用户名: 密码: 验证码:
鹅掌楸属群体遗传结构及分子系统地理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为被子植物中最原始的类群,木兰科植物对研究有花植物的起源、分布和系统发育有重要价值。木兰科(Magnoliaceae)鹅掌楸属(Liriodendron)为第三纪孑遗树种,现仅存两个种,即鹅掌楸(L. chinense Sarg.)和北美鹅掌楸(L. tulipifera Linn.)。鹅掌楸和北美鹅掌楸是典型的东亚-北美间断分布“种对”。是植物群体遗传学和分子系统发育地理学的理想材料。本研究以北美鹅掌楸、鹅掌楸31个自然群体及5个子代群体为研究对象,利用SSR分子标记检测鹅掌楸属树种天然群体的遗传结构及子代遗传多样性,分析种内不同群体的遗传分化及亲缘关系,比较鹅掌楸种间遗传多样性及遗传分化,以及鹅掌楸及其子代的遗传多样性和群体间分化。检测群体、家系及个体三层次的遗传变异分配程度。同时,通过对特定基因序列(cpDNA的psbA-trnH和trnT-trnL基因片段及nrDNA ITS序列)的克隆测序,推测鹅掌楸属植物第四纪冰期的避难所,以探讨鹅掌楸属群体地理分布形成的原因。主要研究结果如下:
     鹅掌楸天然群体遗传结构。利用14对SSR引物对12个鹅掌楸天然群体的318个个体的遗传多样性进行扩增检测,发现鹅掌楸天然群体有较高的遗传多样性(H_e=0.7385)。鹅掌楸群体之间存在中等的遗传分化(Fst=0.1956)以及低水平的基因流(N_m=1.0283)。此外,在其中6个群体中检测到显著的瓶颈效应。Mantel检验结果表明,鹅掌楸天然群体遗传距离和地理距离存在极显著相关性(r=0.5011, P=0.002)。据此,推测地理隔离和片段化分布导致了鹅掌楸群体结构的形成。且鉴于云南南部群体与其他群体在表型及基因变异上均存在较大差异,可将其视为鹅掌楸的一个变种。
     鹅掌楸、北美鹅掌楸遗传多样性比较。鹅掌楸属树种有较高的遗传多样性(H_e=0.7793),且无论是天然群体还是种源群体,均发现北美鹅掌楸的遗传多样性高于鹅掌楸。鹅掌楸23.28%的遗传变异存在群体间,且群体间的基因流N_m仅为0.8239。而北美鹅掌楸仅有8.75%的遗传变异存在群体间,但群体间基因流明显高于鹅掌楸,达N_m=2.6077。根据遗传距离,用UMPGA法构建聚类图,13个天然群体分为两个类群:云南的两个群体YN-JP和YN-MLP群体为一类群;其它11个群体为一类群。进一步证实鹅掌楸云南南部群体与鹅掌楸其他群体的遗传分化较大。
     鹅掌楸天然群体与子代群体遗传多样性比较。比较了5个鹅掌楸天然群体及其自由授粉子代群体的遗传多样性,发现鹅掌楸天然群体遗传多样性(N_e=4.14, H_e=0.74)高于子代群体(N_e=3.51, H_e=0.68)。天然群体中,12.54%的遗传变异存在群体间,而子代群体中,有17.22%变异存在于群体间,天然群体的基因流(N_m=1.7432)大于子代群体的基因流(N_m=1.2017)。表明鹅掌楸群体间遗传分化有增大的趋势。
     鹅掌楸群体、家系、个体三水平分子遗传变异。利用14个SSR分子标记分析鹅掌楸群体、家系及个体三个层次的遗传变异模式。结果显示,鹅掌楸遗传变异在各层次上表现不同:群体水平上,JX群体变异最大(N_(ei)=0.63),XY群体最小(N_(ei)=0.41);家系水平上,XY26家系变异最小(N_(ei)=0.2487),ST27的N_(ei)最大(0.5642);个体水平上,LP25-27遗传多样性最大(N_(ei)=0.4456),XY3-2最小(N_(ei)=0)。分子变异分析(AMOVA)结果显示,鹅掌楸在群体间、群体内家系间以及家系内个体间这3个层次均存在极显著的遗传分化,分别占总变异的16.47%、20.77%、62.76%。表型数据分析结果显示,鹅掌楸苗高性状在群体、家系、个体三水平的变异模式与分子数据结果相似。可见,鹅掌楸大多数变异(表型、遗传)都存在于群体内家系间及个体间,而群体间变异较小。
     鹅掌楸属树种的分子系统地理学研究。利用2个叶绿体基因(psbA-trnH、trnT-trnL)及1个核基因(nrDNAITS)的序列变异信息研究了鹅掌楸属2个种的分子系统地理学。
     在2个叶绿体基因(psbA-trnH、trnT-trnL)中,鹅掌楸共检测到29个变异位点,多于北美鹅掌楸的19个。且鹅掌楸的核苷酸多态性(π=0.004135, θw=0.005305)也高于北美鹅掌楸(π=0.00204, θw=0.004125)。鹅掌楸有61.424%遗传变异存在于群体之间,北美鹅掌楸有13.855%的遗传变异存在于群体间。利用Tajima’s D,Fu and Li’s D*和F*中性检测分析两个基因座的进化模式,结果表明鹅掌楸属树种在历史上均经历过群体扩张。TCS分析、系统树分析和单倍型地理分布的结果显示,鹅掌楸和北美鹅掌楸在冰期后各自扩张。推测位于云贵高原及其周边地区的鹅掌楸群体在第四纪冰期不受冰期气候的影响,且位于武夷山南麓的FJ-WYS鹅掌楸群体及位于大娄山北坡的GZ-XS群体所处地区很有可能分别为鹅掌楸东、西部群体的第四纪冰期避难所。
     鹅掌楸属nrDNAITS的长度变化幅度(808~852bp)与被子植物一致。而在鹅掌楸中ITS的长度变化幅度大于北美鹅掌楸。鹅掌楸属在ITS区中总共检测到90个变异位点,其中信息位点为53个。其中北美鹅掌楸中检测到的变异位点(S=62)和信息位点数(I=51)都高于鹅掌楸(S=46,I=12)。同时,在ITS1、5.8s和ITS2区,北美鹅掌楸中检测到的变异位点和信息位点数也都高于鹅掌楸。另外,不管在ITS区还是在ITS1、5.8s和ITS2区,北美鹅掌楸的核苷酸多态性都比鹅掌楸高。对ITS基因座位的进化模式分别进行了Tajima’s D,Fu andLi’s D*和F*中性检测。结果显示,在鹅掌楸属的水平上,都表现为负值,且Fu and Li’s D*和F*中性检测达到显著负值,也支持鹅掌楸属树种群体扩张模式。
     以白玉兰为外类群,利用nrDNAITS序列变异信息对鹅掌楸属各群体进行了系统发育分析。鹅掌楸、北美鹅掌楸所有个体基本分为北美鹅掌楸和鹅掌楸两个分支。结果支持鹅掌楸属树种早期分东亚和北美两支,随后在这两个大陆上各自分布扩张,独立进化。
As members of the class of “basal angiosperms” defined by plant phylogeny, plantsbelonging to the order Magnoliales have been keys to understanding the evolutionary history offlowering plants. The genus Liriodendron within the family Magnoliaceae, is primarilyrepresented by fossils from the late Cretaceous and early Tertiary of North American and CentralAsia. The only two extant members of Liriodendron are L. chinense Sarg. and L. tulipifera Linn.L. chinense and L. tulipifera are a relic species pair with a typical discontinuous distributionacross East Asia-North America. They have important scientific value for studying on plantpopulation genetics and molecular phylogeography. In this paper, microsatellite markers wereused to quantify the genetic variation, genetic structure, and genetic differentiation among naturalmature populations of L. chinense and L. tulipifera. The author also compared the level of geneticdiversity between natural mature populations of L. chinense and their corresponding offspringpopulations. Furthermore, the genetic variation pattern of L.chinense was dissected into threelevels of populations, families within population, and individuals within family. In addition, thegeographical distribution and possible refugia area in history were deduced using DNAsequences of3genes as chloroplast DNA (cpDNA) psbA-trnH and trnT-trnL intergenic spacersand the nuclear ribosomal DNA ITS region.
     The main conclusions are as follows:
     The population genetic structure of L. chinense. To better understand the genetic structureand differentiation among remnant populations of L. chinense, the author determined thegenotypes of14simple sequence repeats (SSRs) loci across318individuals from12naturalpopulations. It showed that L. chinense maintained high genetic diversity (H_e=0.7385) withinpopulations but moderate genetic differentiation (Fst=0.1956) and low gene flow (N_m=1.0283)between populations. This indicates that L. chinense may have mechanisms to maintain itsgenetic diversity. Moreover, significant bottlenecks in six populations were detected in theapplication of two-phased model of mutation (TPM). A Mantel test revealed a statisticallysignificant correlation between the geographic distances and genetic distances betweenpopulations (r=0.5011, P=0.002). H_ence, the author presumes that geographical isolation andhabitat fragmentation might contribute jointly to current population structure of L. chinense. Theauthor also suggests that the populations from southern Yunnan can be regarded as a variatas of L.chinense, given their large deviation of phenotypic character and allelic variation from otherpopulations.
     The comparison on the level of genetic diversity between L. chinense and L. tulipifera. Theresults showed that plants in Liriodendron maintained a high level of geneticdiversity(H_e=0.7793). The genetic diversities of natural population and provenances of L.tulipifera were higher than those of L. chinense. L. chinense maintained high levels of genetic differentiation (Fst=0.2328) and low levels of gene flow (N_m=0.8239) among populations,while L. tulipifera maintained low levels of genetic differentiation (Fst=0.0875) and high levelsof gene flow (N_m=2.6077) among populations. To elucidate the genetic relationships amongpopulations studied, the average genetic distances were used to generate a UPGMA tree. Thethirteen natural populations were grouped into two distinct clusters. Two populations (YN-JP andYN-MLP) from southern Yunnan formed a cluster, and the remaining eleven populations formedanother cluster. This supported that L. chinense from southern Yunnan have a large geneticdifferentiation to other populations.
     The comparison of genetic diversity between natural populations and their offspringpopulations in L. chinense. The genetic diversity of natural populations (N_e=4.14, H_e=0.74) washigher than that of their offspring populations (N_e=3.51, H_e=0.68). The genetic differentiationcoefficient (Fst) among offspring populations was0.1722, which was significantly higher thanthat of natural populations (0.1254). It indicated that the genetic variation of L. chinense mighttend to enlager. And, the level of gene flow (N_m=1.7432) among natural populations was largerthan that among offspring populations (N_m=1.2017).
     The genetic variation pattern of L. chinense. To understand the genetic variation pattern of L.chinense, the overall genetic variation was dissected into three hierarchical levels of populations,families within population and individuals within family. In this section, five natural populationsof L. chinense were chosen as sample populations, in each population seeds from five maturetrees were harversted, thus five half-sib families each population were obtained.29-30seedlingseach family were sampled for the detection of14SSR loci and measurement of tree height.Population JX maintained the highest genetic diversity (N_(ei)=0.63), while population XY had thelowest genetic diversity (N_(ei)=0.41). To the class of families, XY26had the lowest geneticdiversity (N_(ei)=0.2487), while ST27the highest (N_(ei)=0.5642). As to the level of individuals,LP25-27had the highest genetic diversity (N_(ei)=0.4456), XY3-2has the lowest (N_(ei)=0). Most ofgenetic variations were contained within population. AMOVA analysis revealed that there wassignificant genetic differentiation existing among three hierarchical levels (populations, familieswithin population and individuals within family) in L. chinense, indicating limited gene flowamong populations. Among the overall genetic variations of L. chinense,16.47%,20.27%and62.76%variations were explained by populations, families within population and individualswithin family respectively. Moreover, the variation pattern on tree height was also analyzed, anda pattern similar to the AMOVA result was acquired.
     The molecular phylogeography of Liriodendron. The molecular phylogeography ofLiriodendron was investigated using allelic variation of three genes, two from chloroplast DNA(cpDNA)(psbA-trnH and trnT-trnL) intergenic spacers and one from the nuclear ribosomalDNA ITS region.
     Totally,148individuals from31populations with of Liriodendron were analyzed withcpDNA psbA-trnH and trnT-trnL intergenic spacer. The variation loci and nucleotide diversityof L. chinense (S=29; π=0.004135, θw=0.005305) were more than that of L. tulipifera (S=19;π=0.00204, θw=0.004125).61.424%of the total genetic variation was distributed among populations of L. chinense, indicating that L. chinense contained a high level of genetic variation.While in L. tulipifera,13.855%of the total genetic variation was distributed among populations.Results of neutrality tests (Tajima’s D, Fu and Li’s D*and F*) supported the idea thatpopulations in Liriodendron underwent a process of expansion in histery. Analysis on TCS,phylogenetic and the distribution of cpDNA haplotypes revealed that both L. tulipifera and L.chinense underwent a process of population expansion, though their expansion routes werediverse. In the glacial period, two possible refugia of L. chinense were Ta-lou Mountains for thewestern populations, and south slope of Mount Wuyi for the eastern populations. The presenteastern populations of L. chinense might origin from the two populations of HB-EX andJX-WYS.
     Similar to most angiosperms plants, the length of ITS region in Liriodendron ranged from808bp to852bp, with larger variation ranges in L. chinense. A total of90allelic mutaions and53informative loci were detected in Liriodendron. Both the number of allelic mutaions andinformative loci of L. tulipifera (S=62, I=51) were higher than that of L. chinense(S=46, I=12),similar to the nucleotide diversity. N_eutrality tests (Tajima’s D, Fu and Li’s D*and F*) supportedthe viewpoint that both species in Liriodendron had undergone population expansion in history.Taking Magnolia denudata as outgroup plants, the phylogeography of Liriodendron was alsoinvestigated using nrDNA ITS sequences. All individuals in Liriodendron were basicallyclassified into two branches of L. chinense and L. tulipifera. The results suggested that the twospecies in Liriodendron, the North American species and the East Asia species, might haveundergone population expansion and evolved independently.
引文
Afef B, Chokri M, Mohamed B. Genetic structure of natural Tunisian Hypericum humifusum L.(Hypericacae)populations as assessed by allozymes and RAPDs [J]. Industrial Crops and Products,2012,35:217-223.
    Aguilar R, Quesada M, Ashworth L, Herrerias-Diego Y, Lobo J. Genetic consequences of habitatfragmentation in plant populations: susceptible signals in plant traits and methodological approaches [J].Molecular Ecology,2008,17:5177-5188.
    Amarasinghe V, Carlson JE. The development of microsatellite DNA markers for genetic analysis inDouglas-fir [J]. Can. J. For. Res.,2002,32:1904-1915.
    Andrello M, Nicolè F, Till-Bottraud I, Gaggiotti OE. Effect of Stage-Specific Vital Rates on Population GrowthRates and Effective Population Sizes in an Endangered Iteroparous Plant [J]. Conservation Biology,2012,26(2):208-217
    Asa Gray. Analogy between the flora of Japan and that of the United States [J]. Amer. Jour. Sci.,1846,2(2):135-136.
    Avise JC, Arnold J, Ball RM, et al.. Intraspecific phylogeography: the mitochondrial DNA bridge betweenpopulation genetics and systematics [J]. Annual Review of Ecology and Systematics,1987,18:489-522.
    Avise JC. The history and preview of phylogeograhy: a personal reflection [J]. Molecular Ecology,1998,7:371-379.
    Avise JC. Toward a regional conservation genetic perspective: phylogeography of faunas in the southeasternUnited States [M]. In: Conservation Genetics: Case Histories from Nature (eds Avise JC and JL Hamrick),Chapman&Hall, New York. pp.1996,431-470.
    Baldwin BG. Molecular phylogenetics of Calycadenia (Compositae) based on ITS sequences of nuclearribosomal DNA: Chromosomal and morphological evolution reexamined [J]. Amer. J. Bot.,1993,80:222-238.
    Bandelt H, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies [J]. MolecularPhylogenetics and Evolution,1999,16:37-48.
    Bauert M, Kalin M, Baltisberger M, et al.. No genetic variation delected within isolated relict populations ofSaxifrage cernua in the Alps using RAPD markers [J]. Molecular Ecology,7:1519-1527.
    Benntt KD, Tzedakis C, Willis KJ. Quaternary refugia of north European trees [J]. J. Biogeog,1991,18:103-115.
    Bernatchez L and Wilson CC. Comparative phylogeography of Nearctic and Palearctic fishes [J]. MolecularEcology,1998,7:431-452.
    Boerjan W. Biotechnology and the domestication of forest trees [J]. Current Opinion in Biotechnology,2005,16:159-166.
    Brown WM, Vinogtad J. Restriction endonuclease cleavage maps of animal mitochondrial DNAs [J].Proceedings of the National Academy of Sciences,1974,71:4617-4621.
    Broyles SB. Postglacial migration and the loss of allozyme variation in Northern population of Asclepiasexaltata (Asclepladaceae)[J]. Am. J. Bot.,1998,85:1091-1097.
    Bucci G, Vendramin GG. Delineation of genetic zones in the European Norway spruce natural range:preliminary evidence [J]. Molecular Ecology,2000,9:923-934.
    Bucci G, Vendramin GG. Delineation of genetic zones in the European Norway spruce natural range:preliminary evidence [J]. Molecular Ecology,2000,9:923-934.
    Campbell MM, Brunner AM, Jones HM, et al.. Strauss Forestry’s fertile crescent: the application ofbiotechnology to forest trees [J]. Plant Biotechnology Journal,2003,1:141-154.
    Cha r H, Duroy PO, Cubry P, Sinsin B, Pham JL. Impact of past climatic and recent anthropogenic factors onwild yam genetic diversity [J]. Molecular Ecology,2011,20:1612-1623.
    Chen KM et al.. Phylogeography of Pinus tabulaeformis Carr.(Pinaceae), a dominant species of coniferousforest in northern China [J]. Molecular Ecology,2008,17:4276-4288.
    Chi Chiu Cheang et al.. Phylogeography of the marine macroalga Sargassum hemiphyllum (Phaeophyceae,Heterokontophyta) in northwestern Pacific [J]. Molecular Ecology,2010,19:2933-2948.
    Cornuet JM, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecksfrom allele frequency data [J]. Genetics,1996,144:2001-2014.
    Craene LPRD, Soltis PS, Soltis DE. Evolution of floral structures in basal angiosperms. International Journal ofPlant [J]. Sciences,2003,164: S329-S363.
    Cwynar LC, Macdonald GM. Geographical variation of lodgepole pine in relation to population history [J]. Am.Nat.,1987,129:463-469.
    Da Silva MNF and Patton JL. Molecular phylogeography and the evolution and conservation of Amazonianmammals [J]. Molecular Ecology,1998,7:475-486.
    Dayanandan S, Rajora OP, Bawa KS. Isolation and characterization of microsatellites in tremblingaspen(Populus tremuloides)[J]. Theor. Appl. Genet.,1998,96:941-949.
    Demesure B, Comps B, Petit RJ. Chloroplast DNA phylogeography of the comm.on beech (Fagus sylvatica L.)in Europe [J]. Evolution,1996,50:2515-2520.
    Den Nijs H, Oostermeijer J. Reproductive biology and gene flow in a fragmented landscape [J]. Bocconea,1997,7:153-165.
    Desplanque B, Viard F, Bernard J, et al.. The linkage disequilibrium between chloroplast DNA andmitochondrial DNA haplotypes in Beta vulgaris (L.) ssp. maritima: The usefulness of both genomes forpopulation genetics studies [J]. Mol. Ecol.,2000,9:141-154.
    Dumolin-Lapègue S, et al.. Phylogeographic structure of white oaks throughout the Europe continent [J].Genetics,1997,146:1475-1487.
    Ellstrand NS, Elam DR. Population genetic consequences of small population size: implications for plantconservation [J]. Annual Review of Ecology and Systematics,1993,24:217-242.
    Epperson BK, Allard RW. Spatial auto-correlation analysis of the distribution of genotypes within populationsof lodgepole pine [J]. Genetics,1989,121:369-377.
    Excoffier L, Smouse P, and Quattro J. Analysis of molecular variance inferred from metric distances amongDNA haplotypes: Application to human mitochondrial DNA restriction data [J]. Genetics,1992,131:479-491.
    Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linkedloci and correlated allele frequencies [J]. Genetics,2003,164:1567-1587.
    Ferris C, et al.. Chloroplast DNA recognizes three refugial sources of Europe oaks and suggests independenteastern and western immigrations to Finland [J]. Heredity,1998,80:584-594.
    Ferris C, et al.. Native oak chloroplasts revealed an ancient divide across Europe [J]. Mol. Ecol.,1993,2:337-344.
    Friedeb, Mudaiy, Gillbs. C-banding polymorphisms in several accessions of Triticum tauschii(Aegilopssquarrosa)[J]. Genome,1992,35:192-199.
    Fu YX, Li WH. Statistical tests of neutrality of mutations [J]. Genetics,1993,133:693-709.
    Given DR. Principles and practices of plant conservation [M]. Timber Press,1994,1-36.
    Grant V. The Evolutionary Process: A Critical Study of Evolutionary Theory [M]. New York: ColumbiaUniversity Press.1991.
    Gray A. Analogy between the flora of Japan and that of the United States [J]. Amer. Jour. Sci.,1846,2(2):135-136.
    Hamrick J.L and Schnabel A. Understanding the genetic structure of plant populations: some old problems anda new approach [M]. In: Population Genetics in Forestry. New York,1985,50-70.
    Hamrick JK, et al.. Correlation between species traits and allozyme diversity: implications for conservationbiology [M]. In Genetics and Conservation of Rare Plants (Falk DA and Holsinger KE, Eds), OxfordUniversity Press,1991:75-86.
    Hamrick JL. Isozymes and the analysis of genetic structure in plant populations [J]. Isozymes in Plant Biology,1989,87-104.
    Hamrick JL, Godt MJW. Allozyme diversity in plant species [M]. In: Brown AHD, Clegg MT, Kahler AL, WeirBS (Eds.), Plant Population Genetics, Breeding and Genetic Resources. Sinauer, Sunderland, MA, USA,1989,43-63.
    Hamrick JL. Allozyme diversity in p lant species [C]//BROWN AHD. Plant Population Genetics breeding andGenetic Resources Sunderland. Sinauer.1990,43-63.
    Harris EE, Hey JX. Chromosome evidence for ancient human histories [J]. Proc. Natl. Scl. USA.,1999,6:3320-3324.
    Harrison SP, Yu Q, Takahara H, Prentice IC. Palaeovegetation: Diversity of temperate plants in East Asia [J].Nature,2001,413:129-130.
    Hattemer HH. Concepts and requirements in the conservation of forest genetic resources [J]. Bocconea,1997,7:329-344.
    He JS, Chen L, Si Y et al.. Population structure and genetic diversity distribution in wild and cultivatedpopulations of the traditional Chinese medicinal plant Magnolia officinalis subsp. biloba (Magnoliaceae)[J]. Genetica,2009,135:233-243.
    Hornero J, Gallego FJ, Martínez I, Toribio M. Testing the conservation of Quercus spp. microsatellites in thecork oak, Q. suber L [J]. Silvae Genetica,2001,50(3-4):162-167.
    Hudson RR, Kaplan NL. Statistical properties of the number of recombination events in the history of a sampleof DNA sequences [J]. Genetics,1985,111:147-164.
    Hudson RR, Slatkin M, Maddison WP. Estimation of levels of gene flow from DNA sequence data [J].Genetics,1992,132:583-589.
    Hudson RR. Estimating the recombination parameters of a finite population model without selection [J].Genetic research,1987,50:245-250.
    Hudson RR. Gene genealogies and the coalescent process. Oxford Surveys in Evolutionary Biology [M]. D.Futuyma and J. Antonovics, Oxford University Press.1990,7:1-44.
    Hunt D. Magnolias and their allies [M]. International Dendrology Society and Magnolia Society,1998,304.
    Hutchison DW, Templeton AR. Correlation of pairwise genetic and geographic distnace measures: inferring therelative influences of gene flow and drift on the distribution of genetic variability [J]. Evolution,1999,53:1898-1914.
    Hwang SY, Lin TP, Ma CS, Lin CL, Chung JD, Yang JC. Postglacial population growth of Cunninghamiakonishii (Cupressaceae) inferred from phylogeographical and mismatch analysis of chloroplast DNAvariation [J]. Molecular Ecology,2003,12:2689-2695.
    Johnson W.E, Slattery J.P, Eizirik E, et al.. Disparate phylogeographic patterns of molecular genetic variation infour closely related South American small cat species [J]. Molecular Ecology,1999,8: S79-S94.
    Jones RC, Steane DA, Potts BM, Vaillancourt RE. Microsatellite and morphological analysis of Eucalyptusglobulus populations [J]. Can. J. For. Res.,2002,32:59-66.
    Jump AS, Pe uelas J. Genetic effects of chronic habitat fragmentation in a wind-pollinated tree [J].Proceedings of the National Academy of Sciences USA,2006,103:8096-8100.
    Kang M, Wang J, Huang H. Demographic bottlenecks and low gene flow in remnant populations of thecritically endangered Berchemiella wilsonii var. pubipetiolata (Rhamnaceae) inferred from microsatellitemarkers [J]. Conservation Genetics,2008,9:191-199.
    Kimura M, Crow JF. The number of alleles that can be maintained in a finite population [J]. Genetics,1964,49:725-738.
    Kimura M. A simple method for estimating evolutionary rate of base substitutions through comparative studiesof nucleotide sequences [J]. Journal of Molecular Evolution,1980,16:111-120.
    King RA, Ferris C. Chloroplast DNA phylogeography of Alnus glutinosa (L.) Gaertn [J]. Mol. Ecol.,1998,7:1151-1163.
    Kingman JFC. On the genealogy of large populations [J]. J. Applied Probab.,1982,19:27-43.
    Kingman JFC. The coalescent[J]. Stochastic Process Appl.,1982,13(3):235-248.
    Konstantin VK, John BC, et al.. Estimation of population structure in coastal Douglas-fir [Pseudotsugamenziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellite markers [J]. Tree Genetic&Genomes,2009,203-208.
    Krutovsky KV, Clair JBS, Saich R, Hipkins VD, Neale DB. Estimation of population structure in coastalDouglas-fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] using allozyme and microsatellitemarkers [J]. Tree Genetics&Genomes,2009,5:641-658
    Kumar S, Stecheer G, Peterson D, and Tamura K. MEGA-CC: Computing Core of Molecular EvolutionaryGenetics Analysis Program for Automated and Iterative Data Analysis [J]. Bioinformatics,2012,28:2685-2686.
    Lagercrantz U, Ryman N. Genetic structure of Norway spruce (Picea abies): concordance of morphologyicaland allozymic variation [J]. Evolution,1990,44:38-53.
    Lande R. Genetics and demography in biological conservation [J]. Science,1988,241:1455-1460.
    Le Corre V, Dumolin-Lapègue S, Kremer A. Genetic variation at allozyme and RAPD loci in sessile oakQuercus petraea (Matt.) Liebl.: the role of history and geography [J]. Mol. Ecol.,1997,6:519-529.
    Lefèvre S, Wagner S, Petit RJ, de Lafontaine G. Multiplexed microsatellite markers for genetic studies ofbeech [J]. Molecular Ecology Resources,201,12:484-491.
    Levene H. On a matching problem arising in genetics [J]. Ann. Math. Statist.,1949,20:91-94.
    Lewontin RC, Cockerhma CC. Thegoodness-of fit test for detecting natural selection in random matingPopulations [J]. Evolution,1959,13:561-564.
    Lewontin RC. The apportionment of human diversity [J]. Evol. Biol.,1972,6:381-398.
    Liston A, Riesberg L H, Hanson M A. Geographic partitioning of chloroplast DNA variation in the genusDatisca(Datiscaceae)[J]. Plant Syst. Evol.,1992,181:121-132.
    Liu J, Chen YT, Jiang JM, He GP, Yu GM. Study on Population Genetic Structure in Toona ciliate var.pubescens with SSR [J]. Forest Research,2009,22(1):37-41.
    Liu Z, Furnier GR. Comparison of allozyme, RFLP and RAPD markers for revealing genetic variation withinand between trembling aspen and bigtooth aspen [J]. Theor. Appl. Genet.,1993,87(1/2):97-105.
    Loor RG, Risterucci AM, Courtois B et al.. Tracing the native ancestors of the modern Theobroma cacao L.population in Ecuador [J]. Tree Genetics&Genomes,2009,5:421-433.
    Lowe AJ, Boshier D, Ward M, Bacles CFE, Navarro C. Genetic resource impacts of habitat loss anddegradation: reconciling empirical evidence and predicted theory for neotropical trees [J]. Heredity,2005,95:255-273.
    Lowe AJ, et al.. Distribution and dynamics of genetic variation in bush mango from West and Central Africa, asmeasured by PCR-based assays [J]. Mol. Ecol.,2000,8:1253-1264.
    Lumaret R, Mir C, et al.. Phylogeographical variation of chloroplast DNA in holm oak (Quercus ilex L.)[J].Molecular Ecology,2002,11:2327-2336.
    Marshall DR. Crop genetic resources: current and emerging issues [M]. Brown AHD, Clegg MT, Kahler AL,Weir BS. Plant Population Genetics, Breeding and Genetic Resource. Sunderland: Sinauer,1989,367-388.
    Matsumoto A, Uchida K, Taguchi Y, Tani N, Tsumura Y. Genetics diversity and structure of natural fragmentedChamaecyparis obtuse populations as revealed by microsatellite markers [J]. J. Plant Res.,2010,123:689-697.
    Millar CI, Libby WJ. Strategies for conserving clinal, ccotypic, and disjunct population diversity in widespreadspecies [M]. In: Falk DA and Holsinger KE: Genetics and conservation of Rare Plants. Ner York: OxfordUniversity Press,1991,149-170.
    Millar CI, Westfall RD. Allozyme markers in forest genetic conservation [J]. New Forest,1992,6:347-371.
    Miller MP. Tools for population genetic analyses (TFPGA)1.3A Windows program for the analysis ofallozyme and molecular population genetic data [J].1997.
    Mitton JB, Kreiser BR, Latta RG. Glacial refugia of limber pine (Pinus flexilis James) inferred from thepopulation structure of mitochondrial DNA [J]. Mol. Ecol.,2000,9:91-97.
    Moritz C. Applications of mitochondrial DNA analysis in conservation: a critical review [J]. Mol. Ecol.,1994,3:401-411.
    Morrone JJ, Crisci JV. Historical biogeography: introduction to methods. Annual Review of Ecology andSystematics [J]. Annual review of ecology and systematics,1995,26:373-401.
    Mulugeta K et al.. BPhylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) inEthiopian and Tropical East African mountains [J]. Molecular Ecology,2007,16:1233-1243.
    Myers PG. Stability of the Mediterranean's thermohaline circulation under modified surface evaporative fluxes[J]. Journal of Geophysical Research,2002,107: c3,3021.
    Navarro C, Cavers S, Pappinen A, Tigerstedt P, Lowe A, Merila J. Contrasting quantitative traits and neutralgenetic markers for genetic resource assessment of Mesoamerican Cedrela odorata [J]. Silvae Genet,2005,54:281-292.
    Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases [J].Proceedings of the National Academy of Sciences, USA,1979,76:5269-5273.
    Nei M, Maruyama T, Charkraborty R. The bottleneck effect and genetic variability in populations [J].Evolution,1975,29:1-10.
    Nei M. Analysis of gene diversity in subdivided populations [J]. Proceedings of the National Academy ofSciencea,1973,70:3321-3323.
    Nei M. Molecular evolutionary genetics [M]. Columbia University Press, New York,1987.
    Newton AC, et al.. Molecular phylogeography, intraspecific variation and the conservation of tree species [J].Tree Col.,2000,14(4):140-145.
    Olsen KM, Schaal BA. Evidence on the origin of cassava: phylogeography of Manihot esculenta [J]. Proc. Natl.Acad. Sci. USA.,1999,96:5586-5591.
    Palmer JD. Choroplast DNA and phylogenetic relationship in DNA Systematics [J]. Plant,1986,2:76-98.
    Parks CR, NG Wendel JF wendel et al..Genetic control of isozyme variation in the genus Liriodendron(Magnolianceae)[J]. The Journal of Heredity,1990,81(4):317-323.
    Parks CR, Wendel JF, Sewell MM, et al..The significance of allozyme variation and introgression in theLiriodendron tulipifera Complex (Magnoliaceae)[J]. American Journal of Botany,1994,81(7):878-889.
    Parks CR, Wendel JF. Molecular divergence between Asian and North American species of Liriodendron withimplications for interpretation of fossil floras [J]. Amer. J. Bot,1990,77(10):1243-1256.
    Parks CR. The significance of allozyme variation and introgression in the Liriodendron Tulipifera complex(Magnoliaceae)[J]. American Journal of Botany,1994,81(7):878-889.
    Penck A, Brucker E. Die Alpen in Eiszeitalter [M]. Tauchnitz Leipzig,1909,3:1199
    Petit RJ, Kremer A,Wagner DB. Geographic structure of chloroplast DNA polymorphisms in European oaks [J].Theor. Appl. Genet.,1993,87:122-128.
    Pielou EC. After the Ice Age [M]. University of Chicago Press, Chicago,1991,366.
    Piry S, Luikart G, Cornuet JM. BOTTLENECK: A computer program for detecting recent reductions in theeffective population size using allele frequency data [J]. Journal of Heredity,1999,90:502-503.
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data [J].Genetics,2000,155:945-959
    Pritchard JK, Wen W, Falush D. Documentation for structure software: Version2.3. The University of Chicagoand Oxford.2009.
    Qiu YX, Guan BC, Fu CX, Comes HP. Did glacials and/or interglacials promote allopatric incipient speciationin East Asian temperate plants? Phylogeographic and coalescent analyses on refugial isolation anddivergence in Dysosma versipellis [J]. Mol. Phylo. Evol.,2009b,51:281-293.
    Qiu YX, Qi XS, Jin XF, Tao XY, Fu CX, Naiki A, Comes HP. Population genetic structure, phylogeography,and demographic history of Platycrater arguta (Hydrangeaceae) endemic to East China and South Japan,inferred from chloroplast DNA sequence variation [J]. Taxon,2009a,58(4):1226-1241.
    Ray N, Adams JM. A GIS-based Vegetation Map of the World at the Last Glacial Maximum (25,000-15,000BP)[M]. Int. Archaeol.,2001.
    Ribeiro MM, Mariette S, Vendramin GG, et al.. Comparison of genetic diversity estimates within and amongpopulations of maritime pine using chloroplast simple sequence repeat and amplified fragment lengthpolymorphism data [J]. Molecular Ecology,2002,11:869-877.
    Richard JA, Lisa CS, Richard IM, etal. Molecular analysis of Plant migration and refugla in the Aretie. Seienee,2000,289:1343-1346.
    Rohlf FJ. NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version2.10. Exeter Software,New York.2002.
    Sang T, Crawford DJ and Stuessy TF. Chloroplast DNA phylogeny, reticulate evolution, and biogeography ofPaeonia (Paeoniaceae)[J]. Amer. J. Bot.,1997,84:1120-1136.
    Schaal BA, et al. Phylogeography studies in plants: problems and prospects [J]. Mol. Ecol.,1998,7:465-474.
    SchallBA. Comparison ofmethods for assessing genetic variation in plant conservation biology [M]//Falk DA,Holsinger KE (Eds.) Genetics and Conservation of Rare Plants. New York: Oxford University Press,1991,123-134.
    Schneider S, Roessli D, Excoffier L. Arlequin, Version2.0: a software for population genetic data analysis[M]. Genetics and Biometry Laboratory, University of Geneva, Geneva.2000.
    Semaan MT, Dodd RS. Genetic variability and structure of the remnant natural populations of Cedrus libani(Pinaceae) of Lebanon [J]. Tree Genetics&Genomes,2008,4:757-766.
    Sewll MM, Kparks CR, Kchasem W. Intraspecific chloroplast DNA variation and biogeography of northAmerican Liriodendron L.(Magnoliaceae)[J]. Evolution,1996,50:1147-1154.
    Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N et al. The complete nucleotide sequence of thetobacco chloroplast genome [J]. Plant Mol. Biol. Rep.,1986,4:110-147.
    Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayashida N et al. The complete nucleotide sequence of thetobacco chloroplast genome: its gene organization and expression. Embo. J.,1986,5:2043-2049.
    Simonsen KL, Churchill GA, Aquadro CF. Properties of statistical tests of neu-trality for DNA polymorphismdata [J]. Genetics,1995,141:413-429.
    Sinclair WT, Morman JD, Ennos RA. Multiple origins for Scots pine (Pinus sylvestris L.) in Scotland: evidencefrom mitochondrial DNA variation [J]. Heredity,1998,80:233-240.
    Sinclair WT, Morman JD, Ennos RA. The postglacial history of scots pine (Pinus sylvestris L.) in WesternEurope: evidence from mitochondrial DNA variation [J]. Mol. Ecol.,1999,8:83-88.
    Slatkin M. Gene flow and geographic structure of natural populations [J]. Science,1987,236:787-792.
    Slatkin M. Isolation by distnace in equilibrium and non-equilibrium populations [J]. Evolution,1993,47:264-279.
    Soltis DE, et al. Chloroplast DNA intraspecific phylogeography of plants from the Pacific Northwest of NorthAmerica [J]. Plant Syst. Evol.,1997,206:353-373.
    Spielman D, Brook BW, Frankham R. Most species are not driven to extinction before genetic factors impactthem [J]. Proceedings of the National Academy of Sciences, USA,2004,101:15261-15264.
    Streiff R, Ducousso A, Lexer C, et al.. Pollen dispersal inferred from paternity analysis in a mixed oak stand ofQuercus robur L. and Q. petraea (Matt.) Liebl [J]. Molecular Ecology,1999,8:831-841.
    Taberlet P, et al.. Comparative phylogeography and postglacial colonization routes in Europe [J]. Mol. Ecol.,1998,7:453-464.
    Taberlet P, Fumagalli L and Wust-Saucy A. Comparative phylogeography and postglacial colonization routes inEurope [J]. Molecular Ecology,1998,7:453-464.
    Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism [J]. Genetics,1989,123:585-595.
    Talbot SL and Shields GF. Phylogeography of brown bears (ursus actors) of Alaska and Paraphyly within theUrsidae [J]. Molecular Phylogenetics and Evolution,1996,5(3):477-494.
    Tamura K, Dudley J, Nei M, and Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA)software version4.0[J]. Molecular Biology and Evolution,2007,24:1596-1599.
    Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S. MEGA5: Molecular EvolutionaryGenetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum ParsimonyMethods. Molecular Biology and Evolution,2011,28:2731-2739.
    Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The clustal X windons interface: flexiblestrategies for multiple swquence alignment aided by quality analysis tools [J]. Nucleic Acids Research,1997,25:4876-4882.
    Tomaru N, et al.. Intraspecific variation and phylogeographic patterns of Fagus crenata (Fagaceae)mitochondrial DNA [J]. Am. J. Bot.,1998,85:629-636.
    Tremblay NO, Schoen DJ. Molecular Phylogeography of Dryas integrifolia: glacial refugia and postglacialrecolonization [J]. Moleeular ecology,1999,8:1187-1198.
    Trevino SE and Dizon AE. Phylogeography, intraspecific structure and sex-biased dispersal of Dall’s porpoise,Phocoenoides dalli, revealed by mitochondria and microsatellite DNA analyses [J]. Molecular Ecology,2000,9:1049-1060.
    Tzfira T, Zuker A, Altman A. Forest-tree biotechnology: genetic transformation and its application to futureforests [J]. Trends in Biotechnology,1998,16(10):439-446.
    Upholt WB and Dawid IB. Mapping of mitochondrial DNA of individual sheep and goats: rapid evolution inthe D-loop region [J]. Cell,1977,11:571-583.
    Van Dijk P, and Bukx-Schotman T. Chloroplast DNA phylogeography and cytotype geography in autopolyploidPlantago media [J]. Molecular Ecology,1998,6:345-352.
    Van RF, Prentice, HC. Structure of allozyme variation in Nordic Silene nutans (Caryophyllaceae): populationsize, geographical position and immigration history [J]. Biol. J. Lin. Soc.,2004,81:357-371.
    Vos P, Hogers R, Bleeker M, et al. AFLP-a new technique for DNA fingerprinting [J]. Nucleic acids research,1995,23(21):4407.
    Vranckx G, Jacquemyn H, Muys B, Honnay O. Meta-Analysis of Susceptibility of Woody Plants to Loss ofGenetic Diversity through Habitat Fragmentation [J]. Conservation Biology,2011,26(2),228-237.
    Wang HW, Ge S. Phylogeography of the endangered Cathaya argyrophylla (Pinacea) inferred from sequencevariation of mitochondrial and nuclear DNA [J]. Mol. Ecol.,2006,15:4106-4122.
    Watterson GA. On the number of segregating sites in genetical models without recombination [J]. TheoreticalPopulation Biology,1975,7:256-276.
    Weider LJ, Hobxk A. Glacial refugia, haplotype distributions, and clonal richness of the Daphnia pulexcomplex in Aretic Canada[J]. Molecular Ecology,2003,12:463-473.
    Weir BS and Cockerham CC. Estimating F-statistics for the analysis of population structure [J]. Evolution,1984,38:1358-1370.
    Weir BS. Genetic Data Analysis II: Methods for Discrete Population Genetic Data [M]. Sinauer Assoc., Inc.,Sunderland, MA, USA.1996.
    Wissmann HV. The Pleisitocene glaciation in China [J]. Bulletin of the Geologocal Society of China,1937,17(2):145-168.
    Wolfe JA. Paleocene floras from the Gulf of Alaska region, professional paper-US [J]. Geological Survey,1997,(4):100-108.
    Wright S, Keeling J, Gillman L. The road from Santa Rosalia: A faster tempo of evolution in tropical climates[J]. Pans,2006,103(20):7718-7722.
    Wright S. Evolution and the genetics of populations [M]. University of Chicago Press, Chicago, IL.1978.
    Wright S. The genetic structure of populations [J]. Annals of Eugenics,1951,15:323-354.
    Yeh FC, Yang RC, Boyle T. POPGENE software package version1.31for population genetic analysis,University of Alberta.1999.
    Yeh FC, Yang RC. Popgene version1.32. http://www.ualberta.ca/~fyeh/download.htm.2000.
    Young A, Boyle T, Brown T. The population genetic consequences of habitat fragmentation for plants [J].Trends Ecol. Evol.,1996,11:413-418.
    Yu G, Chen X, Ni J. Palaeovegetation of China: a pollen data-based synthesis for the mid-Holocene and lastglacial maximum [J]. J. Biogeog.,2000,27:635-664.
    Zaouali Y, Chograni H, Trimech R, Boussaid M. Genetic diversity and population structure among Rosmarinusofficinalis L.(Lamiaceae) varieties: var. typicus Batt. and var. troglodytorum Maire. based on multipletraits [J]. Industrial Crops and Products,2012,38:166-176.
    陈红林,曹健,丁小飞等.鹅掌揪的两个群体遗传结构的初步研究[J].湖北林业科技,2006,1(137):1-3.
    陈灵芝.遗传多样性[M].北京:科学出版社,1993.
    陈龙.利用SSR分子标记研究鹅掌楸天然群体遗传结构[D].南京林业大学硕士论文,2008.
    陈乃良.湘桂古道新考[J].岭南文史,1998,29-33.
    陈锡雄.鹅掌楸天然林群落结构的初步研究[J].宁德师专学报(自然科学版),16(4):358-360.
    崔之久,陈艺鑫,张威,周尚哲等.中国第四纪冰期历史、特征及成因探讨[J].第四纪研究,2011,31(5):749-764.
    段彪,张泽君.生物多样性及研究现状[J].四川畜牧兽医学院学报,2001,15(2):52-57.
    方炎明.中国鹅掌楸的地理分布与空间格局[J].南京林业大学学报,1994,18(2):408-409.
    冯源恒,李火根,杨建等.两种鹅掌楸繁殖成效的比较[J].热带亚热带植物学报,18(1):9-14.
    傅立国.中国植物红皮书--稀有频危植物(第1册)[M].北京:科学出版社,1992,408-409.
    葛颂, Schaal BA,洪德元.用核糖体DNA的ITS序列探讨裂叶沙参的系统位置--兼论ITS片段在沙参属系统学研究中的价值[J].植物分类学报,1997,35(5):385-395.
    葛颂,王海群,张灿明,洪德元.八面山银杉林的遗传多样性和群体分化[J].植物学报,1997,39:266-271.
    葛颂.植物群体遗传结构研究的回顾和展望[M].植物科学进展(第I卷),北京:高等教育出版社,1997,1-15.
    根井正利.分子群体遗传学与进化论[M].王家玉译.北京:农业出版社,1983.
    龚晓洁.基于cpDNA分析河西走廊地区4种生态型芦苇系统发育关系[D].兰州大学,2009.
    郝日明,贺善安,汤诗杰等.鹅掌楸在中国的自然分布及其特点[J].植物资源与环境,1995,4(1):1-6.
    贺善安,郝日明.中国鹅掌楸自然群体动态及其致危生境的研究[J].植物生态学报,1999,23(1):87-95.
    胡能书,万国贤.同工酶技术及应用[M].湖南科技出版社,1985.
    黄双全,郭友好,陈家宽.渐危植物鹅掌楸的授粉率及花粉管生长[J].植物分类学报,1998,36(4):310-316.
    黄双全,郭友好,陈家宽等.用RAPD方法初探鹅掌楸的花粉流[J].科学通报,1998,43(14):1517-1519.
    解新明,云锦凤.植物遗传多样性及其检测方法[J].中国草地,2000,22(6):51-59.
    李恩香.黄精叶钩吻属的沁园地理学及其近缘类群的系统进化研究[D].浙江大学,2006,86-104.
    李建民.马褂木地理遗传变异和优良种源选择[J].林业科学,2001,37(4):41-49.
    李俊清,李景文,崔国发.保护生物学[M].北京:中国林业出版社,2002.
    李四光.冰期之庐山[J].中央研究院地质研究所专刊乙种,1947,2:1-70.
    李悦,瞿超,续九如等.中国大陆林木遗传育种学科1949-2003年的研究历程[J].北京林业大学学报,2005,27(1):79-87.
    李周岐,王章荣. RAPD标记在鹅掌楸属中的遗传研究[J].林业科学,2002,38(1):150-153.
    刘丹,顾万春,杨传平.鹅掌楸属遗传多样性分析评价[J].植物遗传资源学报,2006,7(2):188-191.
    刘丹,顾万春,杨传平.中国鹅掌楸遗传多样性研究[J].林业科学,2004,42(2):116-119.
    刘军,陈益泰,姜景民等.毛红椿群体遗传结构的SSR分析[J].林业科学研究,2009,22(1):37-41.
    刘军,陈益泰,孙宗修等.基于空间自相关分析研究毛红椿天然居群的空间遗传结构[J].林业科学,2008,44(6):45-51.
    刘克凤.叶绿体DNA在植物种内的变异及其在植物地理学上的应用[J].生物学杂志,1996,70(2):12-13.
    刘荣宗.真核生物基因组DNA多态性[J].生物学通报,1997,32(4):8-9.
    刘玉壶,夏念和,杨惠秋.兰科的起源、进化和地理分布[J].亚热带植物学报,1995,3(4):1-12.
    卢欣石,何琪.群体遗传变异及基因多样度分析[J].草业学报,1999,8(3):76-82.
    罗光佐,施季森,尹佟明等.利用RAPD标记分析北美鹅掌楸与鹅掌楸种间遗传多样性[J].植物资源与环境学报,2000,9(2):9-13.
    马克平.试论生物多样性的概念[J].生物多样性,1993,1(1):20-22.
    潘莹,赵桂仿.分子水平的遗传多样性及其测量方法[J].西北植物学报,1998,18(4):645-653.
    钱迎倩,马克平.生物多样性研究的原理与方法[M].北京:中国科学技术出版社,1994.
    曲若竹,侯林,吕红丽,李海燕.群体遗传结构中的基因流[J].遗传,2004,26(3):377-382.
    沙菲尔.普通植物地理学原理[M].北京:高等教育出版社,1958.
    邵丹,裴赢,张恒庆.凉水国家自然保护区天然红松群体遗传多样性在时间尺度上变化的cpSSR分析[J].植物研究,2007,27(4):473-476.
    沈浩,刘登义.遗传多样性概述[J].生物学杂志,2001,18(3):5-9.
    沈浪,陈小勇,李媛媛.生物冰期避难所与冰期后的重新扩散[J].生态学报,2002,22(11):1983-1990.
    施雅风,崔之久,李吉均.中国东部第四纪冰川与环境问题[J].科学出版社,1989,1-462.
    施雅风,崔之久,苏珍.中国第四纪冰川与环境变化[M].河北科学技术出版社,2006,81-571.
    史锋厚.椴树属分子系统学与南京椴保育遗传学研究[D].南京林业大学,2009.
    苏应娟,王艇,郑博等.根据cpDNAtrnL-F非编码区序列变异分析黑桫椤海南和广东群体的遗传结构与系统地理[J].生态学报,2004,24(5):914-919.
    孙毅.遗传变异产生的分子机制[J].化石,1995,(1):21-23.
    孙毅.遗传变异及突变速率与生物进化[J].化石,1994,(4):20-21.
    谈探.濒危植物夏蜡梅群体遗传多样性与分子系统地理学研究[D].北京:北京林业大学,2008.
    汪小全,邹喻苹. RAPD应用于遗传多样性和系统学研究中的问题[J].植物学报:英文版,1996,38(12):954-962.
    王洪新,胡志昂.植物繁育系统、遗传结构和遗传多样性的保护[J].生物多样性,1996,4(2):92-96.
    王静,李明,魏辅文等.分子系统地理学及其应用[J].动物分类学报,2001,26(4):431-40.
    王绍武.冰期-间冰期旋回[J].气候变化研究进展,2008,4(1):61-62.
    王炜玲,郭元涛,钱增强等.植物分子系统地理学及其研究进展[J].西北植物学报,2005,25(6):1250-1258.
    王艳梅,刘震,马天晓等.平榛居群结构与遗传多样性的初步分析[J].2009,43(5):497-505.
    王芋华.粗枝云杉(Picea asperata Mast.)天然群体的遗传变异[D].中国科学院研究生院,2006.
    王章荣.鹅掌楸属树种杂交育种与利用[M].北京:中国林业出版社,2005.
    韦炳辉.基于cpDNA非编码序列研究南方红豆杉的遗传结构和系统发育地理[D].中山大学,2006.
    魏晓新.落叶松属的分子进化与生物地理学[D].中国科学院植物研究所,2004.
    翁曼丽,谢纬武,伏建民等.新一代分子标记技术-AFLP[J].应用与环境生物学报,1996,(4):424-429.
    吴敏生,戴景瑞.扩增片段长度多态性(AFLP)一种新的分子标记技术[J].植物学通报,1998,15(4):68-74.
    胥猛,李火根.鹅掌揪EST-SSR引物开发及通用性分析[J].分子植物育种,2008,6(3):615-618.
    徐立安,李新军.用SSR研究栲树群体遗传结构[J].植物学报,2001,43(4):1-4.
    徐小林,徐立安,黄敏仁等.栓皮栎天然群体SSR标记遗传多样性研究[J].遗传,2004,26(5):683-688.
    徐艳萍.唐宋时期湘桂交通走廊与湘桂毗邻地区发展初探[D].暨南大学,2008.
    闫小玲.基于cpDNA单倍型和SSR分析的银杏群体遗传结构和谱系地理学研究[D].浙江大学,2010.
    杨明照.桫椤群体遗传结构和系统发育地理研究[D].中山大学,2006.
    应俊生.中国种子植物物种多样性及其分布格局[J].生物多样性,2001,9:393-398.
    张峰,宋文芹.AFLP银染法检测植物基因组多态性[J].细胞生物学杂志,1999,21(2):98-100.
    张海英,许勇,王永健.分子标记技术概述(上)[J].长江蔬菜,2001,(2):4-6.
    张晓艳.睡莲类植物的系统发育研究-兼论水盾草在中国东部的分布及潜在的生态后果[D].复旦大学,2003.
    张志勇,李德铢.极度濒危植物五针白皮松的保护遗传学研究[J].云南植物研究,2003,25:544-550.
    赵勇刚.林木遗传育种学科50年成就与展望[J].山西林业科技,2004,(3):1-5.
    朱其卫,李火根.鹅掌楸不同交配组合子代遗传多样性分析[J].遗传,2010,32(2):183-188.
    朱晓琴,贺善安,姚青菊.鹅掌楸群体遗传结构及其保护对策[J].植物资源与环境,1997,6(4):7-14.
    朱晓琴,马建霞,姚青菊等.鹅掌楸(Liriodendron chinense)遗传多样性的等位酶论证[J].植物资源与环境,1995,4(3):9-14.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700