., Vrisekoop K. Algal density dependent bioconcentration factors of hydrophobic chemicals [J]. Chemosphere, 1995, 31 (9): 4001-4012.
    [189]Sijm D.T.H.M., Broersen K.W., de Roode D.F., et al. Bioconcentration kinetics of hydrophobic chemicals in different densities of Chlorella pyrenoidosa [J]. Environ Toxicol Chem, 1998, 17(9): 1695-1704.
    [190] Chan S.M.N., Luan T.G., Wong M.H. Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum [J]. Environ Toxicol Chem, 2006, 25(7):1772-1779.
    [191]Sepic E., Bricelj M., Leskovsek H. Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms [J]. Chemosphere, 2003, 52(7): 1125-1133.
    [192] Lei A.P. Toxicity of pyrene and its bioconcentration and metabolism by microalgae [D].Hong Kong: City University of Hong Kong, 2003.
    [193]Liu Y., Luan T.G., Lu N.N., et al. Toxicity of fluoranthene and its biodegradation by Cyclotella caspia Alga [J]. J Integr Plant Biol, 2006,48(2): 169-180.
    [194] Hong Y.W., Yuan D.X., Lin Q.M., et al. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem [J]. Mar Poll Bull, 2008, 56(8): 1400-1405.
    [195] Yu S.H., Ke L., Wong Y.S. Degradation of polycyclic aromatic hydrocarbons (PAHs) by a bacterial consortium enriched from mangrove sediments [J]. Environ Int, 2005, 31:149-154.
    [196]Potin O., RaWn C, Veignie E. Bioremediation of aged polycyclic aromatic hydrocarbons (PAHs)-contaminated soil by filamentous fungi isolated from the soil [J]. Int Biodeteri Biodegrad, 2004, 54:45-52.
    [197] Tang L., Tang X.Y., Zhu Y.G. Contamination of polycyclic aromatic hydrocarbons (PAHs) in urban soils in Beijing, China [J]. Environ Int, 2005, 31: 822-828.
    [198]Tiehm A., Fritzsche C. Utilization of solubilized and crystalline mixtures of polycyclic aromatic hydrocarbons by a Mycobacterium sp. [J]. App Microbiol Biotechnol, 1995, 42:964-968.
    [199]McNally D.L., Mihelcic J.R., Lueking D.R. Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions [J]. Chemosphere,1999,38: 1313-1321.
    [200]Bouchez M., Blanchet D., Vandecasteele J.P. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism [J]. App Microbiol Biotechnol, 1995, 43: 156-164.
    [201]Stringfellow W.T., Aitken M.D. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads [J]. Appl Environ Microbiol, 1995, 61: 357-362.
    [202]Bell J.P.,Tsezos M.The selectivity of biosorption of hazardous organics by microbial biomass[J].War Res,1988,22:1245-1251.
    [203]Dean-Ross D.,Moody J.,Cerniglia C.E.Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment[J].FEMS Microbiology Ecology,2002,41:1-7.
    [204]Cerniglia C.E.Biodegradation of polycyclic aromatic hydrocarbon:a review[J].Biodegradation,1992,(3):351-368.
    [205]M(?)ncnerov(?)D.,Augustin J.Fungalmetabo lism and detoxification of polycyclic aromatic hydrocarbons:a review[J].Bioresour Technol,1994,48:97-106.
    [206]Warshawsky D.,Radike M.,Jayasimhulu K.,et al.Metabolism of benzo(a)pyrene by a dioxygenase enzyme system of the freshwater green alga Selenastrum capricornutum[J].Biochem Biophys Rescommun,1988,152:540-544.
    [207]Warshawsky D.,Keenan T.H.,Reilman R.,et al.Conjugation of benzo(a)pyrene metabo lites by freshwater green alga Selenastrum capricornutum[J].Chem Biol Interact,1990,74:93-105.
    [208]Zhong Y.,Luan T.G.,Zhou H.W.,et al.Metabolite production in degradation of pyrene alone or in a mixture with another polycyclic aromatic hydrocarbon by Mycobacterium sp.[J].Environ Toxicol Chem,2006,25(11):2853-2859.
    [209]张军.典型红树林湿地中多环芳烃的含量、来源和迁移研究[D].厦门大学博士学位论文,2006.
    [210]刘敏,许世远著.长江口潮滩POPs环境生物地球化学过程与生态风险[M].中国环境科学出版社.2005.
    [211]Golomb D.,Barry E.,Fisher G.,et al.Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters[J].Atmos Environ,2001,35(36):6245-6258.
    [212]Halsall C.J.,Sweetman A.J.,Barrie L.A.,et al.Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic[J].Atmos Environ,2001,35(2):255-267.
    [213]Primbs T.,Simonich S.,Schmedding D.,et al.Atmospheric Outflow of Anthropogenic Semivolatile Organic Compounds from East Asia in Spring 2004[J].Environ Sci Technol,2007,41:3551-3558.
    [214]Primbs T.,Piekarz A.,Wilson G.,et al.Influence of Asian and Western United States urban areas and fires on the atmospheric transport of polycyclic aromatic hydrocarbons,polychlorinated biphenyls,and fluorotelomer alcohols in the Western United States[J].Environ Sci Technol,2008,42:6385-6391.
    [215]Connell D.W., Miller G.J. Petroleum hydrocarbons in aquatic ecosystems behavior and effects of sub-lethal concentrations: Part I [C]. CRC critical Rev Environ Control, 1981, 11:37-104.
    [216] Forstner H.J.L., Flagan H.C. Secondary organic aerosol from photooxidation aromatic hydrocarbons: molecular composition [J]. Environ Sci Technol, 1997, 31:1345-1358.
    [217]Chiou C.T., Shoup T.D., Porter P.E. Mechanistic roles of humans and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions [J]. Org Geochem, 1985,8:9-14.
    [218]Loske D., H(?)ttermann A., Majerczyk A., et al. Use of white rot fungi for the clean-up of contaminated sites [R]. In: Coughlan MP, Collaco (eds.). Advances in biological treatment of lignocellulosic materials, Elsevier Press: London, 1990: 311-321.
    [219] Thomas S., Poeton H., David S., et al. Biodegradation of polyaromatic hydrocarbons be marine bacteria: effect of solid phase on degradation kinetics [J]. Wat Resource, 1999, 33(3):868-880.
    [220] Fingerman M., Nagabhushanam R. Bioremediation of aquatic and terrestrial ecosystems [M]. Science Publishers. New Hampshire 03748, USA, 2005.
    [221] Torres M.A., Barros M. P., Campos S.C.G., et al. Biochemical biomarkers in algae and marine pollution: A review [J]. Ecotoxicol Environ Saf, 2008, 71: 1-15.
    [222]Pe'rez-Ruzafa A., Navarro S., Barba A., et al. Presence of pesticides throughout trophic compartments of thefood web in the Mar Menor Lagoon (SE Spain) [J]. Mar Poll Bull, 2000,40: 140-151.
    [223]Binelli A., Provini A. The PCB pollution of Lake Iseo (N. Italy) and the role of biomagnification in the pelagic food web [J]. Chemosphere, 2003, 53: 143-151.
    [224] Van der Oost R., Beyer J., Vermeulen N.P.E. Fish bioaccumulation and biomarkers in environmental risk assessment: a review [J]. Environ Toxicol Pharmacol, 2003, 13: 57-149.
    [1]Van der Oost R.,Beyer J.,Vermeulen N.P.E.Fish bioaccumulation and biomarkers in environmental risk assessment:a review[J].Environ Toxicol Pharmacol,2003,13(2):57-149.
    [2]Kalf D.F.,Crommentuijn T.,Van de Plassche E.J.Environmental quality objectives for 10 polycyclic aromatic hydrocarbons(PAHs)[J].Ecotoxicol Environ Saf,1997,36(1):89-97.
    [3]林鹏.红树林[M].北京:海洋出版社,1984.
    [4]林鹏,傅勤.中国红树林环境生态及经济利用[M].北京:高等教育出版社,1995.
    [5]Paterson S.,Mackay D.,Tam D.,et al.Uptake of organic chemicals by plants:a review of processes,correlations and models[J].Chemosphere,1990,21:297-331
    [6]Banks M.K.,Lee E.,Schwab A.P.Evaluation of dissipation mechanisms for benzo(a)pyrene in the rhizosphere of tall fescue[J].J Environ Qual,1999,28:294-298.
    [7]Ling W.T.,Gao Y.Z.Promoted dissipation of phenanthrene and pyrene in soils by amaranth(Amaranthus tricolor L.)[J].Environ Geol,2004,46(5):553-560.
    [8]Krutz L.J.,Beyrouty C.A.,Gentry T.J.,et al.Selective enrichment of a pyrene degrader population and enhanced pyrene degradation in Bermuda grass rhizosphere[J].Biol Fertil Soils,2005,41(5):359-364.
    [9]Chen Y.C.,Banks M.K.,Schwab A.P.Pyrene degradation in the rhizosphere of tall fescue(Festuca arundinacea)and switchgrass(Panicum virgatum L.)[J].Environ Sci Technol,2003,37:5778-5782.
    [10]Chaineau C.H.,Morel J.L.,Oudot J.Phytotoxicity and plant uptake of fuel oil hydrocarbons[J].J Environ Qual,1997,26(6):1478-1483.
    [11]Proffitt C.E.,Devlin D.J.Are there cumulative effects in red mangroves from oil spills during seedling and sapling stages?[J]Ecol Appl,1998,8(1):121-127.
    [12]Suprayogi B.,Murray F.A field experiment of the physical and chemical effects of two oils on mangroves[J].Environ Exp Bot,1999,42(3):221-229.
    [13]陆志强.多环芳烃对秋茄幼苗的生理生态效应及其在九龙江口红树林湿地的含量与分布[D].厦门大学硕士学位论文,2002.
    [14]李玫,陈桂珠.含油废水对秋茄幼苗的几个生理生态指标的影响[J].生态学报,2000,20(3):528-532.
    [15]Youssef T.,Ghanem A.Salt secretion and stomatal behaviour in Avicennia marina seedlings fumigated with the volatile fraction of light Arabian crude oil[J].Environ Poll,2002,116:215-223.
    [16]Tam N.F.Y.,Wong T.W.Y.,Wong Y.S.A case study on fuel oil contamination in a mangrove swamp in Hong Kong[J].Mar Poll Bull,2005,51:1092-1100.
    [17]Ye Y.,Tam N.F.Y.Effects of used lubricating oil on two mangroves Aegiceras corniculatum and Avicennia marina[J].J Environ Sci,2007,19:1355-1360.
    [18]Zhang C.G.,Leung K.K.,Wong Y.S.,et al.Germination,growth and physiological responses of mangrove plant(Bruguiera gymnorrhiza)to lubricating oil pollution[J].Environ Exp Bot,2007,60(1):127-136.
    [19]Ke L.,Wang W.Q.,Wong T.W.Y.Removal of pyrene from contaminated sediments by mangrove microcosms[J].Chemosphere,2003,51:25-34.
    [20]Luan T.G.,Yu K.S.H.,Zhong Y.Study of metabolites from the degradation of polycyclic aromatic hydrocarbons(PAHs)by bacterial consortium enriched from mangrove sediments[J].Chemosphere,2006,65:2289-2296.
    [21]Zhang F.Q.,Wang Y.S.,Lou Z.P.Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings[J].Chemosphere,2007,67:44-50.
    [22]Tam N.F.Y.,Wong Y.S.Effectiveness of bacterial inoculum and mangrove plants on remediation of sediment contaminated with polycyclic aromatic hydrocarbons[J].Mar Poll Bull,2008,57:716-726.
    [23]Lyman J.& Fleming R.H.Composition of sea water[J].J Mar Res,1940,3:134-146.
    [24]林鹏,苏辚,林庆扬.九龙江口红树林研究Ⅱ秋茄群落的钾、钠积累和循环[J].生态学报,1987,7:102-110.
    [25]Zhang J.,Cai L.Z.,Yuan D.X.Distribution and sources of polynuclear aromatic hydrocarbons in mangrove surficial sediments of Deep Bay,China[J].Mar Poll Bull,2004,49:479-486.
    [26]Simonich S.L.,Hires R.A.Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons[J].Environ Sci Technol,1994,28:939-943.
    [27]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2003.
    [28]邵玺文,张瑞珍,童淑媛等.松嫩平原盐碱土对水稻叶绿素含量的影响[J].中国水稻科学,2005,19(6):570-572.
    [29]Berger W.,McCarty H.,Smith R.K..Environmental Laboratory Data Evaluation[M].Genium Publishing Corporation,GA,USA,1996,p.2-11.
    [30]李权龙,袁东星,陈猛.替代物和内标物在环境样品分析中的作用及应用[J].海洋环境科学,2002,21(4):46-49.
    [31]Briggs G.G.,Bromilow R.H.,Evans A.A..Relationship between lipophilicity and root uptake and translocation of non-ionized chemicals by barley[J].Pestic Sci,1982,13:495-504.
    [32]Briggs G.G.,Bromilow R.H.,Evans A.A.Relationship between lipophilicity and the distribution of non-ionised chemicals in barley shoots following uptake by the roots[J].Pestic Sci,1983,14:492-500.
    [33]Polder M.D.,Hulzebos E.M.,Jager D.T.Validation of models on uptake of organic chemicals by plant roots[J].Environ Toxicol Chem,1995,14:1615-1623.
    [34]Simonich S.L.,Hites R.A.Organic pollution accumulation in vegetation[J].Environ Sci Technol,1995,29:2905-2913.
    [35]Lin H.,Tao S.,Zuo Q.Uptake of polycyclic aromatic hydrocarbons by maize plants[J].Environ Poll,2007,148:614-619.
    [36]Gao Y.Z.,Zhu L.Z.Plant uptake,accumulation and translocation of phenanthrene and pyrene in soils[J].Chemosphere,2004,55:1169-1178.
    [37]Schroll R.,Bierling B.,Cao G.,et al.Uptake pathways of organic chemicals from soil by agricultural plants[J].Chemosphere,1994,28:297-303.
    [38]Bakker M.I.,Casado B.,Koerselman J.W.Polycyclic aromatic hydrocarbons in soil and plant samples from the vicinity of an oil refinery[J].Sci Total Environ,2000,263:91-100.
    [39]Fismes J.,Perrin-Ganier C.,Empereur-Bissonnet P.Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils[J].J Environ Qual,2002,31:1649-1656.
    [40]Trapp S.,McFarlane J.C.Plant Contamination:Modelling and Simulation of Organic Chemical Processes[M].Lewis Publishers,Boca Raton,FL,USA,1995.
    [41]Ryan J.A.,Bell R.M.,Davidson J.M.Plant uptake of no-ionic organic chemicals from soils[J].Chemosphere,1988,17:2299-2323.
    [42]Oleszczuk P.,Baran S.Polycyclic aromatic hydrocarbons content in shoots and leaves of willow(salix viminalis)cultivated on the sewage sludge-amended soil[J].Water Air Soil Poll,2005,168:91-111.
    [43]Tolls J.,McLachlan M.S.Partitioning of semivolatile organic compounds between air and Lollium multiflorum(Welsh Ray Grass)[J].Environ Sci Technol,1994,28:159-166.
    [44]Kipopoulou A.M.,Manoli E.,Samara C.Bioconcentration of PAHs in vegetables grown in an industrial area[J].Environ.Poll,1999,106:369-380.
    [45]宋玉芳,周启星,许华夏.菲、芘、1,2,4-三氯苯对土壤高等植物根伸长抑制的生态毒性效应[J].生态学报,2002,22(11):1945-1950.
    [46]欧巧明.植物肿瘤的研究进展及其应用前景[J].生物技术通报,2007,3:52-56.
    [47]Huang X.D.,McConkey B.J.,Babu S.T.,et al.Mechanisms of photoinduced toxicity of photomodified anthracene to plants:Inhibition of photosynthesis in the aquatic higher plants Lemna gibba(duck weed)[J].Environ Toxicol Chem,1997,16:1707-1715.
    [48]Huang X.D.,El-Alawi Y.,Penrose D.M.,et al.Responses of three grass species to creosote during phytoremediation[J].Environ.Poll,2004,130:453-463.
    [49]Marwood C.A.,Solomon K.R.,Greenberg B.W.Chlorophyll fluorescence as a bioindicator of effects on growth in aquatic macrophytes from mixtures of PAHs[J].Environ Toxicol Chem,2001,20:890-898.
    [50]刘亚云,孙红斌,陈桂珠.秋茄(Kandelia cande~幼苗对多氯联苯污染的生理生态响应[J].生态学报,2007,27(2):746-754.
    [51]Henner P.,Schiavon M.,Druelle V.,et al.Phytotoxicity of ancient gaswork soils:effect of polycyclic aromatic hydrocarbons(PAHs)on plant germination[J].Organic Geochem,1999,30:275-284.
    [52]凌婉婷,高彦征,李秋玲.植物对水中菲和芘的吸收[J].生态学报,2006,26(10):3332-3338.
    [53]Reilley K.A.,Banks M.K.,Schwab A.P.Dissipation of polycyclic aromatic hydrocarbons in the rhizosphere[J].J Environ Qual,1996,25:212-219.
    [54]王雪峰,陈桂珠,许夏玲.白骨壤对石油污染的生理生态响应[J].生态学报,2005,25(5):1095-1100.
    [1]Adams N.,Goulding K.H.,Dobbs A.J.Toxicity of eight water soluble organic chemicals to Selenatrum capricornutum:A study of methods for calculating toxic values using different growth parameters[J].Arch Environ Contam Toxicol,1985,14:333-345.
    [2]Becker A.M.,Heise S.,Ahlf W.Effects of phenanthrene on Lemna minor in a sediment-water system and the impacts of UVB[J].Ecotoxicology,2002,11:343-348.
    [3]Tam N.F.Y.,Chong A.M.Y.,Wong Y.S.Removal of tributyltin(TBT)by live and dead microalgal cells[J].Mar Poll Bull,2002,45:362-371.
    [4]Soto C.,Hellebust J.A.,Hutchinson T.C.Effect of naphthalene and aqueous crude oil extracts on the green flagellate Chlamydomonas angulosa I Growth[J].Canadian J Bot,1975,53:109-117.
    [5]Sepic E.,Bricelj M.,Leskovsek H.Toxicity of fluoranthene and its biodegradation metabolites to aquatic organisms[J].Chemosphere,2003,52:1125-1133,
    [6]阎海,叶常明,雷志芳.酚类化合物抑制斜生栅藻生长的毒性效应[J].环境化学,1998,17(2):127-130.
    [7]Pierre-Yves Caux.A spreadsheet program for estimating low toxic effects[J].Environ Toxicol Chem,1997,16(4):802-806.
    [8]Baun A.,Justesen K.B.,Nyholm N.Algal tests with soil suspensions and elutriates:A comparative evaluation for PAH-contaminated soils[J].Chemosphere,2002,46:251-258.
    [9]Djomo J.E.,Dauta A.,Ferrier V.Toxic effects of some major polyaromatic hydrocarbons found in crude oil and aquatic sediments on Scenedesmus subspicatus[J].Wat Res,2004,38:1817-1821.
    [10]田蕴,郑天凌,王新红.厦门西海域表层水中PAHs污染与PAHs降解菌分布的关系[J].热带海洋学报,2003,22(6):15-21.
    [11]Zhang J.,Cai L.Z.,Yuan D.X,et al.Distribution and sources of polynuclear aromatic hydrocarbons in mangrove surficial sediments of Deep Bay,China[J].Mar Poll Bull,2004,49(5-6):479-486.
    [12]候建军.赤潮生物的分子探针检测方法及其应用研究[D].厦门大学博士学位论文.2005.
    [13]Guillard R.R.L,Ryther J.H.Studies of marine planktonic diatoms.Ⅰ.Cyclotella nana Hustedt and Detonula confervacea Cleve[J].Canadian J Microbiol,1962,8:229-239.
    [14]Guillard R.R.L.Culture of phytoplankton for feeding marine invertebrates[M].p.26-60.In Smith,W.L.and Chanley,M.H.(eds.)Cul Mar Invertebrate Animals.Plenum Press,New York,USA.1975.
    [15]国家质量技术监督局.海洋监测规范,GB 17378.7-1998第7部分:近海污染生态调查和生物监测[M].北京:中国标准出版社,1998.
    [16]沈德中.环境和资源微生物学[M].北京:中国环境科学出版社,2003,342-343.
    [17]周永欣,章宗涉.水生生物毒性实验方法[M].北京:农业出版社,1989.
    [18]唐学玺,李永祺.对硫磷对三角褐指藻核酸和蛋白质合成动态的影响[J].生态学报,2000,20(4):598-600.
    [19]王悠,唐学玺,李永祺.低浓度蒽对两种海洋微藻生长的兴奋效应[J].应用生态学报,2002,13:343-346.
    [20]Wong P.K.Effect of 2,4-D,glyphosate and paraquat on growth,photosynthesis and Chorohpyll-asynthesis of Scenedesums quadricauda Berb 614[J].Chemosphere,2000,41:177-182.
    [21]Stebbing A.R.D.Hormesis-the stimulation of growth by low level of inhibitors[J].Sci Tot Environ,1982,22:213-234.
    [22]Tian S.Z.,Liu Z.,Weng J.H.,et al.Growth of Ghlorella vulgaris in cultures with low concentration dimethoate as source of phosphorus[J].Chemosphere,1997,35(11):2713-2718.
    [23]谢荣,唐学玺,李永祺.丙溴磷影响海洋微藻生长机理的初步研究[J].环境科学学报,2000,20(4):437-477.
    [24]沈国兴,严国安,彭金良.农药对藻类的生态毒学研究Ⅱ[J].环境科学进展,1999,7(6):131-140.
    [25]Suprayogi B.,Murray F.A field experiment of the physical and chemical effects of two oils on mangroves[J].Environ Exp Bot,1999,42(3):221-229.
    [26]唐学玺,李永祺,黄健.对硫磷对扁藻和杜氏藻膜脂的过氧化与脱酯化伤害[J].海洋与湖沼,1999,30(3):295-299.
    [27]赵云英,马永安.天然环境中多环芳烃的迁移转化及其对生态环境的影响[J].海洋环境科学,1998,17(2):69-72.
    [28]Stratton G.W.Effect of the solvent acetone on membrane integrity in the green algae Chlorella pyranoidose[J].Bull Environ Contam Toxicol,1989,42:754-760.
    [29]Halling-S(?)rensen B.Algal toxicity of antibacterial agents used in intensive farming[J].Chemosphere,2000,40:731-739.
    [30]王连生.有机污染化学[M].高等教育出版社.北京.2004.
    [1]Warrington R.On the aquarium[M].Notices Proc Royal Inst,1857.
    [2]Huckins J.N.,Petty J.D.Modular containers for microcosms and process model studies on the fate and effects of aquatic contaminants[J].Chemosphere,1984,13(12):1329-1341.
    [3]Hardy J.T.,Apts C.W.,Crecelius E.A.,et al.The sea-surface microlayer:fate and residence times of atmo sphericmetals[J].Limnol Oceanogr,1985,30(1):93-101.
    [4]金洪钧,孙丽伟.模拟水生生态系统及其在环境研究中的应用[J].应用生态学报,1990,1(4):356-363.
    [5]Vanninen I.,Koskula H.Effect of hydrogen peroxide on algal growth,cucumber seedlings and the reproduction of shore flies(Scatella stagnalis)in rockwool[J].Crop Protection,1998,17(6):547-553.
    [6]Schwarz D.,Gross W.Algae affecting lettuce growth in hydroponic systems[J].J Horticult Sci Biotechnol,2004,79(4):554-559.
    [7]Chung M.K.,Hu R.,Wong M.H.,et al.Comparative toxicity of hydrophobic contaminants to microalgae and higher plants[J].Ecotoxicology,2007,16:393-402.
    [8]聂湘平,魏泰莉,蓝崇钰.多氯联苯在模拟水生态系统中的分布、积累与迁移动态研究[J].水生生物学报,2004,28,5:478-482.
    [9]开美玲,郭江峰,金仁耀,等.氟磺胺草醚在模拟水生生态系统中的行为特征[J].农业环境科学学报,2005,24(3):486-489.
    [10]秦伟超.水生生物(藻、水丝蚓、鱼)对硝基苯的富集与释放研究[D].东北师范大学硕士学位论文,2007.
    [11]Ryan J.A.,Bell R.M.,Davidson J.M.Plant uptake of no-ionic organic chemicals from soils[J].Chemosphere,1988,17:2299-2323.
    [12]姜霞,区自清,应佩峰.~(14)C-菲在“植物-火山石-营养液-空气”系统中的迁移和转化[J].应用生态学报,2001,12:451-454.
    [13]Wild E.,Dent J.,Thomas G.O.,et al.Direct observation of organic contaminant uptake,storage,and metabolism within plant roots[J].Environ Sci Technol,2005,39:3695-3702.
    [14]凌婉婷,高彦征,李秋玲.植物对水中菲和芘的吸收[J].生态学报,2006,26(10):3332-3338.
    [15]Chapin F.S.,Moilanen L.,Kielland K.Preferential use of organic nitrogen for growth by anon-mycorrhizal article sedge[J].Nature,1993,361:150-153.
    [16]孟庆昱,储少岗,徐晓白.多氯联苯的环境吸附行为研究进展[J].科学通报,2000,45(15):1572-1583.
    [17]Gao Y.Z.,Ling W.T.,Wong M.H.Plant-accelerated dissipation of phenanthrene and pyrene from water in the presence of a nonionic-surfactant[J].Chemosphere,2006,63:1560-1567.
    [18]凌婉婷,任丽丽,高彦征,等.毛茛对富营养化水中多环芳烃的修复作用及机理[J].农业环境科学学报,2007,26(5):1884-1888.
    [19]Kipopoulou A.M.,Manoli E.,Samara C.Bioconcentration of PAHs in vegetables grown in an industrial area[J].Environ Poll,1999,106:369-380.
    [20]Chiou C.T.,Sheng G.Y.,Manes M.A partition-limited model for plant uptake of organic comtaminants from soil and water[J].Environ Sci Technol,2001,35:1437-1444.
    [21]Li Y.,Yediler A.,Ou Z.,et al.Effects of a non-ionic surfacants on the mineralization,metabolism and uptake of phenanthrene in wheat-solution-lava microcosm[J].Chemosphere,2001,45:67-75.
    [22]Li H.,Sheng G.Y.,Chiou C.T.,et al.Relation of organic contaminant equilibrium sorption and kinetic uptake in plants[J].Environ Sci Technol,2005,39:4864-4870.
    [23]Trapp S.,McFarlane J.C.Plant Contamination:Modelling and Simulation of Organic Chemical Processes[M].Lewis Publishers,Boca Raton,FL,USA,1995.
    [24]Gao Y.Z.,Zhu L.Z.Plant uptake,accumulation and translocation of phenanthrene and pyrene in soils[J].Chemosphere,2004,55:1169-1178.
    [25]沈小明,王梅农,代静玉.不同浓度条件下玉米吸收菲的水培实验研究[J].农业环境科学学报,2006,25(5):1148-1152.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700