用户名: 密码: 验证码:
辣椒抗CMV的遗传分析及相关QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄瓜花叶病毒(Cucumber mosaic virus, CMV)是辣椒病毒病的主要毒源之一既影响辣椒的产量又影响辣椒的品质,主要表现为使辣椒果实畸形,果实商品性丧失,严重时甚至导致绝产。因此,辣椒抗CMV育种已成为辣椒抗病育种的主要目标之一
     开展辣椒抗CMV育种前,必须首先明确当地病毒分离物亚组分化情况,才能有针对性的开展辣椒抗CMV育种工作。应用RT-PCR技术能够快速、准确的检测植株体内CMV分离物亚组归属。利用分子标记技术构建辣椒遗传连锁图谱,并利用QTL分析软件鉴定抗病相关位点,能够大大提高育种中对数量性状基因型选择的准确性和预见性,加速育种进程。
     本研究对湖北地区侵染辣椒CMV分离物亚组进行鉴定;筛选辣椒抗CMV苗期接种鉴定方法,并进行抗(耐)CMV辣椒材料的鉴定;以抗CMV辣椒材料P0747和感CMV的材料P0630及其杂交的后代分离群体为材料,对其抗性遗传规律进行研究,并应用SSR和ISSR两种分子标记技术构建了辣椒分子遗传连锁图谱,对CMV抗性基因进行了QTL定位分析,对辣椒抗CMV育种具有重要的指导意义。主要研究结果如下:
     (1)根据已报道的CMV外壳蛋白(CP)基因序列设计引物,应用RT-PCR方法,对湖北地区侵染辣椒的CMV分离物的病毒外壳蛋白基因进行基因扩增和序列分析。结果表明,湖北省内不同辣椒主产区采集到的样品CP基因之间的核苷酸同源率高达98.2%-99.2%,分离物均属于亚组IB成员。
     (2)筛选出辣椒抗CMV苗期人工接种鉴定最佳条件为:在辣椒苗龄为4片真叶,采用摩擦接种法、接种温度30℃环境条件下,可以达到最佳的鉴定结果;应用苗期人工接种鉴定方法从供试的74份辣椒种质资源中筛选出抗CMV材料2份,耐CMV材料26份。
     (3)利用6份对CMV抗感程度不同的辣椒材料通过Griffing的完全双列杂交法对辣椒抗CMV的遗传规律进行了研究,明确了辣椒对CMV优势育种中亲本的选择和选配原则;再利用采用植物数量性状主基因+多基因混合遗传的世代联合分析方法,对辣椒抗CMV材料的抗性遗传规律进行分析,明确了辣椒对CMV的抗性受“两对加性-显性-上位性主基因+加性-显性多基因”控制,并对各遗传模型中抗性表现的主基因遗传率和多基因遗传率以及基因间的互作效应进行了详细解析。
     (4)应用SSR和ISSR两种分子标记方法构建了辣椒遗传连锁图谱,该图谱包括17个连锁群,共有140个标记进入连锁群,总长度为1420.5cM,标记间平均图距为10.1cM。
     (5)应用构建的辣椒分子遗传连锁图谱,结合复合区间作图法对辣椒抗CMV-HB相关QTL进行分析,共定位了6个QTL,分别为qcmv.hb-4.1、qcmv.hb-7.1、 qcmv. hb-8.1、qcmv.hb-8.2、qcmv.hb-8.3和qcmv.hb-16.1,位于4个连锁群上,能够解释表型变异的2.8~43.5%,其中qcmv.hb-4.1和qcmv.hb-8.2在夏季和秋季接种试验中均能够被检测到,其中qcmv.hb-8.2能够解释37.7~43.5%的表型变异,可以认为是一个控制辣椒对CMV-HB株系抗性的主效QTL,加性效应为正,加性效应值为0.59~0.64,当qcmv.hb-8.2表现抗病亲本基因型时,能够降低病情指数。qcmv.hb-4.1能够解释10.7-11.2%的表型变异,加性效应为正,加性效应值为0.24~0.25,当qcmv.hb-4.1表现抗病亲本基因型时,同样能够降低病情指数。
Cucumber mosaic virus (Cucumber mosaic virus, CMV) is the main virus type leading to the virus disease on pepper. This disease affects both yield and quality in pepper production. The symptoms in field mailnly show malformation of fruits, loss of commodity or even never produced. In order to overcome the damage of CMV disease, breeding cultivars with CMV resistance is becoming one of main targets in pepper breeding.
     For CMV-resistance breeding on pepper, we should understand the subgroup of CMV infecting pepper plant. The technology of the real-time quantitative PCR can be used to identify the subgroup of CMV in plant more rapidly and accurately. The utilization of molecular markers can be used to build genetic maps of pepper, and the quantitative trait loci relative to CMV-resistance also can be scanned by QTL analysis softwear. With the help of the molecular markers linked to CMV-resistance QTL, the accuracy and foreseeability for breeding selection on genetype of quantitative trait will be improved, and the efficiency for breeding on pepper is also increased.
     In this study, the subgroup and strain of CMV infecting pepper plant in Hubei province was identified firstly. Secondly, we screened the optimal condition of seedlings inoculation identification for pepper CMV disease and we also evaluated the CMV resistance of germplasm resources on pepper. Thirdly, two inbred lines of the pepper varieties, a CMV-resistance homozygous P0747and a CMV-susceptible line P0630, and their segregation populations were developed. Both parents and their segregation populations were used for inheritance analysis and genetic map construction. Finally, the QTLs relation to CMV-resistance was located by CIM method. The results of QTLs analysis will guide the CMV-resistance breeding on pepper.
     (1) Using the RT-PCR method and primers designed from the sequence of CP genes, the CMV isolates in Hubei area was identified. The results were as follows:the CP genes of CMV isolates in Hubei area shared98.2%-99.2%homology with those of CMV subgroup IB strains from Genbank. It was determined that all of the CMV isolates belonged to the subgroup IB of CMV.
     (2) The optimal condition of seedlings inoculation identification for pepper CMV disease is as following:The youth test peppers at4leaf-stages were dusted with600-mesh carborundum and inoculated by rubbing the leaves with inoculums. After inoculation, pepper seedlings were kept in a plastic house maintained at25℃to30℃. Totally seventy-four inbred lines were identified for CMV-resistance, and2inbred lines were resistant to CMV,26inbred lines moderate resistant.
     (3) Genetic analysis on the resistance of CMV by Griffing's complete diallel crosses. The results of the analysis cleared the principle of parent choice in cross breeding of disease-resistance. The two parental lines and their segregation populations obtained from a cross between them were used for inheritance analysis by the joint segregation analysis method. Our results revealed that CMV resistance in'P0747'is controlled by two partially additive-dominant major genes and additive-dominance polygenes and the polygenes effect existed at the same time.
     (4) A F2population was used for constructing linkage groups by SSR and ISSR methods. This map included140markers mapping onto17LGs, covering1420.5cM according to the Kosambi function. The average distance between the markers was10.1cM.
     (5) QTLs were detected by the composite interval mapping (CIM) method based on the linkage groups. A total of six QTLs, qcmv.hb-4.1, qcmv.hb-7.1, qcmv.hb-8.1, qcmv.hb-8.2, qcmv.hb-8.3and qcmv.hb-16.1, were identified on4LGs (LG4, LG7, LG8and LG16) in two inoculation experiments in2009, which accounted for2.8-43.5%of the individual phenotypic variations. Notably, the QTL qcmv.hb-8.2was repeatedly identified in two seasons and showed the largest effect and explained37.7-43.5%of the total phenotypic variation, with the allele from'P0747'increasing CMV resistance by0.59-0.64. The QTL qcmv.hb-4.1also had a sizable effect and could explain11.2%of the variation in summer and10.7%of the variation in autumn, with the allele from'P0747' increasing CMV resistance by0.24-0.25.
引文
1.毕玉平,单蕾,王兴军,徐平丽,周钟信,米景九.双抗TMV+CMV辣椒转基因工程植株的再生及抗病毒鉴定.华北农学报,1999,14:103-108
    2.曹水良,胡开林,王得元.RAPD标记构建辣椒分子连锁图谱研究初报.广东农业科学,2005,2:35-37
    3.陈集双,柴立红,李全胜,冯明光.黄瓜花叶病毒猖獗与气候变暖关系及其对策.生态农业研究,2000,8:23-26
    4.陈青,周雪平.植物病毒的运动蛋白研究进展.浙江农业科技译丛,1998,7-26
    5.丁辛顺,朱亚英,徐悌惟.上海郊区番茄的黄瓜花叶病毒株系.上海农业学报,1986,2:13-20
    6.冯兰香,杨翠荣.北京地区番茄病毒病毒原种类的监测与黄瓜花叶病毒株系的鉴定.中国蔬菜,1991,5:9-11
    7.盖钧镒,章元明,王建康.植物数量性状遗传体系.北京:科学出版社,2003,8-223
    8.郭家珍,杨桂梅,张宝玺,徐光,田如燕,冯兰香.中椒6号辣椒的选育.中国蔬菜,1995,5:7-8
    9.郭亚华,徐香玲,邓立平,张军民,张欣.Ri质粒介导的TMV和CMV外壳蛋白基因转化甜椒研究.北方园艺,2000,4:17-18
    10.黄启中,吕中华,黄任中,林清,史思茹,雷蕾.辣椒抗病毒病种质资源创新研究初报.辣椒杂志,2004,4:27-31
    11.卡吐尔·赫里逊,罗斯迪卡瓦提,苏达索诺.印度尼西亚的抗黄瓜花叶病毒的辣椒资源筛选.辣椒杂志,2005,2:45-47
    12.李华平,胡晋生,范怀忠.黄瓜花叶病毒的株系鉴定研究进展.中国病毒学,1994,3:187-194
    13.李华平,胡晋生,王敏,范怀忠.黄瓜花叶病毒衣壳蛋白基因转化辣椒研究.病理学报,2000,9:266-268
    14.林清,吕中华,黄任中,黄启中,雷蕾,史思茹.辣(甜)椒抗TMV、CMV、疫病及炭疽病材料筛选.西南农业学报,2005,18:108-120
    15.刘焕庭,朱汉诚,严敦全.侵染番茄的黄瓜花叶病毒(CMV)株系特性的比较研究.中国病毒学,1992,7:216-223
    16.毛爱军,耿三省,胡洽.甜(辣)椒病毒病、疫病和炭疽病的单抗、多抗性接种鉴定技术.中国辣椒,2001,2:14-17
    17.毛爱军,耿三省,闫新跃,陈彬.辣(甜)椒TMV、CMV及疫病抗性材料的鉴定.长江蔬菜,2004,2:48-50
    18.商鸿生,王旭,徐秉良.转CP基因线辣椒对CMV的抗病性组分研究.西北农业学报,2001,10:29-32
    19.商文静,樊小雪,肖红娟.转基因抗病毒线辣椒果实品质分析.西北农业学报,2001,10.24-26
    20.田波,张秀华,邱并生,覃秉益,杨希才,康良仪,毋谷穗.一种新的病毒病防治方法——用卫星核糖核酸生物防治黄瓜花叶病毒.科学通报,1986,34(6):479
    21.田如.北京地区辣椒病毒病毒原种类及黄瓜花叶病毒株系鉴定.植物保护,1989,4:9-11
    22.田如燕,冯兰香,蔡少华.北京地区辣椒病毒病病原种类及CMV株系鉴定.植物保护,1989,4:9-11
    23.田如燕,冯兰香,蔡少华,郭家珍,李佩华.甜(辣)椒品种(系)对黄瓜花叶病毒和烟草花叶病毒的苗期抗性鉴定.中国种业,1989,4:32-33
    24.田如燕,冯兰香,蔡少华.北京地区辣椒病毒病原种类及CMV株系鉴定.植物保护,1989,4:9-11
    25.田如燕,冯兰香.甜(辣)椒品种(系)对黄瓜花叶病毒和烟草花叶病毒的苗期抗性鉴定.作物品种资源,1989,4:32-33
    26.王得元,王鸣,郑学勤.用RAPD分析辣椒细胞质雄性不育基因.核农学报,2005,19:99-102
    27.王述彬,袁希汉,邹学校,马艳青,李海涛,印东生.中国辣椒优异种质资源评价.江苏农业学报,2001,17:244-247.
    28.王文静,王富荣,石秀清,李怀方.现代分子生物学技术在植物抗病毒育种中的作用.山西农业科学,2002,30:76-77
    29.魏梅生,张成良,相宁.中国黄瓜花叶病毒株系的研究.第三届全国病毒学学术会议论文集,1994,250-251
    30.吴小丽,王述彬,曹碚生.辣(甜)椒抗黄瓜花叶病毒(CMV)研究进展.辣椒杂志,2006,4:4-9.
    32.谢立波,郭亚华,徐香玲等.应用转基因技术培育甜椒新资源.北方园艺,2004,2:43-45
    33.徐秉良,商鸿生,王旭.黄瓜花叶病毒和烟草花叶病毒在双抗转基因线辣椒内的增殖.中国病毒学,2002,17:243-247
    34.徐秉良,商鸿生,王旭.转CP基因线辣椒对CMV和TMV的抗病性比较.植物病理学报,2002,32:132-137
    35.徐平东,李梅,林奇英,谢联辉.侵染西番莲属植物的五个黄瓜花叶病毒分离 物的特性比较.中国病毒学.1999,14:73-79
    36.徐平东,李梅,林奇英等.黄瓜花叶病毒两亚组分离物寄主反应和血清学性质比较研究.植物病理学报.1997,27:353-360
    37.徐平东.中国黄瓜花叶病毒的亚组研究进展.福建农业大学学报.1997,27:82-91
    38.徐香瑞,辛焱.甜(辣)椒多抗性鉴定方法的研究.吉林农业大学学报.2003,25:288-291
    39.阎淑珍,鞠丽荣,徐香瑞,崔云鹤.甜(辣)椒对黄瓜花叶病毒(CMV)抗性遗传的初步分析.园艺学报.1996,23:45-48
    40.杨永林,阎素珍,王慧.辣椒上CMV株系鉴别寄主的筛选与研究.中国病毒学,1992,7:317-327
    41.易图永,谢丙炎,张宝玺,高必达.几个抗疫病性不同的辣椒材料抗病基因同源序列的分离与比较.园艺学报,2003,30:540-544
    42.易图永.辣椒抗疫病相关基因的分析及QTL定位.[博士学位论文].长沙;湖南农业大学
    43.于喜燕,孔国庆,王允兰.黄瓜花叶病毒辣椒分离株抗性遗传规律的研究.沈阳农业大学学报,2002,31:169-171
    44.张宝玺,王立浩,黄三文,郭家珍,杨桂梅,堵玫珍.辣椒分子遗传图谱的构建和胞质雄性不育恢复性的QTL分析.中国农业科学,2003,36:818-822
    45.张宝玺,王立浩,毛胜利,郭家珍,杨宇红,堵玫珍.优质抗疫病甜椒种质资源的选育.植物遗传与资源学报,2005,6:295-299
    46.张继仁,周群初,邹学校,戴雄泽.湘椒2号(湘研3号)辣椒的选育.中国蔬菜,1992,6:15-18
    47.张华荣,陈集双,郭江峰,杜志游,廖乾生,陈燕飞,朱为明,陈绍宁.侵染上海番茄的黄瓜花叶病毒及其卫星RNA的32P分子标记杂交检测及分子鉴定.核农学报,2006,20:433-437
    48.张宗江,江倩云.黄瓜花叶病毒壳蛋白基因转化辣椒及其在转基因株后代的表达.华北农学报,1994,9:67-71
    49.赵娟,王立浩,云兴福,张宝玺.辣椒抗黄瓜花叶病毒遗传育种研究的回顾与展望.中国蔬菜,2009,18:1-7
    50.周雪平,濮祖芹,方中达.豆科植物上分离的黄瓜花叶病毒(CMV)五个分离物的比较研究.中国病毒学,1994,9:232-238
    51.周雪平,濮祖芹,方中达.黄瓜花叶病毒(CMV)土壤非介体传播研究.南京农业大学学报,1994,17:39-42
    52.周钟信,粟密兰.辣椒诱导再生及黄瓜花叶病毒外壳蛋白基因转化研究初报.华 北农学报,1991,6:69-72
    53.邹学校.辣椒主要数量性状遗传与雄性不育相关机理的研究.[博士学位论文].南京:南京农业大学,2005
    54.邹学校主编,中国辣椒.北京:中国农业出版社,2002.169-176
    55. Barrios EP. Inheritance to tobacco etch and cucumber mosaic viruses in Capsicum frutescens. Phytopathology,1971,61:1318
    56. Blum E, Liu KD, Mazourek M,Yoo EY,Jahn M, Paran I. Molecular mapping of the C locus for presence of pungency in Capsicum. Genome,2002,45:702-705
    57. Caranta C, Nemouchi G, Daubeze AM, Phaly T, Palloix A. Resistance to PepMoV and PVY-0 from Avelar are controlled by distinct recessive genes and evidence for independence between pvr3 and pvr5. Capsicum and Eggplant Newsletter,1999,19: 63-65
    58. Caranta C, Palloix A, Lefebvre V, Daubeze AM. QTLs for a component of partial resistance to cucumber mosaic virus in pepper:restriction of virus installion in host-cell. Theor Appl Genet,1997,94:431-438
    59. Caranta C, Pfliege S, Lefebvre V, Daubeze AM, Thabuis A, Palloix A. QTLs involved in the restriction of Cucumber mosaic virus (CMV) long-distance movement in pepper. Theor Appl Genet,2002,104:586-591
    60. Caranta C, Plloix A. Both common and specific genetic factors are involved in polygenic resistance of pepper to several potyviuses. Theor Appl Genet,1996,92: 15-20
    61. Caranta C, Thabuis A, Palloix A. Development of a CAPS marker for the Pvr4 locus: A tool for resistance to pyramiding potyvirus resistance genes in pepper. Genome, 1999,42:1111-1116
    62. Chaim AB, Borovsky Y, De Jong W, Paran I. Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor Appl Genet, 2003,106:889-894
    63. Chaim AB, Borovsky Y, Rao GU, Tanyolac B, Paran I.fs3.1:a major fruit shape QTL conserved in Capsicum, Genome,2003,46(1):1-9
    64. Chaim AB, Grube RC, Lapidot M, Jahn M, Paran I. Identification of quantitative trait loci associated with resistance to Cucumber mosaic virus in Capsicum annuum. Theor Appl Genet,2001,102:1213-1220
    65. Chaim AB, Grube RC, Lapidot M. Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum. Theor Appl Genet, 2001,102:1213-1220.
    66. Chaim AB, Paran I, Grube RC, Jahn M, van Wijk R, Peleman J. QTL mapping of fruit-related traits in pepper(Capsicum annuum). Theor Appl Genet,2001,102: 1016-1028
    67. Cook AA. Disease resistance studies and new releases from Florida. Capsicum Newslecter,1982,1:42-47
    68. Daniel J, Campbell RH. Characteriation of cucumber mosaic virus isolates from California. Plant Disease,1992,76:1245-1250
    69. Devergne JC, Cardin L. Contribution a l'etude du virus de la mosaique du concombre (CMV). IV. Essai de classification de plusieurs isolats sur la base de leur structure antigenique. Annual Review of Phytopathology,1973:5,409-430
    70. Djian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O'yrne C, Lefebvre V, Caranta C, Palloix A, Abad P. High-resolution genetic mapping of the pepper(Capsicum annuum L.) resistance loci Me3 and Me4 conferring heat-stable resistance to root-knot nematodes(Meloidogyne spp.). Theor Appl Genet,2001,103 (4):592-600
    71. Dufour O, Palloix A, Gebre-Selassie K, Pochard E, Marchoux G. The distribution of cucumber mosaic virus in resistant and susceptible plants of pepper. Canadian Journal of Botany,1989,67:655-660.
    72. Edwards MC, Gonsalves D.1983. Grouping of seven biologically defined isolates of cucumber mosaic virus by peptide mapping. Phytopathology,1983,73:1117-1120
    73. Edwardson JR Christie RG. Cucumoviruses. Pages 293-319 in:CRC Handbook of Viruses Infecting.1991.293-319
    74. Frary A, Fulton TM, Zamir D, Tanksley SD. Advanced backcross QTL analysis of a Lycopersicon esculentum×L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet,2004,108:485-496
    75. Griffing B. Concept of general and specific combining ability in relation to diallel crossing systems. Australian Journal of Experimental Biology and Medical Science, 1956,9:463-493
    76. Grube RC, Zhang Y, Murphy JF, Loaiza-Figueroa F, Lackney VK, Provvidenti R, Jahn M. New source of resistance to Cucumber mosaic virus in Capsicum frutescens. Plant Disease,2000,84:885-891
    77. Kang BC, Nahm SH, Huh JH, Yoo HS, Yu JW, Lee MH, Kim BD. An interspecific (Capsicum annuum×C. chinese) F2 linkage map in pepper using RFLP and AFLP markers. Theor Appl Genet,2001,102(4):531-539
    78. Kang W, Hoang N, Yang H, Kwon J, Jo S, Seo J, Kim K, Choi D, Kang B. Molecular mapping and characterization of a single dominant gene controlling CMV resistance in peppers(Capsicum annuum L.). Theor Appl Genet,2010,120: 1587-1596
    79. Klisewicz JM. Identity of viruses from safflower affected with necrosis. Plant Disease Reporter,1965,49 (6):541-545
    80. Lapidot M, Paran I, Ben-Joseph R, Ben-Harush S, Pilowsky M, Cohen S, Shifris C. Tolerance to Cucumber mosaic virus in pepper:development of advanced breeding lines and evaluation of virus level. Plant Disease,1997,81:185-188
    81. Lecoq H, Pochard E, Pitrat M, Laterrot H, Marchoux G. Identification et exploitation de resistances aux virus chez les plantes maraicheres. Cryptogamie Mycologie,1982, 3:333-345.
    82. Lee JM, Nahm SH, Kim YM, Kim BD. Characterization and molecular genetic mapping of microsatellite loci in pepper. Theor Appl Genet,2004,108:619-627
    83. Lefebvre V, Palloix A. Both epistatic and additive effects of QTLs are involved in polygenic induced resistance to disease:a case study, the interaction pepper Phytophthora capsici Leonian. Theor Appl Genet,1996,93:503-511
    84. Lefebvre V, Daubeze AM, van der Voort JR, Peleman J, Bardin M, Palloix A. QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theor Appl Genet,2003,107:661-666
    85. Lefebvre V, Palloix A, Caranta C, Pochard E. Construction of an intraspecific integrated linkage map of pepper using molecular markers and doubled-haploid progenies. Genome,1995,38:112-121
    86. Lefebvre V, Pflieger S, Thabuis A, Caranta C, Blattes A, Chauvet JC, Daubeze AM, Palloix A. Towards the saturation of the pepper linkage map by alignment of three intraspecific maps including known-function genes. Genome,2002,45:839-854
    87. Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK. Genome mapping in Capsicum and the evolution of genome structure in the solanaceae. Genetics,1999, 152:1183-1202
    88. Moury B, Pflieger S, Blattes A, Lefebvre V, Palloix A. A CAPS marker to assist selection of tomato spotted wilt virus (TSWV) resistance in pepper. Genome,2000, 43:137-142
    89. Mueller LA, Solow TH, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright MH, Ahrens R,Wang Y, Herbst EV, Keyder ER, Menda N, Zamir D Tanksley SD. The SOL genomics network:A comparative resource for Solanaceae biology and beyond. Plant Physiol,2005,138:1310-1317
    90. Murphy J, Kyle MM. Isolation and viral infection of capsicum leaf. Plant Cell Reports,1994,13:397-400
    91. Nono-Womdim R, Polloix A, Gebre-Selassie K, Marchoux G.Partial resistance of bell pepper to cucumber mosaic virus movement within plants:field evaluation of its efficiency in southern France. Phytopathology,1993,137:125-132
    92. Nono-Wondim R, Gebre-Selassie K, Palloix A, Pochard E, Marchoux G. Study of ultiplication of cucumber mosaic virus in susceptible and resistant Capsicum annuum lines. Annals of applied biology,1993,122:49-56.
    93. Ortega RG, Arteaga ML. Response of pepper to two Spanish isolates of CMV. Capsicum Newsletter,1988,7:65-66.
    94. Palukaitis P, Roossinck MJ, Dietzgen RG. Cucumber mosaic vircus advances in virus research. Advances in virus research,1992,41:281-348
    95. Paran I,Voort JR, Lefebvre V, Jahn M, Landry L, Schriek MV, Tanyolac B, Caranta C, Chaim AB, Livingstone K, Palloix A, Peleman J. An integrated genetic linkage map of pepper(Capsicum spp.).2004. Molecular Breeding,13:251-261
    96. Piazzolla P, Guantieri V, Tamburro AM. Spectroscopic Studies on Purified Particles and Isolated RNA of Cucumber Mosaic Virus. Journal of General Virology,1985,67: 69-74
    97. Pierre M, Noel L, Lahaye T, Ballvora A, Veuskens J, Ganal M, Bonas U. High-resolution genetic mapping of the pepper resistancelocus Bs3 governing recognition of the Xanthomonas campestris pv vesicatora AvrBs3 protein. Theor Appl Genet,2000,101:255-263
    98. Pochard E. A major gene with quantitative effect on two different viruses CMV and TMV. Capsicum Newsletter,1982,1:54-56
    99. Prince JP, Pochard E, Tanksley SD. Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome,1993,36:404-417
    100. Rao G, Chaim AB, Borovsky Y, Paran IN. Mapping of yield-related QTLs in pepper in an interspecific cross of Capsicum annuum and C. frutescens. Theor Appl Genet, 2003,106:1457-1466
    101.Stewart C, Kang BC, Liu K, Mazourek M, Moore SL, Yoo EY, Kim BD, Paran I, Jahn MM. The Punl gene for pungency in pepper encodes a putative acyltrans-ferase, Plant Journal.,2005,42 (5):675-688
    102.Suzuki K, Kuroda T, Miura Y, Muria J. Screening and Weld traits of virus resistant source in Capsicum spp. Plant Disease,2003,87:779-783
    103.Tai T, Dahlbeck D, Stall RE, Peleman J and Staskawicz BJ. High-resolution genetic and physical mapping of the region containing the Bs2 resistance gene of pepper. Theor Appl Genet,1999,99:1201-1206
    104.Tanksley SD. Linkage relationships and chromosomal locations of enzyme-coding genes in pepper, Capsicum annuum. Chromosoma,1984,89:352-360
    105.Thabuis A, Palloix A, Pflieger S, Daubeze AM, Caranta C, Lefebvre V. Comparative mapping of phytophthora resistance loci in pepper germplasm:evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet,2003,106:1473-1485
    106.Vallejos CE, Jones V, Stall RE, Jones JB, Minsavage GV, Schultz DC, Rodrigues R, Olsen LE, Mazourek M. Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Theor Appl Genet,2010,121: 37-46
    107.Voorrips RE, Finkers R, Sanjaya L, Groenwold R. QTL mapping of anthracnose (Colletotrichum spp.) resistance in a cross between Capsicum annuum and C. chinense. Theor Appl Genet,2004,109:1275-1282
    108.Wang YQ. Construction of a moleudar linkage map of pepper (Capsicum sp.) using AFLP markers and RIL population.2004, http://www-arc-acrde orglhtml-files/ moleader.html
    109.Wu FN, Mueller LA, Crouzillat D, Petiard V, Tanksley SD. Combining bioinformatics and phylogenetics to identify large sets of single-copy orthologous genes (COSII) for comparative, evolutionary and systematic studies:A test case in the euasterid plant clade. Genetics,2006,174:1407-1420
    110.Wu FN, Eannetta NT, Xu YM, Durrett R, Mazourek M, Jahn M, Tanksley SD. A COSII genetic map of the pepper genome provides a detailed picture of synteny with tomato and new insights into recent chromosome evolution in the genus Capsicum. Theor Appl Genet,2009,118:1279-93
    111.Zhu Y, Ouyang W, Zhang Y. Transgenic sweet pepper from Agro bacterium mediated transformation. Plant Cell Reports.,1996,1:71-75
    112.Zygier S, Chaim AB, Efrati A, Kaluzky G, Borovsky Y, Paran I. QTLs mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet,2005,111:437-445

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700