用户名: 密码: 验证码:
薤白多糖的制备、性质、结构及其生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前有关多糖的研究已成为天然药物及保健品研发中的重要组成部分,国外大部分制药公司都有糖类药物研发项目。作为天然生物活性成分,研究已发现多糖具有抗氧化、抗肿瘤、抗炎及免疫调节等多种功能。薤白(Allium macrostemon Bunge)为葱属多年生草本植物,广泛分布于中国、日本和韩国等国的平原地区,多食用,其干燥鳞茎也可入药。截至目前,对薤白的研究国内外主要集中在其挥发油及单体化合物等方面,有关薤白多糖的研究还很不完善,尚未做较为深入系统的研究。鉴于此,为了对现代多糖类保健食品或糖类药物的开发奠定技术基础,为薤白及其方剂的进一步应用提供理论基础,同时在理论上、学术上及生产实践上为我国活性多糖研究与开发利用提供更多的参考资料,本文拟对薤白多糖从提取工艺优化、纯品制备、结构分析鉴定、活性筛选评价及结构和功能的构效关系等方面进行较为系统深入的研究,通过对这些问题的阐释,不仅有助于充分开发利用我国的葱属植物资源,拓宽其应用范围,而且对于其做为传统药物作用机制的揭示,也具有一定的科学价值。
     本文首先以单因素提取实验为基础,结合响应面优化法,对薤白多糖的分离提取工艺进行了优化,得出实现薤白多糖高效提取的最佳工艺条件。在此条件下,采用分步醇沉技术对薤白多糖水浸提液进行分段沉降,得到薤白粗多糖。而后采用离子交换柱层析和凝胶柱层析相结合的方法,纯化分离得到均一多糖。通过对薤白多糖的总糖含量(苯酚-硫酸法)、蛋白质含量(考马斯亮蓝法)、糖醛酸含量(硫酸-间羟联苯法)、硫酸基含量(氯化钡-明胶比色法)的测定,初步了解其理化性质,然后应用GC、HPLC、IR、NMR、GC/MS等仪器及结合高碘酸氧化、Smith降解、甲基化等化学手段分析薤白多糖,探讨薤白多糖各纯化组分的分子量、单糖组成、结构特征。最后对薤白多糖采用体外抗氧化活性、抗肿瘤活性、抑菌活性、神经营养活性以及小鼠体内化学急性肝损伤等模型进行活性筛选,评价其活性,并探讨了薤白多糖活性与结构的初步关系。主要研究结果如下:
     1、薤白多糖提取条件的响应面法优化研究
     本研究采用响应曲面法,优化薤白多糖提取工艺条件。首先选择提取温度、水料比、提取时间及提取次数4个因素进行单因素实验,比较多糖得率,确定提取温度90℃、水料比12mL/g、提取时间90min及提取次数2次为中心实验点。在此基础上,采用Box-Behnken实验设计法,进行4因素3水平响应曲面法实验,同时进行统计分析,从而优化出薤白多糖最佳提取工艺条件为提取温度87℃,水料比12mL/g,提取时间100min以及提取次数3次,在此条件下,薤白多糖得率预测值为25.51%,实验值为25.49%,数据分析表明实验值与预测值间存在较好的一致性。此优化条件的得出为进一步开发和利用薤白多糖提供了基础实验数据和理论分析依据。
     2、多糖提取、分离纯化、理化性质及结构分析
     通过对薤白干燥鳞茎进行预处理后,经干燥、粉碎、热水提取、40%,60%和80%乙醇分步沉淀、离心,冻干,分别得到三种级分的薤白粗多糖AMP40、AMP60和AMP80,其提取率分别为3.2%、11.8%和9.8%。AMP40、AMP60和AMP80再经过阴离子交换色谱(DEAE-纤维素)和凝胶过滤色谱(Sephadex G-100)进一步分离纯化,得到四个薤白多糖纯化组分(AMP40-1、AMP40-2、AMP60-1和AMP80-1)。分别采用苯酚-硫酸法、考马斯亮蓝法、硫酸-间羟联苯法、氯化钡-明胶法对薤白粗多糖(AMP40、AMP60及AMP80)和纯化组分(AMP40-1、AMP40-2、AMP60-1及AMP80-1)中总糖、蛋白质、糖醛酸、硫酸基含量进行了分析。结果表明,各多糖组分不含蛋白质,硫酸基含量普遍较低,但薤白粗多糖AMP40的糖醛酸含量达12.56%,远高于AMP60和AMP80, AMP40经纯化后,AMP40-2中糖醛酸的含量更是高达30.22%,远高于其它薤白多糖。
     采用高效液相凝胶渗透色谱法对薤白多糖纯化组分AMP40-1. AMP40-2. AMP60-1及AMP80-1的均一性进行了鉴定,同时测定了其相对分子质量,分别为18.2kDa、105.0kDa、11.2kDa和8.1kDa,表明酸性多糖AMP40-2相比其它薤白多糖具有较高的相对分子质量。
     通过气相色谱分析了各多糖的单糖组成,AMP40-1单糖组成及摩尔比为:阿拉伯糖:葡萄糖=1.00:5.03;AMP40-2单糖组成及摩尔比为:鼠李糖:阿拉伯糖:葡萄糖:半乳糖=1.41:2.34:1.62:1.00;AMP60-1单糖组成及摩尔比为:阿拉伯糖:葡萄糖:半乳糖=9.73:1.10:1.00; AMP80-1单糖组成及摩尔比为:阿拉伯糖:葡萄糖=1.00:2.41。结果表明,AMP40-2目比其它多糖拥有更为复杂的单糖组成。
     红外光谱分析结果表明:AMP40-1、AMP40-2、AMP60-1及AMP80-1四种多糖均主要为吡喃糖的糖苷键构型,且其中AMP40-2既有β-型糖苷键,又存在仅α-型糖苷键连接。在1741cm-1处出现强吸收峰进一步验证了AMP40-2中的高糖醛酸含量。紫外光谱分析显示薤白多糖在260-280nm处均未出现明显的吸收峰,说明薤白多糖不含核酸和蛋白质。
     薤白多糖样品(AMP40-1、AMP40-2、AMP60-1及AMP80-1)通过高碘酸氧化、Smith降解、甲基化反应、FT-IR、GC/MS以及NMR技术对其糖苷键连接方式、糖链分支情况进行分析。结果表明:AMP40-1中各糖苷主要以β-吡喃糖形式存在,以1,2-葡萄糖残基和1,2-阿拉伯糖残基构成主链,同时以葡萄糖为非还原末端,含有1,2,6-葡萄糖分支的杂多糖;AMP40-2其主链主要由Glc(1→6)和Gal(1→6)连接组成,支链由Rha(1→2)构成,分支点位于Glc(1→6)的C-2处,末端残基为Glc、Rha及Ara,各糖苷主要以吡喃糖形式存在,且糖苷键构型存在α型和β型两种构型;AMP60-1主要由Glc(1→2)和Ara(1→5)构成主链,以Gal(1→6)和Glc(1→6)为支链,分支点位于Glc(1→2)的C-6处,末端残基为Ara,各糖苷主要以β-吡喃糖形式存在;AMP80-1王链主要由Glc(1→2)连接组成,支链由Glc(1→6)构成,分支点位于Glc(1→2的C-6处,以葡萄糖和阿拉伯糖为非还原末端,各糖苷主要以β-吡喃糖形式存在。同时刚果红实验结果表明薤白多糖AMP40-2具有三股螺旋结构。
     3、薤白多糖体外抗氧化活性及其对小鼠急性肝损伤的保护作用研究
     通过测定薤白多糖清除1,1-二苯基-2-苦肼基自由基(DPPH-)的能力、清除羟基自由基(OH·)的能力、清除超氧阴离子自由基(O2·能力、金属离子螯合能力和还原能力,分别评价了薤白粗多糖(AMP40、AMP60和AMP80)及其纯化组分(AMP40-1、 AMP40-2、AMP60-1和AMP80-1)的体外抗氧化活性,结果表明:AMP40-2在大多数抗氧化评价体系中比其它薤白多糖具有更强的抗氧化活性,对比其它薤白多糖表明其较强的抗氧化活性可能与其较高的分子量,较高的糖醛酸含量以及较为复杂的单糖组成有关。
     采用CC14肝损伤模型评价了薤白多糖(AMP40、AMP60和AMP80)的体内抗氧化能力,结果发现,通过预先灌胃不同剂量的薤白多糖AMP40,可以抑制小鼠化学性急性肝损伤的发生使肝中毒的各项生化指标趋于正常值,表明薤白多糖AMP40具有一定的肝保护作用。与AMP60及AMP80相比,AMP40在所含多糖分子量大小及糖醛酸含量方面存在明显差异,这也说明多糖的肝保护作用可能与上述因素密切相关。
     4、薤白多糖抑菌、抑瘤及神经营养活性研究
     采用琼脂扩散法,对葱属植物薤白中薤白水煮部分(AMW)、薤白醇提部分(AWE)和薤白多糖部分(AMP)进行了抑茵活性测定,结果表明:葱属植物薤白具有一定的抗菌活性,其抑菌成分主要存在于醇提部分,可能为挥发油或其它小分子物质,而薤白多糖(水溶性大分子)部分的抗菌活性较弱。
     采用MTT法对薤白多糖纯化组分(AMP40-1、AMP40-2、AMP60-1和AMP80-1)在体外抑制人肺癌细胞A549和人胃癌细胞BGC-823(?)勺增殖作用进行了研究。结果显示,AMP40-1、AMP60-1和AMP80-1三种薤白多糖对人肺癌细胞A549的生长不具有抑制作用,而AMP40-2对人肺癌细胞A549的生长具有一定的抑制作用,且在实验范围内其抑制作用与浓度呈明显的浓度依赖效应。对人胃癌细胞BGC-823的增殖实验结果表明,薤白多糖均能不同程度的抑制BGC-823细胞的增殖,且抑制作用与多糖之间存在不同程度的正相关量效关系和时效关系。结果也进一步表明薤白多糖对癌细胞生长抑制作用的强弱与其多糖分子量的大小、糖醛酸含量的高低以及单糖组成等因素存在明显的对应关系。
     通过大鼠肾上腺嗜铬细胞瘤细胞PC12培养体系,对薤白多糖纯化组分(AMP40-1、AMP40-2、AMP60-1和AMP80-1)进行了神经营养活性研究。结果表明,薤白多糖AMP40-2对大鼠嗜铬细胞瘤PC12细胞具有一定的促分化作用,即AMP40-2具有一定的神经营养活性。
Polysaccharide has become an important part of the research and development of natural medicines and health products. Most of the foreign pharmaceutical companies engaged in the carbohydrate drug research. As naturally occurring biological constituents, these high molecular weight polymers are highly appreciated for their multipurpose therapeutic properties, such as antioxidant, antitumor, immune-modulating and anti-inflammatory activities. A. macrostemon Bunge, a perennial herb that propagates vegetative and grows wild on the plains of China, Korea and Japan, belongs to the botanic family of Alliaceae. The young leaves and bulbs of this plant are used as a vegetable. Furthermore, the dried bulbs of A. macrostemon Bunge are well known as the traditional Chinese medicine "Xiebai".
     Up to now, research about A. macrostemon Bunge is mainly concentrated in the volatile oil and monomer compounds at home and abroad. The research in polysaccharide of A. macrostemon Bunge is far from perfect, which lack of an in-depth and a systematic study. In view of this, to establish the technological foundation for the development of modern multi-carbohydrate health food or sugar substances, to provide a theoretical basis for the further application of the A. macrostemon Bunge and its prescription, while to provide more references about research and development of polysaccharides in theory, academic and production practices were necessary. In this paper, we conducted a more systematic and in-depth research of polysaccharide from A. macrostemon Bunge about the optimization of the extraction process, the pure preparation methods, structural analysis and identification, activity screening evaluation and the structure and function relationship. Interpretation of these questions not only help to fully develop the use of our resources of Allium species, and to broaden its scope of application, but also to reveal its mechanism of action of traditional medicines will have a certain scientific value.
     A four-factor and three-level Box-Behnken design was used to optimise the extraction parameters for polysaccharides from A. macrostemon Bunge. Then, a graded ethanol precipitation was used to fractionate the water-extractable polysaccharides, resulting in three polysaccharides fractions. And the crude polysaccharides were purified by anion-exchange and gel filtration chromatography; The purified fractions were characterized by using the phenol-sulfuric method, periodic acid oxidation, Smith degradation, methylation combined with high-performance liquid chromatography (HPLC), gas chromatography (GC), Fourier-infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), etc. Finally, we investigated the antioxidant activities, the antitumor activities, antibacterial activity, neurotrophic activity, as well as hepatoprotective effects of polysaccharides from A. macrostemon Bunge, and described the initial relationship of the activity and structure of the polysaccharide. The main findings are as follows.
     1. Extraction optimisation of polysaccharides from Allium macrostemon Bunge
     Response surface methodology (RSM), based on a Box-Behnken design (BBD), was used to optimize the extraction conditions of polysaccharides (AMP). Four independent variables such as extraction temperature (℃), ratio of water to raw material (mL/g), extraction time (min) and extraction time were investigated. As a result, the optimal conditions for AMP extraction were the following:extraction temperature,87℃; ratio of water to raw material,12mL/g; extraction time,100min; and extraction times,3. Under these conditions, the experimental value was25.49±0.11%, which is well matched with value predicted by the model. The optimal conditions provide the basis of experimental data and theoretical analysis for the further development and utilization polysaccharides from A. macrostemon Bunge.
     2. Isolation, purification, physico-chemical characterization and structural elucidation
     The dried pretreated bulbs of A. macrostemon Bunge was extracted with water by use of the optimal extraction conditions determined as mentioned above. The extract was then centrifuged, and the supernatant was mixed with absolute ethanol to a final ethanol concentration of40%,60%,80%. The resulting precipitate was obtained from centrifugation and dried, affording AMP40, AMP60and AMP80. The recovery rates were3.2%,11.8%and9.83%, respectively. The crude AMP were purified by DEAE-Cellulose52chromatography and Sephadex G-100chromatography to afford4fractions, AMP40-1, AMP40-2, AMP60-1and AMP80-1. Based on the characterization results of AMP by the phenol-sulfuric acid method, the Bradford assay method, the hydroxydiphenyl assay, we found that AMP40-2was quite different from the others, especially AMP40-2had relative higher content of uronic acid (30.22%).
     The molecular weights of AMP were determined by HPLC with size exclusion column. All of them showed a single and symmetrically sharp peak, indicated that they were homogeneous polysaccharide. According to the calibration curve of the elution times of standards, the molecular weights of AMP40-1, AMP40-2, AMP60-1and AMP80-1were estimated to be18.2kDa、105.0kDa、11.2kDa and8.1kDa, respectively.
     Monosaccharide composition analysis was acted by using the GC method. GC analysis showed that AMP40-1was composed of arabinose and glucose in a molar ratio of1.00:5.03. AMP40-2was composed of rhamnose, arabinose, glucose and galactose in a molar ratio of1.41:2.34:1.62:1.00. AMP60-1was composed of arabinose, glucose and galactose in a molar ratio of9.73:1.10:1.00. AMP80-1was composed of arabinose and glucose in a molar ratio of1.00:2.41. Results indicated that monosaccharide composition of AMP40-2was more complicated than the others.
     Infrared spectroscopy analysis indicated that the four samples showed typical peaks of polysaccharide. The characteristic absorption bands at833cm-1and894cm-1indicated that AMP40-2contained both a-glycosidic and β-glycosidic linkages, the band near1741cm-1was in coincidence with the fact that AMP40-2had relative higher uronic acid contents. UV analysis showed that the polysaccharides in the260-280nm no obvious absorption peak, indicate that it does not contain nucleic acids and proteins.
     The structural characterizations of purified polysaccharides were studied by using periodic acid oxidation, Smith degradation, methylation combined with HPLC, GC, GC-MS, FTIR and NMR spectra. Results showed that sugar rings of AMP40-1, AMP40-2, AMP60-1and AMP80-1were pyranose rings. AMP40-1were linked mainly by β-configuration glycosidic bond, and contained backbone chains of (1,2)-linked D-glucosyl and (1,2)-linked arabinosyl residues. The branch chains with non-reducing terminal glucose residues were attached to backbone chain by1→6glycosidic bonds; AMP40-2were connected by a-configuration and β-configuration glycosidic bonds. Backbone chains of AMP40-2were linked by (1,6)-linked D-glucosyl and (1,6)-linked galactosyl residues. The branch chains with non-reducing terminal glucose, rhamnose and arabinose residues were attached to backbone chain by (1,2)-linked rhamnosyl glycosidic bonds; It was concluded that AMP60-1contained a backbone of (1,6)-linked D-glucosyl and (1,5)-arabinosyl residues with small amounts of the non-reducing terminal arabinose residues, also contained a minor (1,2,6)-D-glucose residue; AMP80-1were linked mainly by β-configuration glycosidic bond, and contained backbone chains of (1,2)-linked D-glucosyl residues. The branch chains with non-reducing terminal glucose and arabinose residues were attached to backbone chain by1→6glycosidic bonds. Congo red dye experiments results indicated that AMP40-2possessed the triple helical structure.
     3. Antioxidant activities in vitro and hepatoprotective effects of polysaccharides from Allium macrostemon Bunge
     The antioxidant activities in vitro of polysaccharides from A. macrostemon Bunge were evaluated by measuring2,2-diphenyl-1-picrylhydrazyl (DPPH·) radical and hydroxyl radical (OH·) scavenging activity, superoxide radical scavenging activity (O2·), metal ion chelating activity and reducing power. During in vitro antioxidant assay, AMP40-2exhibited relative stronger scavenging activities than the others in most cases. The differences in antioxidant activities in vitro might be due to their differences in molecular weight, monosaccharide composition and uronic acid content.
     The antioxidant activities in vivo of crude AMP were investigated of against CCl4-induced acute liver damage in Kuming mice. The results showed that pretreatments with AMP40could improve markedly the activities of those antioxidant enzymes and the levels of CCl4-treated mice. The antioxidative system tended to be normalized by the protective action of AMP40. Results showed that molecular weight, monosaccharide composition and the uronic acid content of polysaccharide affects its antioxidant property directly.
     4. Antibacterial activity, the antitumor activity and neurotrophic activity of polysaccharides from Allium macrostemon Bunge
     The antimicrobial effects of extracts (AMW, AME and AMP) were evaluated by agar diffusion method. The results showed that:A. macrostemon Bunge has some anti-bacterial activity, its antibacterial ingredients present in the ethanol extract, may be a volatile oil or other small molecules, while the anti-bacterial activity of polysaccharides (water-soluble macromolecules) was weak.
     MTT assay was used to investigate the anti-proliferation activities against human gastric cancer cells (BGC-823) and human lung adenocarcinoma epithelial cells (A549) in vitro of AMP40-1、AMP40-2、AMP60-1and AMP80-1. The results showed that AMP40-1, AMP60-1and AMP80-1did not inhibit the growth of human lung cancer cell line A549, while AMP40-2inhibited proliferation of A549in a dose-dependent manner. For human gastric carcinoma cell BGC-823, AMP40-1、AMP40-2、AMP60-1and AMP80-1significantly inhibited proliferation in dose-dependent and time-dependent manner. The results demonstrate that the molecular weight, chemical property, monosaccharide composition and linkage type of polysaccharide play important roles in the antitumor activity of polysaccharide.
     The neurotrophic activity of polysaccharides from A. macrostemon Bunge were investingated by PC12cell assay. The screening results showed that AMP40-2induced the differentiation of PC12cell and has obvious neurotrophic activity.
引文
[1]国家药典委员会.中华人民共和国药典2010年版一部[M].北京;中国医药科技出版社.2010:353.
    [2]《中药辞海》编审组.中药辞海(第四卷)[M].北京;中国医药科技出版社.1998:1546.
    [3]姜勇,王乃利,姚新生.中药薤白的研究进展[J].天然产物研究与开发,2000,(05):74-79.
    [4]汪冶,文惠玲.薤白的本草考证[J].中国中药杂志,1991,(07):389-390+446.
    [5]吴雁,彭军鹏,姚利强,等.葱属植物挥发油研究——1中药薤白(Allium macrostemon Bunge)挥发油成分的研究[J].沈阳药学院学报,1993,(01):45-46+62.
    [6]蒋合众,马超英,李艳,等.薤白挥发油的超临界二氧化碳萃取工艺研究[J].时珍国医国药,2009,(01):91-92.
    [7]林琳,蒋合众,罗丽勤,等.薤白挥发油成分的超临界CO2萃取及GC-MS分析[J].分析试验室,2008,(01):115-118.
    [8]吴雁,彭军鹏,姚新生,等.薤白甙甲——一种新的甾体皂甙[J].沈阳药学院学报,1992,(01):69-70.
    [9]彭军鹏,吴雁,姚新生,等.薤白中两种新甾体皂甙成分[J].药学学报,1992,(12):918-922.
    [10]Xie W, Zhang Y, Wang N, et al. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice[J]. European Journal of Pharmacology,2008,599(1-3):159-165.
    [11]彭军鹏,王宣,姚新生.薤白中两种新呋甾皂甙的结构[J].药学学报,1993,(07):526-531.
    [12]彭军鹏,姚新生,冈田嘉仁,等.薤白甙J,K和L的结构[J].药学学报,1994,(07):526-531.
    [13]Chen H-F, Wang G-H, Luo Q, et al. Two New Steroidal Saponins from Allium macrostemon Bunge and Their Cytotoxity on Different Cancer Cell Lines[J]. Molecules,2009,14(6):2246-2253.
    [14]彭军鹏,乔艳秋,姚新生.得自小根蒜及薤中的几种含氮化合物[J].中国药物化学杂志,1995,(02):134-138.
    [15]Okuyama T, Shibata S, Hoson M, et al. Effect of oriental plant drugs on platelet-aggregation.Ⅲ. effect of chines drug xiebai on human-platelet aggregation[J]. Planta Medica,1986,(3):171-175.
    [16]Goda Y, Shibuya M, Sankawa U. Inhibitors of the arachidonate cascade from Allium chinense and their effect on in vitro platelet aggregation[J]. Chem Pharm Bull (Tokyo),1987,35(7):2668-2674.
    [17]Okuyama T, Fujita K, Shibata S, et al. Effects of chinese drugs xiebai and dasuan on human platelet aggregation allium-bakeri allium-sativum[J]. Planta Medica,1989,55(3):242-244.
    [18]夏新奎.薤白多糖的分离纯化及抗氧化活性研究[D]:西北农林科技大学,2007:37.
    [19]夏新奎,杨海霞,李纯,等.薤白粗多糖提取工艺研究[J].安徽农业科学,2006,(17): 4403-4405.
    [20]夏新奎,杨海霞,李纯,等.薤白多糖的分离纯化及组成分析[J].食品工业科技,2010,(01):244-247.
    [21]夏新奎,张建新.薤白多糖抗氧化活性研究[J].信阳农业高等专科学校学报,2007,(04):138-139.
    [22]杜敏华,田龙.小根蒜多糖的提取纯化及其单糖组分的鉴定[J].食品工业科技,2007,(04):77-80.
    [23]杜敏华,田龙,惠丰立,等.小根蒜多糖的分离及其组分的初步表征[J].食品工业,2007,(03):25-28.
    [24]李向红,顾丽贞,张百舜,等.薤白提取物的抗氧化作用研究[J].中药材,1994,(11):34-37+56.
    [25]孟庆国,朱庆磊,邓淑娥,等.薤白水提物对羟自由基的清除作用[J].潍坊医学院学报,1998,(01):66-67.
    [26]陈锡雄.薤白抑菌作用的初步研究[J].杭州师范学院学报(自然科学版),2004,(04):337-340.
    [27]张传军,刘超,姜晓坤.薤白乙醇提取物的抑菌特性[J].食品科学,2011,(05):119-122.
    [28]关于天然药物资源预防化学致癌的研究(11):薤白及含有薤白的汉方方剂的抗促癌作用[J].国外医学(中医中药分册),1996,(06):40.
    [29]吴志民,张岂凡,薛英威,等.薤白挥发油诱导人胃癌细胞的凋亡[J].中国临床康复,2006,(19):115-117.
    [30]张卿,高尔.薤白挥发油抗肿瘤作用的实验研究[J].肿瘤,2003,(03):228-231.
    [31]彭军鹏,乔艳秋,肖克岳,等.葱属植物挥发油研究Ⅲ_薤(Allium chinense G. Don)恽发油成分的研究[J].中国药物化学杂志,1994,(04):282-283.
    [32]Lee S, Kim DH, Lee CH, et al. Antidepressant-like activity of the aqueous extract of Allium macrostemon in mice[J]. Journal of Ethnopharmacology,2010,131(2):386-395.
    [33]吴洪元.薤白的炮制研究[J].中药材,1995,(04):192-194.
    [34]奚肇庆.薤白平喘作用的临床应用与展望[J].中西医结合杂志,1991,(09):575-576.
    [35]何祥久,王乃利,邱峰,等.瓜蒌薤白白酒汤螺甾皂营类活性成分研究[J].药学学报,2003,(06):433-437.
    [36]何祥久,邱峰,姚新生.瓜萎薤白白酒汤活性成分研究(Ⅱ):呋甾皂营类成分[J].沈阳药科大学学报,2003,(02):107-110.
    [37]何祥久,王乃利,邱峰,等.瓜蒌薤白白酒汤活性成分研究(Ⅲ)黄酮类活性成分[J].中国中药杂志,2003,(05):420-422.
    [38]何祥久,邱峰,姚新生.瓜萎薤白白酒汤活性成分研究Ⅳ:含氮及其它类化合物[J].天然产物研究与开发,2003,(01):9-12.
    [39]张建堂,李国秀.瓜蒌薤白白酒汤的方药药理及临床治验[J].中国医药指南,2007,(S1):42-43.
    [40]李亚娟,周佳玮,卞卡.瓜蒌薤白半夏汤舒张血管机制研究[J].中药药理与临床,2010,(04):5-7.
    [41]沈雁,韦红.瓜萎薤白半夏汤对心肌纤维化中整合素p1的抑制作用[J].现代药物与临床,2010,(04):277-281.
    [42]边秀娟.加味瓜萎薤白半夏汤对哮喘小鼠血清IL-5的影响[J].河南中医学院学报,2007,(06):18+20.
    [43]王玲玲,高莉,郑素霞,等.瓜萎薤白半夏汤中不同半夏制品治疗高脂血症临床观察[J].世界中西医结合杂志,2008,(09):542-543.
    [44]何银辉,蔡奕,罗仕德.加味瓜萎薤白半夏汤治疗冠心病心绞痛58例临床观察[J].中医药导报,2006,(02):21-23.
    [45]乔文军.瓜蒌薤白半夏汤治疗冠心病心绞痛30例观察[J].实用中医内科杂志,2007,(07):60.
    [46]王英.瓜萎薤白半夏汤治疗心律失常50例[J].中国中医急症,2005,(04):369-370.
    [47]王蓉,吴剑波.多糖生物活性的研究进展[J].国外医药(抗生素分册),2001,(03):97-100.
    [48]陈霞.无花果多糖的提取及其对鲫鱼非特异性免疫功能影响的研究[D],2009:1.
    [49]何余堂,潘孝明.植物多糖的结构与活性研究进展[J].食品科学,2010,(17):493-496.
    [50]Schepetkin IA, Quinn MT. Botanical polysaccharides:Macrophage immunomodulation and therapeutic potential[J]. International Immunopharmacology,2006,6(3):317-333.
    [51]Lin CL, Wang CC, Chang SC, et al. Antioxidative activity of polysaccharide fractions isolated from Lycium barbarum Linnaeus[J]. International Journal of Biological Macromolecules,2009,45(2): 146-151.
    [52]Xu XQ, Wu YD, Chen H. Comparative antioxidative characteristics of polysaccharide-enriched extracts from natural sclerotia and cultured mycelia in submerged fermentation of Inonotus obliquus[J]. Food Chemistry,2011,127(1):74-79.
    [53]Zhu ZY, Si CL, Zhang YM. Purification and antioxidative activities of a water-soluble polysaccharide isolated from Cordyceps gunnii (berk.) Berk. mycelium[J]. Planta Medica,2009,75(9): 942-943.
    [54]Han QA, Ling ZJ, He PM, Xiong CY. Immunomodulatory and Antitumor Activity of Polysaccharide Isolated From Tea Plant Flower[J]. Progress in Biochemistry and Biophysics,2010,37(6): 646-653.
    [55]Zhang Y, Gu M, Wang KP, et al. Structure, chain conformation and antitumor activity of a novel polysaccharide from Lentinus edodes[J]. Fitoterapia,2010,81(8):1163-1170.
    [56]Chen M-z, Xie H-g, Yang L-w, et al. In vitro anti-influenza virus activities of sulfated polysaccharide fractions from Gracilaria lemaneiformis[J]. Virologica Sinica,2010,25(5):341-351.
    [57]Hayashi K, Kanekiyo K, Ohta Y, et al. Anti-influenza A virus activity of an acidic polysaccharide from a blue-green alga Nostoc flagelliforme[J]. Planta Medica,2008,74(9):946-946.
    [58]Hidari K, Takahashi N, Arihara M, et al. Structure and anti-dengue virus activity of sulfated polysaccharide from a marine alga[J]. Biochemical and Biophysical Research Communications, 2008,376(1):91-95.
    [59]Ohta Y, Lee JB, Hayashi K, et al. In vivo anti-influenza virus activity of an immunomodulatory acidic polysaccharide isolated from Cordyceps militaris grown on germinated soybeans[J]. Journal of Agricultural and Food Chemistry,2007,55(25):10194-10199.
    [60]孔鹏,姚翠鸾,齐丽薇,等.海带多糖的抗衰老作用及其机理的研究[J].河北农业大学学报,2007,(04):63-66.
    [61]谢学渊,晁衍明,杜珍,等.天麻多糖的抗衰老作用[J].解放军药学学报,2010,(03):206-209.
    [62]郑媛,沈业寿.桑黄胞内多糖抗衰老作用的研究[J].中国食用菌,2006,(03):38-41.
    [63]钦传光,黄开勋,徐辉碧.泥鳅多糖抗炎作用的实验研究[J].中国药理学通报,2001,(06):715-716.
    [64]张丽娇,费瑞,高立宏,等.植物多糖抗炎活性的研究进展[J].北方园艺,2010,(20):199-202.
    [65]赵容杰,赵正林,王丹,等.姬松茸多糖的抗炎作用[J].延边大学医学学报,2004,(01):19-22.
    [66]朱燕,陈运喜,吴俊华,等.中华芦荟酸性多糖的分离纯化与抗炎活性[J].中国天然药物,2007,(03):197-200.
    [67]李德远,徐为春,苏喜生,等.枸杞多糖抗辐射效应研究[J].中国药理学通报,2003,(07):839.
    [68]孙元琳,顾小红,李德远,等.当归多糖的制备及抗辐射效应研究[J].食品科学,2005,(12):48-52.
    [69]汪维云.灰树花多糖的抗辐射作用研究[J].安徽农业大学学报,2003,(02):210-212.
    [70]谢萍,覃志英,唐孟俭.多糖抗辐射作用的研究进展[J].中国辐射卫生,2010,(04):507-509.
    [71]陈旭健,张原琪.红菇多糖的提取及其降血糖、血脂作用研究[J].食品科学,2010,(09):255-258.
    [72]李凤林,余蕾.马齿苋多糖降血糖与血脂作用研究[J].中国食品添加剂,2011,(01):64-68.
    [73]罗祖友,胡筱波,吴谋成.植物多糖的降血糖与降血脂作用[J].食品科学,2007,(10):596-600.
    [74]Chen JR, Yang ZQ, Hu TJ, et al. Immunomodulatory activity in vitro and in vivo of polysaccharide from Potentilla anserina[J]. Fitoterapia,2010,81(8):1117-1124.
    [75]Fan Y, Chun Z, Luo A, et al. In Vivo Immunomodulatory Activities of Neutral Polysaccharide (DDP1-1) from Dendrobium denneanum[J]. Chinese Journal of Applied and Environmental Biology, 2010,16(3):376-379.
    [76]Khramova DS, Golovchenko VV, Shashkov AS, et al. Chemical composition and immunomodulatory activity of a pectic polysaccharide from the ground thistle Cirsium esculentum Siev[J]. Food Chemistry,2011,126(3):870-877.
    [77]Wang ZM, Peng XA, Lee KLD, et al. Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1[J]. Food Chemistry,2011,125(2):637-643.
    [78]黄洁,宋纪蓉,徐抗震,等.地蚕中多糖的提取与总糖含量的测定[J].食品科学,2004,(08):104-105.
    [79]Lai FR, Wen QBA, Li L, et al. Antioxidant activities of water-soluble polysaccharide extracted from mung bean (Vigna radiata L.) hull with ultrasonic assisted treatment[J]. Carbohydrate Polymers, 2010,81(2):323-329.
    [80]李锦运,郭玉蓉.超声辅助提取冷破碎苹果皮渣中多糖的工艺优化[J].农产品加工(学刊),2010,(10):30-32.
    [81]刘维,吴卫,李冠.超声波法提取猴头菌丝胞内多糖的研究[J].食品工业科技,2008,(03):189-191.
    [82]周泉城,孙军凤.超声波辅助提取桔梗多糖研究[J].食品科学,2007,(07):111-116.
    [83]姜慧燕,林茂,邵平.微波辅助提取香菇菌糠多糖的工艺研究[J].安徽农学通报(下半月刊),2010,(24):34-36.
    [84]吕明,黄山,江春艳.微波法提取西藏芫根多糖的工艺研究[J].中国林副特产,2011,(01):19-21.
    [85]王晓琴,耿顺,李林宴.微波技术提取乌龙茶多糖工艺研究[J].热带作物学报,2010,(12):2277-2280.
    [86]李博,屠幼英,梅鑫,等.响应面法优化超临界CO_2提取茶籽多糖的工艺研究[J].高校化学工程学报,2010,(05):897-902.
    [87]盛桂华,周泉城.超临界CO_2萃取桔梗多糖研究[J].食品研究与开发,2008,(02):26-29.
    [88]王大为,单玉玲,图力古尔.超临界CO_2萃取对蒙古口蘑多糖提取率的影响[J].食品科学,2006,(03):107-110.
    [89]李书倩,张博,辛广,等.复合酶法提取红蘑多糖工艺[J].食品科学,2010,(18):143-146.
    [90]宋慧,马利华,秦卫东,等.复合酶法提取牛蒡多糖[J].粮油加工,2009,(08):109-113.
    [91]尹秀莲,蒋中海,游庆红,等.复合酶法提取松茸多糖及其分子量分布研究[J].食品研究与开发,2011,(01):115-118.
    [92]张明,李苗苗,卢惠.复合酶法提取板蓝根多糖工艺的研究[J].食品科技,2009,(11):208-211.
    [93]赵前程,滕钊,汪秋宽,等.复合酶法提取海带多糖的研究[J].沈阳农业大学学报,2007,(02): 220-223.
    [94]齐慧玲,魏绍云,王继伦,等.Sevag法去除白及多糖中蛋白的研究[J].天津化工,2000,(03):20-21.
    [95]汪艳群,孟宪军,李冬男,等.五味子多糖脱蛋白工艺的研究[J].食品工业科技,2011,(03):280-284.
    [96]杨大伟,吴永尧,唐巧玉.碎米荠多糖的过氧化氢脱色方法研究[J].食品科技,2008,(01):174-177+181.
    [97]扈瑞平,敖长金,杜玲,等.沙葱多糖活性炭脱色工艺的研究[J].科学技术与工程,2010,(34):8380-8383.
    [98]周鸿立,李春华,张英俊.透析法精制玉米须多糖工艺的研究[J].上海中医药杂志,2010,(10):81-83.
    [99]韦巍.多糖的研究进展[J].国外医学药学分册,2005,(03):179-184.
    [100]蔡孟深,李中军.糖化学——基础、反应、合成、分离及结构[M].北京:化学工业出版社.2006:397.
    [101]吴春华,陈艺勤,邱恬,等.多糖微观构象与抗肿瘤活性关系研究进展[J].中国粮油学报,2011,(04):123-128.
    [102]Wang X, Zhang L. Physico-chemical properties and antitumor activities for sulfated derivatives of lentinan[J]. Carbohydrate Research,2009,344(16):2209-2216.
    [103]李世刚,张永琦,赵健雄,等.红芪多糖体外抗肿瘤活性及构效关系研究[J].中药药理与临床,2007,(06):35-37.
    [104]王希玉,路莉,胡燕,等.不同红芪多糖抗肿瘤和免疫调节作用研究[J].中药药理与临床,2009,(05):72-74.
    [105]高其品,张大军,刘平,等.银耳多糖及其抗肿瘤活性的研究(Ⅰ)[J].天然产物研究与开发,1991,(03):43-48.
    [106]韩英,徐文清,杨福军,等.银耳多糖的抗肿瘤作用及其机制[J].医药导报,2011,(07):849-852.
    [107]Yuan F, Song L, Yu R, et al. The purification and characterization of polysaccharides isolated from Taxus chinensis and their antitumor activities in vitro[J]. Chinese Journal of Biochemical Pharmaceutics, 2011,32(1):41-43.
    [108]Wang L, Jiang H. Antitumor activity of polysaccharide from Aralia elata Seem and the effect on im-mune functions in tumor-bearing mice[J]. Chinese Journal of Immunology,2011,27(2):130-134.
    [109]周林珠,杨祥良,周井炎,等.多糖抗氧化作用研究进展[J].中国生化药物杂志,2002,(04):210-212.
    [110]董加宝,李芳.苦瓜多糖的制备及其抗氧化性质研究[J].湖南科技学院学报,2008,(08):51-54.
    [111]李利华.百合多糖的含量测定及抗氧化活性研究[J].湖北农业科学,2011,(14):2954-2957.
    [112]凌洪锋,苏丹,曹洋.黄芪多糖抗氧化作用研究[J].医学理论与实践,2005,(08):872-874.
    [113]沈建林,沈红元.香蕉多糖的抗氧化活性研究[J].食品科技,2007,(02):264-266.
    [114]余萍,郑立群,方一泓.茶树菇多糖抗氧化性能的研究[J].食品研究与开发,2009,(11):36-40.
    [115]郑慧芳,郭层城,杨建文.当归粗多糖对运动大鼠心肌组织抗氧化能力的影响[J].甘肃联合大学学报(自然科学版),2009,(05):83-86.
    [116]He L, Ji P, Gong X, et al. Physico-chemical characterization, antioxidant and anticancer activities in vitro of a novel polysaccharide from Melia toosendan Sieb. Et Zucc fruit[J]. International Journal of Biological Macromolecules,2011,49(3):422-427.
    [117]Chen J-R, Yang Z-Q, Hu T-J, et al. Immunomodulatory activity in vitro and in vivo of polysaccharide from Potentilla anserina[J]. Fitoterapia,2010,81(8):1117-1124.
    [118]Yi Y, Zhang M-W, Liao S-T, et al. Structural features and immunomodulatory activities of polysaccharides of longan pulp[J]. Carbohydrate Polymers,2012,87(1):636-643.
    [119]王长云,管华诗.多糖抗病毒作用研究进展Ⅰ.多糖抗病毒作用[J].生物工程进展,2000,(01):17-20.
    [120]Li X, Zhou A, Han Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro[J]. Carbohydrate Polymers,2006,66(1):34-42.
    [121]Saha S, Galhardi LCF, Yamamoto KA, et al. Water-extracted polysaccharides from Azadirachta indica leaves:Structural features, chemical modification and anti-bovine herpesvirus type 1 (BoHV-1) activity[J]. International Journal of Biological Macromolecules,2010,47(5):640-645.
    [122]李晓东,李娟,杨丽霞,等.中药植物多糖降血糖作用的研究进展[J].甘肃中医,2010,(11):77-80.
    [123]Yang LQ, Zhang LM. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[J]. Carbohydrate Polymers,2009,76(3): 349-361.
    [124]聂凌鸿,宁正祥.活性多糖的构效关系[J].林产化学与工业,2003,(04):89-94.
    [125]翁梁,温鲁.药用真菌多糖研究进展[J].食品科学,2008,(12):748-751.
    [126]刘义,钱和.糖胺聚糖的分析测定方法[J].水产科学,2005,(05):46-49.
    [127]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999:540.
    [128]霍光华,李来生,高荫榆.波谱在多糖结构分析上的应用[J].生命的化学,2002,(02):194-196.
    [129]刘玉红,王凤山.核磁共振波谱法在多糖结构分析中的应用[J].食品与药品,2007,(08):39-43.
    [130]王展,方积年.高场核磁共振波谱在多糖结构研究中的应用[J].分析化学,2000,(02):240-247.
    [131]杜秀菊,张劲松,潘迎捷.核磁共振技术在食用菌多糖结构分析中的作用[J].中国食用菌,2010,(01):3-6.
    [132]李燕杰,董秀萍,朱蓓薇,等.姬松茸液体发酵胞内多糖的提取[J].食品工业科技,2005,(04):143-145.
    [133]王兆梅,李琳,郭祀远,等.活性多糖构效关系研究评述[J].现代化工,2002,(08):18-21.
    [134]Ding X, Zhu F, Gao S. Purification, antitumour and immunomodulatory activity of water-extractable and alkali-extractable polysaccharides from Solanum nigrum L[J]. Food Chemistry, 2012,131(2):677-684.
    [1]Burana-Osot J, Pattanapanyasat K, Soonthornchareonnon N, et al. Characterisation and immuno-stimulating activity of polysaccharides from Thai medicinal plants[J]. Natural Product Research, 2010,24(15):1403-1412.
    [2]Fu CL, Tian, H. J., et al. Some properties of an acidic protein-bound polysaccharide from the fruit of pumpkin[J]. Food Chemistry,2007,100(3):944-947.
    [3]Han XQ, Wu XM, Chai XY, et al. Isolation, characterization and immunological activity of a polysaccharide from the fruit bodies of an edible mushroom, Sarcodon aspratus (Berk.) S. Ito[J]. Food Research International,2011,44(1):489-493.
    [4]Nie S-P, Xie M-Y. A review on the isolation and structure of tea polysaccharides and their bioactivities[J]. Food Hydrocolloids,2011,25(2):144-149.
    [5]Schepetkin IA, Quinn MT. Botanical polysaccharides:Macrophage immunomodulation and therapeutic potential[J]. International Immunopharmacology,2006,6(3):317-333.
    [6]Fritsch RM, Friesen N, Rabinowitch HD. Evolution, domestication and taxonomy[J]. Allium crop science:Recent advances,2002:5-30.
    [7]Zhang Q,& Gao, E. Advances in the study of Allium Macrostemon Bunge[J]. China Journal of Chinese Materia Medica,2003,28:105-107.
    [8]Chen HF, Wang GH, Wang NL, et al. New furostanol saponins from the bulbs of Allium macrostemon Bunge and their cytotoxic activity[J]. Pharmazie,2007,62(7):544-548.
    [9]Chen HF, Wang GH, Luo Q, et al. Two New Steroidal Saponins from Allium macrostemon Bunge and Their Cytotoxity on Different Cancer Cell Lines[J]. Molecules,2009,14(6):2246-2253.
    [10]Chen HF, Wang, N. L., et al. Study on bioactive steroidal saponins of Allium Macrostemon Bunge[J]. Chinese Journal of Medicinal Chemistry,2005, (15):142-146.
    [11]Kuroda M, Mimaki Y, Kameyama A, et al. Steroidal saponins from Allium chinense and their inhibitory activities on Cyclic-AMP phosphodiesterase and Na+/K+ ATPase[J]. Phytochemistry, 1995,40(4):1071-1076.
    [12]Lee S, Kim DH, Lee CH, et al. Antidepressant-like activity of the aqueous extract of Allium macrostemon in mice[J]. Journal of Ethnopharmacology,2010,131(2):386-395.
    [13]Peng JP, Wang, X.,& Yao, X.S. Study on two new furostanol glycosides from Allium macrostemon Bunge[J]. Chinese Chemical Letters,1998,33:355-361.
    [14]Xie WD, Zhang Y, Wang NL, et al. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bung, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice[J]. European Journal of Pharmacology,2008,599(1-3):159-165.
    [15]Koch HP,& Lawson, L. D.. Garlic:The Science and Therapeutic Application of Allium sativum L. and Related Species [M]. Baltimore; Williams and Wilkins.1996:329.
    [16]夏新奎,杨海霞,李纯,尹健.薤白粗多糖提取工艺研究[J].安徽农业科学,2006,(17):4403-4405.
    [17]Lee WC, Yusof S, Hamid NSA, et al. Optimizing conditions for hot water extraction of banana juice using response surface methodology (RSM)[J]. Journal of Food Engineering,2006,75(4):473-479.
    [18]郭雷,陈宇.响应面法优化微波辅助提取浒苔多糖的工艺[J].食品科学,2010,31(14):52-57.
    [19]Qiao D, Hu B, Gan D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii[J]. Carbohydrate Polymers,2009,76(3):422-429.
    [20]Sun Y, Liu J, Kennedy JF. Application of response surface methodology for optimization of polysaccharides production parameters from the roots of Codonopsis pilosula by a central composite design[J]. Carbohydrate Polymers,2010,80(3):949-953.
    [21]Zou Y, Chen X, Yang W, et al. Response surface methodology for optimization of the ultrasonic extraction of polysaccharides from Codonopsis pilosula Nannf.var.modesta L.T.Shen[J]. Carbohydrate Polymers,2011,84(1):503-508.
    [22]张佳瑜,吴丹,陈晟,等.麦芽糖诱导软化芽孢杆菌α-环糊精葡萄糖基转移酶在枯草杆菌中的表达[J].中国生物工程杂志,2010,30(12):42-48.
    [23]Dubois M, Gilles, K. A., et al. Colorimetric method for determination of sugars and related substances.[J]. Analytical Biochemistry,1956,28:350-356.
    [24]Fox DJ, Gray, P. P., et al. An explanation of the discrepancy between the results of h.p.l.c. and DNS assays in the analysis of lignocellulosic hydrolysates[J]. Journal of Chemical Technology and Biotechnology,1984,34:171-175.
    [25]Revankar MS, Desai KM, Lele SS. Solid-state fermentation for enhanced production of laccase using indigenously isolated Ganoderma sp[J]. Applied Biochemistry and Biotechnology,2007,143: 16-26.
    [26]Banik RM, Pandey SK. Selection of metal salts for alkaline phosphatase production using response surface methodology[J]. Food Research International,2009,42(4):470-475.
    [27]Madamba PS, Yabes RP. Determination of the optimum intermittent drying conditions for rough rice (Oryza sativa, L.)[J]. Lebensmittel-Wissenschaft und-Technologie,2005,38(2):157-165.
    [28]Zhang Q-A, Fan X-H, Zhang Z-Q, et al. Optimization of SC-CO2 extraction of oil from almond pretreated with autoclaving[J]. LWT-Food Science and Technology,2009,42(9):1530-1537.
    [29]Zhong K, Wang Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology[J]. Carbohydrate Polymers,2010,80(1):19-25.
    [30]朱会霞,孙金旭.Nisin液体发酵工艺条件的响应面分析优化[J].中国乳品工业,2009,37(08):31-34.
    [1]Chandra K, Ghosh K, Ojha AK, et al. Chemical analysis of a polysaccharide of unripe (green) tomato (Lycopersicon esculentum)[J]. Carbohydrate Research,2009,344(16):2188-2194.
    [2]夏新奎.薤白多糖的分离纯化及抗氧化活性研究[D]:西北农林科技大学,2007:37.
    [3]夏新奎,杨海霞,李纯,等.薤白粗多糖提取工艺研究[J].安徽农业科学,2006,(17):4403-4405.
    [4]夏新奎,杨海霞,李纯,等.薤白多糖的分离纯化及组成分析[J].食品工业科技,2010,(01):244-247.
    [5]夏新奎,张建新.薤白多糖抗氧化活性研究[J].信阳农业高等专科学校学报,2007,(04):138-139.
    [6]杜敏华,田龙.小根蒜多糖的提取纯化及其单糖组分的鉴定[J].食品工业科技,2007,(04):77-80.
    [7]杜敏华,田龙,惠丰立,等.小根蒜多糖的分离及其组分的初步表征[J].食品工业,2007,(03):25-28.
    [8]Qiao D, Hu B, Gan D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii[J]. Carbohydrate Polymers,2009,76(3):422-429.
    [9]Dubois M, Gilles, K. A., Hamilton, J. K., et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Biochemistry,1956,28:350-356.
    [10]Bradford MM. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytic Biochemistry,1976, (722):48-254.
    [11]Blumenkrantz N,& Asboe-Hansen, G. New Method for quantitative determination of uronic acids[J]. Analytical Biochemistry,1973,54:484-489.
    [12]Dodgson KS,& Price, R. G A note on the determination of the ester sulfate content of sulfate polysaccharides[J]. Biochemistry Journal,1962, (84):106-110.
    [13]Alsop RM, Vlachogiannis GJ. Determination of the molecular-weight of clinical dextran by gel-permeation chromatography on TSK-Pw-type columns[J]. Journal of Chromatography,1982,246(2): 227-240.
    [14]Roy SK, Maiti D, Mondal S, et al. Structural analysis of a polysaccharide isolated from the aqueous extract of an edible mushroom, Pleurotus sajor-caju, cultivar Black Japan[J]. Carbohydrate Research, 2008,343(6):1108-1113.
    [15]Luo J, Liu J, Sun Y, et al. Medium optimization, preliminary characterization and antioxidant activity in vivo of mycelial polysaccharide from Phellinus baumii Pilat[J]. Carbohydrate Polymers, 2010,81(3):533-540.
    [16]Wang Z-M, Peng X, Lee K-LD, et al. Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1[J]. Food Chemistry,2011,125(2):637-643.
    [17]Kodali VP, Das S, Sen R. An exopolysaccharide from a probiotic:Biosynthesis dynamics, composition and emulsifying activity[J]. Food Research International,2009,42(5-6):695-699.
    [18]Wang ZM, Peng XA, Lee KLD, et al. Structural characterisation and immunomodulatory property of an acidic polysaccharide from mycelial culture of Cordyceps sinensis fungus Cs-HK1[J]. Food Chemistry,2011,125(2):637-643.
    [19]赵力超,杜征,刘欣,等.慈姑抗性淀粉的理化特性研究[J].食品科学,2010,(17):55-59.
    [20]夏尔宁.多糖的结构分析[J].生化药物杂志,1985,(04):28-33.
    [1]Yang LQ, Zhang LM. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[J]. Carbohydrate Polymers,2009,76(3): 349-361.
    [2]Suarez ER, Syvitski R, Kralovec JA, et al. Immunostimulatory polysaccharides from Chlorella pyrenoidosa. A new galactofuranan. Measurement of molecular weight and molecular weight dispersion by DOSY NMR[J]. Biomacromolecules,2006,7(8):2368-2376.
    [3]Tao Y, Zhang L, Yan F, Wu X. Chain conformation of water-insoluble hyperbranched polysaccharide from fungus[J]. Biomacromolecules,2007,8(7):2321-2328.
    [4]Surenjav U, Zhang L, Xu X, et al. Effects of molecular structure on antitumor activities of (1→3)-β-d-glucans from different Lentinus Edodes[J]. Carbohydrate Polymers,2006,63(1):97-104.
    [5]吴素珍,李加林,李银保.薤白微量元素的测定[J].时珍国医国药,2007,(11):2654-2655.
    [6]Fields R, Dixon HB. A spectrophotometric method for the microdetermination of periodate[J]. The Biochemical journal,1968,108(5):883-887.
    [7]Qiao D, Liu J, Ke C, et al. Structural characterization of polysaccharides from Hyriopsis cumingii[J]. Carbohydrate Polymers,2010,82(4):1184-1190.
    [8]Kuang H, Xia Y, Liang J, et al. Structural characteristics of a hyperbranched acidic polysaccharide from the stems of Ephedra sinica and its effect on T-cell subsets and their cytokines in DTH mice[J]. Carbohydrate Polymers,2011,86(4):1705-1711.
    [9]Niu Y, Wang H, Xie Z, et al. Structural analysis and bioactivity of a polysaccharide from the roots of Astragalus membranaceus (Fisch) Bge. var. mongolicus (Bge.) Hsiao[J]. Food Chemistry, 2011,128(3):620-626.
    [10]Yi Y, Zhang M-W, Liao S-T, et al. Structural features and immunomodulatory activities of polysaccharides of longan pulp[J]. Carbohydrate Polymers,2012,87(1):636-643.
    [11]Ogawa K, Wanatabe T, Tsurugi J, et al. Conformational behavior of a gel-forming (1-->3)-[beta]--glucan in alkaline solution[J]. Carbohydrate Research,1972,23(3):399-405.
    [12]Yi Y, Zhang M-W, Liao S-T, et al. Effects of alkali dissociation on the molecular conformation and immunomodulatory activity of longan pulp polysaccharide (LPI)[J]. Carbohydrate Polymers,2012,87(2): 1311-1317.
    [13]Liu Y, Sheng Y, Yuan G, et al. Purification and physico-chemical properties of different polysaccharide fractions from the water extract of Boschniakia rossica and their effect on macrophages activation[J]. International Journal of Biological Macromolecules,2011,49(5):1007-1011.
    [14]邓云霞,瞿伟菁,曹群华,等.金耳胞外多糖的结构分析[J].中草药,2005,(04):497-498.
    [15]陈海华,许时婴,王璋.亚麻籽胶中的中性多糖NFG-1一级结构的研究[J].食品与生物技术学报,2007,(01):65-70.
    [16]葛青,张安强,孙培龙.桑黄子实体多糖的分离纯化及单糖组成研究[J].食品科学,2008,(09):291-294.
    [17]张凡华,严浪,张树明,等.低分子量南瓜多糖LWPP-Ia的结构研究[J].食品科学,2009,(01):25-27.
    [18]Wu M-J, Jiang D-z, Liu T-m, et al. Structural Analysis of Water-soluble Polysaccharide PIP1 Extracted from the Cultured Mycelium of Phellinus igniarius[J]. Chemical Research in Chinese Universities,2006,22(6):708-711.
    [19]杜予民,杨建红,孔振武,等.野生和人工栽培漆树液多糖的分子结构与生物活性[J].高等学校化学学报,1999,(03):399-402.
    [20]Zhu H, Di H, Zhang Y, Zhang J, et al. A protein-bound polysaccharide from the stem bark of Eucommia ulmoides and its anti-complementary effect[J]. Carbohydrate Research,2009,344(11): 1319-1324.
    [21]蔡孟深,李中军.糖化学——基础、反应、合成、分离及结构[M].北京:化学工业出版社.2006:399.
    [22]王顺春,施松善,崔健,等.当归中一种杂多糖的分离纯化与结构鉴定[J].中国药学杂志,2007,(16):1255-1258.
    [23]Rout D, Mondal S, Chakraborty I, et al. The structure and conformation of a water-insoluble (1→3)-,(1→6)-[beta]-d-glucan from the fruiting bodies of Pleurotus florida[J]. Carbohydrate Research, 2008,343(5):982-987.
    [1]Wang J, Zhang J, Zhao B, et al. A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method:Molecule weight and antioxidant activities evaluation[J]. Carbohydrate Polymers,2010,80(1):84-93.
    [2]Weijl NI, Cleton FJ, Osanto S. Free radicals and antioxidants in chemotherapy-induced toxicity[J]. Cancer Treatment Reviews,1997,23(4):209-240.
    [3]Marx JL. Oxygen free-radicals linked to many diseases[J]. Science,1987,235(4788):529-531.
    [4]He L, Ji P, Gong X, et al. Physico-chemical characterization, antioxidant and anticancer activities in vitro of a novel polysaccharide from Melia toosendan Sieb. Et Zucc fruit[J]. International Journal of Biological Macromolecules,2011,49(3):422-427.
    [5]赵雪,董诗竹,孙丽萍,等.海带多糖清除氧自由基的活性及机理[J].水产学报,2011,(04):531-538.
    [6]Thetsrimuang C, Khammuang S, Chiablaem K, et al. Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lev[J]. Food Chemistry,2011,128(3):634-639.
    [7]Tian L, Zhao Y, Guo C, et al. A comparative study on the antioxidant activities of an acidic polysaccharide and various solvent extracts derived from herbal Houttuynia cordata[J]. Carbohydrate Polymers,2011,83(2):537-544.
    [8]Gao T, Ma S, Song J, et al. Antioxidant and immunological activities of water-soluble polysaccharides from Aconitum kusnezoffii Reichb[J]. International Journal of Biological Macromolecules,2011,49(4):580-586.
    [9]Jahanbin K, Gohari AR, Moini S, et al. Isolation, structural characterization and antioxidant activity of a new water-soluble polysaccharide from Acanthophyllum bracteatum roots[J]. International Journal of Biological Macromolecules,2011,49(4):567-572.
    [10]Thetsrimuang C, Khammuang S, Chiablaem K, et al. Antioxidant properties and cytotoxicity of crude polysaccharides from Lentinus polychrous Lev[J]. Food Chemistry,2011,128(3):634-639.
    [11]Ye C-L, Hu W-L, Dai D-H. Extraction of polysaccharides and the antioxidant activity from the seeds of Plantago asiatica L[J]. International Journal of Biological Macromolecules,2011,49(4): 466-470.
    [12]Zhang Z, Wang X, Yu S, et al. Isolation and antioxidant activities of polysaccharides extracted from the shoots of Phyllostachys edulis (Carr.)[J]. International Journal of Biological Macromolecules, 2011,49(4):454-457.
    [13]Zhang Z, Wang X, Zhang J, et al. Potential antioxidant activities in vitro of polysaccharides extracted from ginger(Zingiber officinale)[J]. Carbohydrate Polymers,2011,86(2):448-452.
    [14]Wu W, Zhu Y, Zhang L, et al. Extraction, preliminary structural characterization, and antioxidant activities of polysaccharides from Salvia miltiorrhiza Bunge[J]. Carbohydrate Polymers,2012,87(2): 1348-1353.
    [15]Lan M-B, Zhang Y-H, Zheng Y, et al. Antioxidant and Immunomodulatory Activities of Polysaccharides from Moxa(Artemisia argyi) Leaf[J]. Food Science and Biotechnology,2010,19(6): 1463-1469.
    [16]Zha X-Q, Wang J-H, Yang X-F, et al. Antioxidant properties of polysaccharide fractions with different molecular mass extracted with hot-water from rice bran[J]. Carbohydrate Polymers,2009,78(3): 570-575.
    [17]Wang J, Zhang Q, Zhang Z, et al. Antioxidant activity of sulfated polysaccharide fractions extracted from Laminaria japonica[J]. International Journal of Biological Macromolecules,2008,42(2):127-132.
    [18]Chen J, Zhang T, Jiang B, et al. Characterization and antioxidant activity of Ginkgo biloba exocarp polysaccharides[J]. Carbohydrate Polymers,2012,87(1):40-45.
    [19]Fan L, Li J, Deng K, et al. Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum[J]. Carbohydrate Polymers,2012,87(2):1849-1854.
    [20]赵琳静,宋小平,黎方雅.多糖及其衍生物抗氧化性质的研究进展[J].上海工程技术大学学报,2008,(01):44-47.
    [21]夏新奎,张建新.薤白多糖抗氧化活性研究[J].信阳农业高等专科学校学报,2007,(04):138-139.
    [22]Qiao DL, Ke CL, Hu B, et al. Antioxidant activities of polysaccharides from Hyriopsis cumingii[J]. Carbohydrate Polymers,2009,78(2):199-204.
    [23]Li YH, Jiang B, Zhang T, et al. Antioxidant and free radical-scavenging activities of chickpea protein hydrolysate (CPH)[J]. Food Chemistry,2008,106:444-450.
    [24]Li X, Zhou A, Han Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro[J]. Carbohydrate Polymers,2006,66(1):34-42.
    [25]Liu CH, Wang CH, Xu ZL, et al. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water[J]. Process Biochemistry,2007,42(6):961-970.
    [26]Oyaizu M. Studies on products of the browning reaction. Antioxidative activities of browning reaction products prepared from glucosamine[J]. Japanese Journal of Nutrition [Eiyogaku Zasshi], 1986,44(6):307-315.
    [27]Das D, Pemberton PW, Burrows PC, et al. Antioxidant properties of colchicine in acute carbon tetrachloride induced rat liver injury and its role in the resolution of established cirrhosis[J]. Biochimica Et BiophysicaActa-Molecular Basis of Disease,2000,1502(3):351-362.
    [28]Luo A, He X, Zhou S, et al. In vitro antioxidant activities of a water-soluble polysaccharide derived from Dendrobium nobile Lindl. extracts[J]. International Journal of Biological Macromolecules, 2009,45(4):359-363.
    [29]Chen HX, Zhang M, Qu ZS, et al. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis)[J]. Food Chemistry,2008,106:559-563.
    [30]Hong L, Jing Z. Study on the scavenging effect of different pumpkin polysaccharide on hydroxide free radicals in vitro[J]. Wuhan Zhiwuxue Yanjiu,2007,25(4):356-359.
    [31]Halliwell B, Gutteridge JMC, Aruoma OI. The deoxyribose method-A simple test-tube assay for determination of rate constants for reactions of hydroxyl radicals[J]. Analytical Biochemistry, 1987,165(1):215-219.
    [32]Macdonald J, Galley HF, Webster NR. Oxidative stress and gene expression in sepsis[J]. British Journal of Anaesthesia,2003,90(2):221-232.
    [33]Xing RE, Liu S, Guo ZY, et al. The antioxidant activity of glucosamine hydrochloride in vitro[J]. Bioorganic & Medicinal Chemistry,2006,14(6):1706-1709.
    [34]Zhang Q-F, Zhang Z-R, Cheung H-Y. Antioxidant activity of Rhizoma Smilacis Glabrae extracts and its key constituent-astilbin[J]. Food Chemistry,2009,115(1):297-303.
    [35]Gonzalez R, Corcho I, Remirez D, et al. Hepatoprotective effects of propolis extract on carbon tetrachloride-induced liver-injury in rats[J]. Phytotherapy Research,1995,9(2):114-117.
    [36]Karakus E, Karadeniz A, Simsek N, et al. Protective effect of Panax ginseng against serum biochemical changes and apoptosis in liver of rats treated with carbon tetrachloride (CC14)[J]. Journal of Hazardous Materials, (0).
    [37]万智,安宁,朱易萍.丙氨酸转氨酶的研究现状与进展[J].华西医学,2010,(01):238-240.
    [38]Zimmerman HJ, Kodera Y, West M. Rate of increase in plasma levels of cytoplasmic and mitochondrial enzymes in experimental carbon tetrachloride hepatotoxicity [J]. The Journal of laboratory and clinical medicine,1965,66:315-323.
    [39]Balsano C, Alisi A, Nobili V. Liver Fibrosis and Therapeutic Strategies:The Goal for Improving Metabolism[J]. Current Drug Targets,2009,10(6):505-512.
    [40]Sun YX, Liu JC, Kennedy JF. Purification, composition analysis and antioxidant activity of different polysaccharide conjugates (APPs) from the fruiting bodies of Auricularia polytricha[J]. Carbohydrate Polymers,2010,82(2):299-304.
    [1]Cui FJ, Tao WY, Xu ZH, et al. Structural analysis of anti-tumor heteropolysaccharide GFPSlb from the cultured mycelia of Grifola frondosa GF9801[J]. Bioresource Technology,2007,98(2):395-401.
    [2]Lee JS, Kwon JS, Won DP, et al. Study on macrophage activation and structural characteristics of purified polysaccharide from the liquid culture broth of Cordyceps militaris[J. Carbohydrate Polymers, 2010,82(3):982-988.
    [3]Tao Y, Zhang Y, Zhang L. Chemical modification and antitumor activities of two polysaccharide-protein complexes from Pleurotus tuber-regium[J]. International Journal of Biological Macromolecules,2009,45(2):109-115.
    [4]Schepetkin IA, Quinn MT. Botanical polysaccharides:Macrophage immunomodulation and therapeutic potential[J]. International Immunopharmacology,2006,6(3):317-333.
    [5]He F, Yang Y, Yang G., et al. Studies on antibacterial activity and antibacterial mechanism of a novel polysaccharide from Streptomyces Virginia H03[J]. Food Control,2010,21(9):1257-1262.
    [6]Wang C, Sun Z, Liu Y, et al. Earthworm polysaccharide and its antibacterial function on plant-pathogen microbes in vitro[J]. European Journal of Soil Biology,2007,43:S135-S142.
    [7]Li X, Zhou A, Han Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro[J]. Carbohydrate Polymers,2006,66(1):34-42.
    [8]马欢杰.多糖类抗肿瘤作用的研究进展[J].海峡药学,2010,(02):102-104.
    [9]杨娟,杨付梅,孙黔云.刺梨多糖的分离纯化及其神经营养活性[J].中国药学杂志,2006,(13):980-982.
    [10]张振东,杨娟,吴兰芳,等.神经营养因子样土党参多糖促进小鼠学习记忆作用的实验研究[J].时珍国医国药,2011,(08):1845-1847.
    [11]Chen HF, Wang, N. L., et al. Study on bioactive steroidal saponins of Allium Macrostemon Bunge[J]. Chinese Journal of Medicinal Chemistry,2005,15(142-146).
    [12]吴雁,彭军鹏,姚利强,等.葱属植物挥发油研究——1中药薤白(Allium macrostemon Bunge)挥发油成分的研究[J].沈阳药学院学报,1993,(01):45-46+62.
    [13]Kuroda M, Mimaki Y, Kameyama A, et al. Steroidal saponins from Allium chinense and their inhibitory activities on Cyclic-AMP phosphodiesterase and Na+/K+ ATPase[J]. Phytochemistry, 1995,40(4):1071-1076.
    [14]Lee S, Kim DH, Lee CH, et al. Antidepressant-like activity of the aqueous extract of Allium macrostemon in mice[J]. Journal of Ethnopharmacology,2010,131(2):386-395.
    [15]陈锡雄.薤白抑菌作用的初步研究[J].杭州师范学院学报(自然科学版),2004,(04):337-340.
    [16]张传军,刘超,姜晓坤.薤白乙醇提取物的抑菌特性[J].食品科学,2011,(05):119-122.
    [17]Chen HF, Wang GH, Luo Q, et al. Two New Steroidal Saponins from Allium macrostemon Bunge and Their Cytotoxity on Different Cancer Cell Lines[J]. Molecules,2009,14(6):2246-2253.
    [18]Baba M, Ohmura M, Kishi N, et al. Saponins isolated from Allium chinense G. DON and antitumor-promoting activities of isoliquiritigenin and laxogenin from the same drug[J]. Biological & Pharmaceutical Bulletin,2000,23(5):660-662.
    [19]奚肇庆.薤白平喘作用的临床应用与展望[J].中西医结合杂志,1991,,(09):575-576.
    [20]Xie WD, Zhang Y, Wang NL, et al. Novel effects of macrostemonoside A, a compound from Allium macrostemon Bunge, on hyperglycemia, hyperlipidemia, and visceral obesity in high-fat diet-fed C57BL/6 mice[J]. European Journal of Pharmacology,2008,599(1-3):159-165.
    [21]Andrews JM. The development of the BSAC standardized method of disc diffusion testing[J]. Journal of Antimicrobial Chemotherapy,2001,48:29-42.
    [22]Nair MKM, Vasudevan P, Venkitanarayanan K. Antibacterial effect of black seed oil on Listeria monocytogenes[J]. Food Control,2005,16(5):395-398.
    [23]Mosmann T. Rapid colorimetric assay for cellular growth and survival:Application to proliferation and cytotoxicity assays[J]. Journal of Immunological Methods,1983,65(1-2):55-63.
    [24]Sheng J, Yu F, Xin Z, et al. Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa[J]. Food Chemistry,2007,105(2):533-539.
    [25]Buchet R, Tavitian E, Ristig D, et al. Conformations of synthetic β peptides in solid state and in aqueous solution:relation to toxicity in PC12 cells[J]. Biochimica et Biophysica Acta (BBA) Molecular Basis of Disease,1996,1315(1):40-46.
    [26]Wu JH, Xu C, Shan CY, et al. Antioxidant properties and PC 12 cell protective effects of APS-1, a polysaccharide from Aloe vera var. chinensis[J]. Life Sciences,2006,78(6):622-630.
    [27]扈瑞平,敖长金,杜玲,等.沙葱多糖的体外抑菌试验研究[J].内蒙古大学学报(自然科学版),2011,(03):299-303.
    [28]刘建涛,王杉,张维民,等.葱属植物生物活性物质的研究进展[J].食品科学,2007,(04):348-350.
    [29]谢好贵,陈美珍,张玉强.多糖抗肿瘤构效关系及其机制研究进展[J].食品科学,2011,(11):329-333.
    [30]Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research[J]. Cancer research,1946,6:205-216.
    [31]Zhang M, Cui SW, Cheung PCK, et al. Polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity[J]. Trends in Food Science & Technology,2006,18(1):4-19.
    [32]Ye H, Wang K, Zhou C, et al. Purification, antitumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum[J]. Food Chemistry,2008,111(2): 428-432.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700