用户名: 密码: 验证码:
不同光源对棉花、油菜和不结球白菜组培苗与实生苗生长的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光是影响植物生长最重要的环境因子,植物通过光受体接受光质、光强和光照时间的变化,调控生长发育、形态建成、光合作用和物质代谢等方面。发光二极管(light emitting diodes,LEDs)光源对一些花卉、水果和药用植物组培苗培养的应用已有报道,但是对于农作物组培苗以及实生苗培养的应用效应及机理研究较少。LEDs是一种新型高效的节能光源,具有体积小、寿命长、耗能低、波长精确可调和低发热等优点,能根据植物需要进行发光光谱的精确配置,因此适合可控环境的植物栽培和培养。目前国外已有一些关于LEDs光源对植物生长影响的效应与机理研究,但是国内在这方面的研究较少,而且不同的植物或品种对光的响应不同。因此,研究植物对光的响应还需要从幼苗发育的变化等方面进行深入探讨,以推动LEDs光源在植物组织培养、人工育苗和设施栽培中的应用。
     本研究分别以陆地棉(Gossypium hirsutum L.)、甘蓝型油莱(Brassica napus L.)和不结球白菜(Brassica rapa L.)为试验材料,研究了不同光源对组培苗和实生苗的生长和发育的影响,筛选出适合陆地棉和甘蓝型油菜组织培养、陆地棉人工育苗和和不结球白菜设施栽培的LEDs光源。
     主要研究结果如下:
     1.对陆地棉组培苗的试验表明,陆地棉组培苗的千重、鲜重、茎长和第二节间距的长度在蓝红组合1:1LEDs光源下最大,蓝光LEDs下次之,在荧光灯下最小。陆地棉组培苗叶片的叶绿素含量、叶片厚度、栅栏组织长度、叶面积和气孔面积在蓝光LEDs下最大。根系活力、叶片的蔗糖、淀粉和可溶性糖含量在红光LEDs下最大。蓝红组合1:1LEDs和蓝光LEDs是适合陆地棉组培苗生长的光源。
     2.对陆地棉实生苗的试验表明,陆地棉实生苗的鲜重、干重、根长和茎粗在蓝红组合1:8LEDs下最大,叶绿体中的基粒片层明显增厚。陆地棉实生苗叶片栅栏组织的长度、叶片厚度、气孔面积、光合速率和叶绿素含量在蓝光LEDs下最大。叶片的蔗糖、可溶性糖和淀粉含量在红光LEDs下最大,叶绿体中的淀粉粒明显增大增多。蓝红组合1:8LEDs是适合陆地棉实生苗生长的光源。
     3.对甘蓝型油菜组培苗的试验表明,甘蓝型油菜组培苗的的分化率、鲜重、干重、叶片的叶绿素含量、蔗糖、可溶性糖、栅栏组织长度、海绵组织长度、上表皮气孔长度、下表皮气孔频度和移栽成活率在蓝红组合3:1LEDs下最大;增殖率在蓝光LEDs下最大。甘蓝型油菜组培苗的茎长、淀粉含量和叶片厚度在红光LEDs下最大。蓝红组合3:1LEDs是适合甘蓝型油菜组培苗生长的光源。
     4.对不结球白菜实生苗的试验表明,在弱光下,不结球白菜实生苗地上部的干重、地下部的鲜重和干重在红光LEDs下最大,地上部的鲜重在蓝光LEDs下最大。在光强改变后,不结球白菜实生苗的地上部和地下部的鲜重在红光LEDs下最大,地上部和地下部的干重在蓝红组合1:8LEDs下最大。光强发生改变后,不结球白菜实生苗叶片中的淀粉含量在红光LEDs下最大,叶绿素含量、抗坏血酸和可溶性蛋白的含量在蓝光LEDs下最大。花蕾和开花数量在红光LEDs和蓝红组合1:8LEDs下最多,开花持续的时间最长。与荧光灯相比,发光二极管光源对不结球白菜实生苗的营养生长和生殖生长更有效,蓝光LEDs有利于营养生长,红光LEDs和蓝红组合1:8LEDs有利于生殖生长。
     综上所述,蓝红组合1:1LEDs和蓝光LEDs有利于陆地棉组培苗和甘蓝型油菜组培苗的生长;蓝红组合1:8LEDs有利于陆地棉实生苗的生长。蓝红组合1:8LEDs和红光LEDs有利于不结球白菜实生苗的生长,使其提早开花。蓝光LEDs有利于不结球白菜实生苗的营养生长.因此,LEDs光谱调控技术可以广泛应用在陆地棉和不结球白菜的工厂化育苗和栽培以及陆地棉和甘蓝型油菜的组织培养中。
Light is one of the most important environmental factors, which plays an important role in plant growth, development, morphogenesis and metabolism. Plants controlled the diverse growth and developmental responses to light parameters, such as spectrum, intensity, direction and duration by an array of photoreceptors. LEDs (light-emitting diodes) has many advantages, such as small size, long life, low energy consumption, securing wave length and low production of heat, but also can emit the exact spectrum based on the need of plants, so that it can be widely used in seedling breeding, vegetables cultivation and plant tissue culture. There are some previous studies of LEDs affecting flower, fruit and medicinal plantlets in vitro, however little is known about the effects of crop seedlings and plantlets in vitro. Spectral light changes evoke different morphogenetic and photosynthetic responses that can vary among different plant species. Thus, it is necessary to study the effects of LEDs on crop growth and development, so that promoting the application of LEDs lights widely used in seedling breeding, vegetables cultivation, upland cotton and plant tissue culture.
     In this study, upland cotton(Gossypium hirsutum L.) and rapeseed (Brassica napus L.) plantlets in vitro, upland cotton and non-heading Chinese cabbage(Brassica rapa L.) seedlings were tested to investigate the effects of light sources on growth and development of plants, and select the feasibility of application of LEDs light used in cotton seedling breeding, non-heading Chinese cabbage vegetable cultivation, cotton and rapeseed plant tissue culture.
     Main research results were as follows:
     1. Effects of different light-emitting diodes (LEDs) lights on growth and morphogenesis of upland cotton(Gossypium hirsutum L.) plantlets in vitro were investigated. The results showed that fresh weight, dry weight, stem length and second internode length were greatest in plantlets cultured under the blue plus red LEDs (B:R=1:1) light, followed by blue LEDs light, and they were lowest in plantlets cultured under a fluorescent lamps. Chlorophyll content, leaf thickness, palisade tissue length, leaf and stomata area were highest in plantlets cultured under blue LEDs light. Root activity, sucrose, starch and soluble sugar contents were highest in plantlets cultured under red LEDs light. Blue and red LEDs (B:R=1:1) was the most suitable light for the growth of upland cotton plantlets in vitro.
     2. The effects of different light sources on growth of upland cotton (Gossypium hirsutum L.) seedlings were investigated. The results showed that fresh weight, dry weight, root length, and stem width were greatest in seedlings grown under blue plus red (B:R=1:8) LEDs, and lowest were greatest in seedlings grown under fluorescent lamps. Palisade-tissue length, leaf thickness, stomatal area, photosynthetic rate, and chlorophyll content were greatest in seedlings grown under blue LEDs. When seedlings were grown under red LEDs, the palisade tissue and spongy tissue were loose, starch grains accumulated significantly in the chloroplasts and sucrose, soluble-sugar and starch concentrations were highest. A mixture of blue and red LEDs in the ratio B:R=1:8facilitated the growth of upland cotton seedlings.
     3. The effects of the six light sources on growth and morphogenesis of rapeseed (Brassica napus L.) plantlets in vitro were investigated. The results showed that the differentiation rate, fresh and dry masses, concentrations of pigments, sucrose, soluble sugar, stem diameter, leaf stomata length of abaxial surface, stomata frequency of adaxial surface and transplantion rate were greatest in plantlets cultured under B:R=3:1LEDs light. Stem length, content of starch and leaf thickness were highest in plantlets cultured under red LEDs light. The proliferation rate was greatest under blue LEDs light. Blue plus red LEDs (B:R=3:1) was the most suitable light for the growth of rapeseed plantlets in vitro.
     4. The effects of different light sources on non-heading Chinese cabbage(Brassica rapa L.) seedlings were surveyed. The results showed thatshoot dry weight, root fresh and dry weight was greatest when seedlings grown under red LEDs at low light. The shoot fresh weight was greatest under blue LEDs. When seedlings grown under the altered PPF level, shoot and root fresh weight was greatest under red LEDs. Shoot and root dry weight was greatest under blue plus red LEDs. In the case of the altered PPF level during growth, the starch content was greatest under red LEDs. The contents of chlorophyll a, chlorophyll b and total chlorophyll were greatest under blue LEDs. When altered the PPF level, the ascorbic acid and souble protein were greatest under blue LEDs. The number of flower was highest under red LEDs and blue plus red LEDs, and the number of flower bud was higher under LEDs than that under fluorescent lamps, and especially blue LEDs. The period of flower was highest under red LEDs and blue plus red LEDs. LEDs light sources were more effective than fluorescent lamps for the vegetable and procreation growth of non-heading Chinese cabbage, and blue LEDs can be used for vegetable growth, red LEDs and blue plus red LEDs can be used for the procreation growth.
     In conclude, blue puls red (B:R=1:1) and blue LEDs were the best lights for the growth of upland cotton plantlets, blue puls red (B:R=1:8) LEDs was the best light for the growth of upland cotton seedlings. Blue plus red (B:R=3:1) LEDs was the best light for growth of rapeseed plantlets. Blue LEDs was the best light for vegetable growth of non-heading Chinese cabbage seedlings, red LEDs and blue plus red (B:R=1:8) LEDs were the best lights for the procreation growth of non-heading Chinese cabbage seedlings. This study demonstrated the feasibility of application of LEDs lights being widely used in upland cotton seedling breeding, non-heading Chinese cabbage vegetables cultivation, upland cotton and rapeseed plant tissue culture.
引文
Ahmad M, Cashmore A R. HY4 Gene of A. thaliaila encodes a protein with characteristics of a blue-light photoreceptor [J]. Nature,1993,366:162-166.
    Appelgren M. Effects of light quality in stem elongation of Pelargonium in vitro [J]. Sci Hortic,1991,45: 345-351.
    Avercheva O V, Berkovich Y A, Erokhin A N, Zhigalova T V, Pogosyan S I, Smolyanina S O. Growth and photosynthesis of Chinese cabbage plants grown under light-emitting diode-based light source [J]. Russ J Plant Physiol,2009,56:14-21.
    Aydin Y, Ipekci Z, Talasora T, Zehir A, Bajrovic K, Gozukirmizi N. High frequency somatic embryogenesis in cotton [J]. Biol Plantarum,2004,48:491-495.
    Beggs C J, Wellman E P. Photomorphogenesis in Plants [M].2nd Edition. Dordrecht:Kluwer Academic Publishers,1994,733.
    Bicakci E, Memon A R. An efficient and rapid in vitro regeneration system for metal resistant cotton [J]. Biol Plantarum,2005,49:415-417.
    Bondada B R, Syvertsen J P. Concurrent changes in net CO2 assimilation and chloroplast ultrastructure in nitrogen deficient citrus leaves [J]. Environ Exp Bot,2005,54:41-48.
    Bourget C M. An introduction to light-emitting diodes [J]. HortScience,2008,43:1944-1946
    Brazaityte A, Duchovskis P, Urbonaviciute A, Samuoliene G, Jankauskiene J, Kasiuleviciute-Bonakere A, Bliznikas Z, Novickovas A, Breive K, Zukauskas A. The effect of light-emitting diodes lighting on the growth of cucumber transplants and after-effect on yield [J]. Zemdirbyste Agr,2009,96: 102-118.
    Brazaityte A, Duchovskis P, Urbonaviciute A, Samuoliene G, Jankauskiene J, Sakalauskaite J, Sabajeviene G, Sirtautas R, Novickovas A. The effect of light-emitting diodes lighting on the growth of tomato transplants [J]. Zemdirbyste Agr,2010,97:89-98.
    Briggs W R, Beck C F, Cashmore A R. The phototropin family of photoreceptors [J]. Plant Cell,2001, 13:993-997.
    Briggs W R, Olney M A. Photoreceptors in plant photomorphogenesis to date, five photochromes, two cryptochrome, one phototropin and one superchrome [J]. Plant Physiol,2001,125:85-88.
    Britz S J, Sager J S. Photo morphogenesis and photo assimilation in soybean and sorghum grown under broad spectrum or blue-deficient light sources [J]. Plant Physiol,1990,94:448-454.
    Brown C S, Schuerger A C, Sager J C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting [J]. J Am Soc Hortic Sci,1995,120: 808-813.
    Bula R J, Morrow R C, Tibbitts T W, Barta D J, Ignatius R W, Martin T S. Light-emitting diodes as a radiation source for plants [J]. HortScience,1991,26 (2):203-205
    Caspar T, Huber S C, Somerville C. Alterations in growth, photosynthesis and respiration in a starch deficient mutant of Arbidopsis thnlinna (L) Heynh deficient in chloroplast phosphoglucomutase activity [J]. Plant Physiol,1985,79:11-17.
    Chaturvedi R, Shyam R, Sane P V. Steady state levels of D1 protein and psbA thanscript during UV-B inactivation of photosystem II in wheat [J]. Biochem Mol Biol Int,1998,44 (5):925-932.
    Chung J P, Huang C Y, Dai T E. Spectral effects on embryogenesis and plantlet growth of Oncidium 'Gower Ramsey'[J]. Sci Hortic,2010,124:511-516.
    Clouse S D. Integration of light and brassinosteroid signals in etiolated seedling growth [J]. Trends Plant Sci,2001,6:443-445.
    Critten D L. A review of the light transmission into greenhouse crops [J]. Acta Hort,1993,248: 101-108.
    Cui Y I, Hahn E J, Kozai T, Paek K Y. Number of air exchanges, sucrose concentration, photosynthetic photon flux, and differences in photoperiod and dark period temperatures affect growth of Rehmannia glutinosa plantlets in vitro [J]. Plant Cell Tiss Org Cult,2000,62:219-226.
    Dewir Y H, Chakrabarty D, Hahn E J, Paek K Y. Flowering of Euphorbia millii plantlets in vitro as affected by paclobutrazol, light emitting diodes (LEDs) and sucrose [J]. Acta Hort,2007,764: 169-173.
    Doi M, Shigenaga A, Emi T, Kinoshita T, Shimazaki K. A transgene encoding a blue-light receptor, photl, restores blue light responses in the Arabidopsis photlphot2 double mutant [J]. J Exp Bot, 2004,55:517-523.
    Duong T N, Hong L T A, Watanabe H, Goi M, Tanaka M. Efficiency of a novel culture system by using light-emitting diode (LED) on in vitro and subsequent growth of micropropagated banana plantlets [J]. Acta Hort,2003,616:121-127.
    Farquhar G D, Sharkey T D. Stomatal conductance and photosynthesis [J]. Plant Physiol,1982,33: 317-345.
    Felker F C, Doehlert D C, Eskins K. Effects of red and blue light on the composition and morphology of maize kernels grown in vitro [J]. Plant Cell Tiss Org Cult,1995,42:147-152.
    Folta, Kevin M, Childers K S. Light as a growth regulator:controlling plant biology with narrow-bandwidth solid-state lighting systems [J]. HortScience,2008,43 (7):1957-1964.
    Gautier H, Varlet-Grancher C, Baudry N. Effects of blue light on the vertical colonization of space by white clover and their consequences for dry matter distribution [J]. Ann Bot,1997,80:665-671.
    Geiger D R, Shieh W J, Yu X M. Photosynthetic carbon metabolism and translocation in wild-type and starch-deficient mutant Nicotinna sylvestris L [J]. Plant Physiol,1995,107:507-574.
    Giliberto L, Perrotta G, Pallara P. Manipulation of the blue light photoreceptor cryptochrome 2 in tomato affects vegetative development flowering time, and fruit antioxidant content [J]. Plant Physiol,2005, 137:199-208.
    Gobs G D, Yorio N C, Sanwo M M, Brown C S. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under light emitting diodes (LEDs) with or without supplemental blue lighting [J]. J Exp Bot,1997,48:1407-1413.
    Guo S, Liu X, Ai W, Tang Y, Zhu J, Wang X, Wei M, Qin L, Yang Y. Development of an improved ground-based prototype of space plant growing facility [J]. Adv Space Res,2008,41:736-741.
    Guo, H, Yang, H, Mockler, T C, Lin, C. Regulation of flowering time by Arabidopsis photoreceptors [J]. Science,1998,279:1360-1363.
    Gyula P, Schafer E, Nagy F. Light perception and signaling in higher plants [J]. Curr Opin Plant Biol, 2003,6:446-452.
    Hahn E J, Kozai T, Paek K Y. Blue and red light-emitting diodes with or without sucrose and ventilation affects in vitro growth of Rehmannia glutinose plantlets [J]. Plant Biol,2000,43:247-250.
    Heo J W, Lee C W, Murthy H N, Paek K Y. Influence of light quality and photoperiod on flowering of Cyclamenpersicum Mill. Cv.'Dixie White'[J]. Plant Growth Regul,2003,40:7-10.
    Heo J, Lee C, Chakrabarty D, Paek K Y. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED) [J]. Plant Growth Regul,2002,38:225-230.
    Hoenecke M E, Bula R J, Tibbits T W. Importance of blue photon levels for lettuce seedlings grown under red-light-emitting diodes [J]. HortScience,1992,27:427-430.
    Hughes J, Lamparter T, M ittmann F. A prokaryotic phytochrome [J]. Nature,1997,386:663.
    Hunter D C, Burritt D J. Light quality influences adventitious shoot production from cotyledon explants of lettuce (Lactuca sativa L.) [J]. In Vitro Cell Dev Biol Plant,2004,40:215-220.
    Jaimez, R E, Rada, F. Gas exchange in Sweet Pepper(Capsicum chinense Jacq) under different light conditions [J]. J Agr Sci,2011,3:134-142.
    Jao R C, Fang W. Effects of frequency and duty ratio on the growth of potato plantlets in vitro using light-emitting diodes [J]. HortScience,2004,39:375-379.
    Jao R H, Lai C C, Fang W, Chang S F. Effects of red light on the growth of Zantedeschia plantlets in vitro and Tuber formation using light-emitting diodes [J]. HortScience,2005,40 (2):436-438.
    Jin S, Zhang X, Nie Y, Guo X, Liang S, Zhu H. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton [J]. Biol Plantarum,2006,50:519-524.
    Kaneko-Ohashi K, Fujiwara K, Kimura Y, Matsuda R, Kurata K. Effects of red and blue LEDs low light irradiation during low temperature storage on growth, ribulose-1,5-bisphosphate carboxylase/oxygenase content, chlorophyll content and carbohydrate content of grafted tomato plug seedlings [J]. Environ Cont Biol,2004,42 (1):65-73.
    Kasahara M, Swarta T E, Olney M A. Photochemical properties of the flavin mononucleotide-binding domains of the phototropins from Arabidopsis, Rice and Chlamydomonas Reinhardti [J]. Plant Physiol.2002,129:762-773.
    Kevin W.'Photo-Manipulation-Boxes':An instrument for the study of plant photobiology [J]. Plant Photobio,2000,26:3-15.
    Kim H H, Goins G H, Wheeler R M, Sager J C. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes [J]. HortScience,2004a,39 (7):1617-1622.
    Kim H H, Wheeler R M, Sager J C, Goins G D, Norikane J H. Evaluation of lettuce growth using supplemental green light with red and blue light-emitting diodes in a controlled environment-a review of research at Kennedy Space Center [J]. Acta Hort,2006,711:111-119.
    Kim S J, Hahn E J, Heo J W, Paek K Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro [J]. Sci Hortic,2004b,101:143-151.
    Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K. Photl and phot2 mediate blue light regulation of stomatal opening [J]. Nature,2001,414:656-660.
    Kolawole, O M, Kayode, R M O, Aina, J. The drying effect of varying light frequencies on the proximate and microbial composition of tomato [J]. J Agr Sci,2010,2:214-224.
    Kowallik W. Blue light effects on respiration [J]. Plant Physiol,1982,33:51-72.
    Kraepiel Y, Mipiniac E. Photomorphogenesis and phytohormones [J]. Plant Cell Environ,1997,20: 807-812.
    Kurilcik A, Miklusyte-Canova R, Dapkuniene S, Zilinskaite S, Kurilcik G, Tamulaitis G, Duchovskis P, Zukauskas A. In vitro culture of Chrysanthemum plantlets using light-emitting diodes [J]. Cent Eur J Biol,2008,3:161-167.
    Lawrence D. T, Ganke N, Arise O. Green light reversal of blue light stimulated stomatal opening is found in a diversity of plant species [J]. Am J Bot,2002,89 (2):366-368.
    Le V T H, Tanaka M. Effects of red and blue light-emitting diodes on callus induction, callus proliferation, and protocorm-like body formation from callus in Cymbidium orchid [J]. Environ Control Biol,2004,42 (1):57-64.
    Lee A E, Tewari R K, Hahn E J, Paek K Y. Photon flux density and light quality induce changes in growth, stomatal development, photosynthesis and transpiration of Withania Somnifera (L.) Dunal. plantlets [J]. Plant Cell Tiss Org Cult,2007,90:141-15.
    Lefsrud M G, Kopsell D A, Sams C E. Irradiance from distinct wavelength light-emitting diodes affect secondary metabolites in Kale [J]. HortScience,2008,43 (7):2243-2244.
    Li Q, Kubota C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce [J]. Environ Exp Bot,2009,67:59-64.
    Lian M L, Murthy H N, Paek K Y. Effects of light emitting diodes on the in vitro induction and growth of bulblets of Lilium oriental hybrid 'Pesaro' [J]. Sci Hortic,2002,94:365-370.
    Lichtenthaler H K, Wellbum A R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents [J]. Biochem Soc Trans,1983,11:591-592.
    Lin C. Plant blue-light receptors [J]. Trends Plant Sci,2000,5:337-342.
    Liu M X, Xu Z G, Yang Y, Feng Y j. Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration [J]. Plant Cell Tiss Organ Cult,2011,106:1-10.
    Liu X Y, Guo S R, Xu Z G, Jiao X L, Takafumi T. Regulation of chloroplast ultrastructure, cross-section anatomy of leaves, and morphology of stomata of cherry tomato by different light irradiations of light-emitting diodes [J]. Hortscience,2011,46:1-5.
    Martin A B, Cuadrado Y, Guerra H. Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and nonembrogenic calli from Medicago arborea L [J]. Plant Sci,2000, 154:143-151.
    Massa G D, Kim H H, Wheeler R M, Mitchell C A. Plant productivity in response to LED lighting [J]. HortScience,2008,43:1951-1956.
    Mcnellis T W, Deng X W. Light control of seedling morphogenetic [J]. Plant Cell,1995,7:1749-1761.
    Menard C, Dorais M, Hovi T, Gosselin A. Developmental and phy-siological responses of tomato and cucumber to additional blue light [J]. Acta Hort,2006,711:291-296.
    Miyashita Y, Kitaya Y, Kozai T, Kimura T. Effects of red and far-red light on the growth and morphology of potato plantlets in vitro:using light emitting diode as a light source for micropropagation [J]. Acta Hort,1995,393:189-194.
    Mockler T C, Guo H, Yang H, Duong H, Lin C. Antagonistic action of Arabidopsis cytochromes and phytochrome B in the regulation of floral induction [J]. Development,1999,126:2073-2082.
    Morini S, D'Onofrio C, Bellocchi G, Fisichella M. Effect of 2,4-D and light quality on callus production and differentiation from in vitro cultured quince leaves [J]. Plant Cell Tiss Org Cult,2000,63: 47-55.
    Morrow R C. LED lighting in horticulture [J]. HortScience,2008,43:1947-1950
    Mortensen L M, Stromme E. Effects of light quality on some greenhouse crops [J]. Sci Hortic,1987,33: 27-36.
    Moshe R, Dalia E. On the effect of light on shoot regeneration in petunia [J]. Plant Cell Tiss Org Cult, 2007,89:49-54.
    Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue culture [J]. Physiol Plant,1962,15:473-497.
    Neff M M, Fankhauser C, Chory J. Light an indicator of time and place [J]. Genes Develop,2000,14: 257-271.
    Nhut D T, Hong L T A, Watanabe H, Goi M, Tanaka M. Growth of banana plantlets culturted in vitro under red and blue light-emitting diode (LED) irradiation source [J]. Acta Hort,2002,575: 117-124.
    Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs) [J]. Plant Cell Tiss Qrg Cult, 2003,73:43-52.
    Okamoto K., Yanagi T, Kondo S. Growth and morphogenesis of lettuce seedlings raised under different combinations of red and blue light [J]. Acta Hort,1997,435:149-157.
    Outlaw W H Jr. Integration of cellular and physiological functions of guard cells [J]. CRC Crit Rev Plant Sci,2003,22:503-529.
    Ozyigit Ⅱ. Gozukirmizi N. Efficient shoot and root formation from cotton shoot apices [J]. Russ J Plant Physiol,2009,56:527-531.
    Piao X C. Effects of environmental factors on growth, tuberization and photosynthetic characteristics of in vitro and hydroponically grown potatoes [D]. Chungbuk National University, Cheongju, South Korea,2002.
    Poudel P R, Kataoka I, Mochioka R. Effect of red and blue light-emitting diodes on growth and morphogenesis of grapes [J]. Plant Cell Tiss Org Cult,2008,92:147-153.
    Quail PH. Phytochrome photosensory signaling networks [J]. Nat Rev Mol Cell Biol,2002,3:85-93.
    Rajapakse N C, Pollock R K, McMahon M J, Kelly J W, Young R E. Interpretation of light quality measurements and plant response in spectral filter research [J]. HortScience,1992,27:1208-1211.
    Saebo A, Krekling T, Appelgren M. Light quality affects photosynthesis and leaf anatomy of birch plantlets in vitro [J]. Plant Cell Tiss Org Cult,1995,41:177-185.
    Sakhanokho H F, Peggy O A, May O L, Chee P W. Putrescine enhances somatic embryogenesis and plant regeneration in upland cotton [J]. Plant Cell Tiss Org Cult,2005,81:91-95.
    Schuerger A C, Brown C S, Stryjewski E C. Anatomical features of pepper plants (Capsium annuum L.) grown under red light emitting diodes supplemented with blue or far-red light [J]. Ann Bot,1997, 79:273-282.
    Senger H. The effect of blue light on plants and microorganisms [J]. Photochem Photobiol,1982,35: 911-920.
    Shimazaki K, Doy M, Assmann S M, Kinoshita T. Light regulation of stomatal movement [J]. Annu Rev Plant Biol,2007,58:219-247.
    Sims D A, Pearcy R W. Response of leaf anatomy and photosynthetic capacity in Alocasia macrorrhiza (Araceae) to a transfer from low to high light [J]. Am J Bot,1992,79:449-455.
    Smith H. Phytochromes and light signal perception by plants-an emerging synthesis [J]. Nature,2000, 407:585-591
    Stutte G W, Edney S, Skerritt T. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes [J]. HortScience,2009,44:79-82.
    Stutte G W. Light-emitting diodes for manipulating the phytochrome apparatus [J]. HortScience,2009, 44 (2):231-234.
    Suesslin C, Frohnmeyer H. An Arabidopsis mutant defective in UV-B light mediated responses [J]. Plant, 2003,33:591-601.
    Sujatha M, Sailaja M. Stable genetic transformation of castor (Ricinus communis L.) via Agrobacterium tumefaciens-mediated gene transfer using embryo axes from mature seeds [J]. Plant Cell Rep,2005, 23:803-810.
    Sulekha H, Anuradhav K, Satishm N, Anjank B, Dineshc A, Kazav K. Influence of explants, genotypes and culture vessels on sprouting and proliferation of pre-existing meristems of cotton (Gossypium hirsutum L. and Gossypium arboreum L.) [J]. In vitro Cell Dev Biol Plant,2000,36:505-510.
    Sullivan J A, Deng X W. From seed to seed:the role of photoreceptors in Arabidopsis development [J]. Dev Biol,2003,260 (2):289-297.
    Sun J Y, Li W M, Zhang H S, Zhao J L, Yin X L, Wang L. Somatic embryogenesis and plant regeneration in glandless upland cotton (Gossypium hirsutum L.) [J]. Front Agr China,2009,3: 279-283.
    Sun Y Q, Zhang X L, Huang C, Guo X P, Me Y C. Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species [J]. Plant Cell Rep,2006,25:289-296.
    Takahashi K, Fujino K, Kikuta Y, Koda Y. Involvement of the accumulation of sucrose and the synthesis of cell wall polysaccharides in the expansion of potato cells in response to jasmonic acid [J]. Plant Sci,1995,111:11-18.
    Tamulaitis G, Duchovskis P, Bliznikas Z, Breive K, Ulinskaite R, Brazaityte A, Novickovas A, Zukauskas A. High-power light-emitting diode based facility for plant cultivation [J]. J Physics D Applied Physics,2005,38:3182-3187.
    Tanaka M, Takamura T, Watanabe H, Endo M, Yanagi T, Okamoto K. In vitro growth of Cymbidium plantlets cultured under super bright red and blue light-emitting diodes (LEDs) [J]. J Hort Sci Biotech,1998,73:39-44.
    Tanoh H K, Pierre W T, Yatty J K, Josep V, Tristan R, Alain D, Jean M M. Phenolic compounds and somatic embryogenesis in cotton(Gossypium hirsutum L.) [J]. Plant Cell Tiss Org Cult,2007,90: 25-29.
    Tanreer K, Akii K S, Pant R C. Regeneration via somatic embryogenesis and organogenesis in different cultivars of cotton(Gossypium spp) [J]. In Vitro Cell Dev Biol Plant,2006,42:498-501.
    Tennessen D J, Singsaas E L, Sharkey T D. Light-emitting diodes as a light source for photosynthesis research [J]. Photosynth Res,1994,39:85-92.
    Tripathy B C, Brown C S. Root-shoot interaction in the greening of wheat seedlings grown under red light [J]. Plant Physiol,1995,107:407-411.
    Wang H, Deng X W. Dissecting the phytochrome A-dependent signaling network in higher plants [J]. Trends Plant Sci,2003,8:172-178.
    Wang Y C, Zhang H X, Zhao B, Yuan X F. Improved growth of Artemisia annua L hairy roots and artemisinin production under red light conditions. Biotechnol Lett,2001,23,1971-1973.
    Whippo G W, Hangarter R P. Second positive phototropism results from coordinated co-action of the phototropins and cryptochromes [J]. Plant Physiol,2003,132:1499-1507.
    Whitelam G C, Devlin P F. Light signaling in Arabidopsis plant [J]. Physiol Biochem,1998,36: 125-133.
    Wongnok A, Piluek C, Techasilpitak T, Tantivivat S. Effects of light emitting diodes on micropropagation of Phalaenopsis orchids [J]. Acta Hort,2008,788:149-156.
    Yanagi T, Okamoto K, Takita S. Effects of blue, red and blue/red lights of two different PPF levels on growth and morphogenesis of lettuce plants [J]. Acta Hort,1996,440:117-122.
    Yorio N C, Goins G D, Kagie H R, Wheeler R M, Sager J C. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation [J]. HortScience, 2001,36:380-383.
    Zhao H M, Ai H L, Wei C Y. Effects of hygromyc in on cotton cultures and its application in agrobacterium-mediated cotton transformation [J]. In Vitro Cell Dev Biol Plant,2007,43:111-118.
    Zhou W J, Tang G X, Hagberg P. Efficient production of doubled haploid plants by immediate colchicine treatment of isolated microspores in winter Brassica napus [J]. Plant Growth Regul,2002,37: 185-192.
    Zhu S W, Sun J S. Rapid plant regeneration from cotton (Gossypium hirsutum L.) [J]. Chinese Sci Bull, 2000,45:1171-1174.
    蔡鸿昌,崔海信,崔金辉.不同光质对番茄穴盘苗质量的影响[J].中国农业科技导报,2010,12(3):114-118.
    蔡永萍.植物生理学[M].北京:中国农业大学出版社.2008.
    常涛涛,刘晓英,徐志刚,杨杨.不同光谱能量分布对番茄幼苗生长发育的影响[J].中国农业科学,2010,43(8):1748-1756.
    常涛涛.不同光谱能量分布对番茄生长发育及其果实品质的影响[D].南京农业大学硕士学位论文,2007.
    车生泉,秦文英.光质对小苍兰茎尖试管成球的影响[J].上海交通大学学报(农业科学版),1998,16(2):121-123.
    车生泉,盛月英,秦文英.光质对小苍兰茎尖试管培养的影响[J].园艺学报,1997,24(3):269-273.
    陈文昊,徐志刚,刘晓英,杨杨,王志敏,宋非非.LED光源对不同品种生菜生长和品质的影响[J].西北植物学报,2011,31(7):1434-1440.
    储钟稀,童哲,冯丽洁,张群,温晓刚,宋森田.不同光质对黄瓜叶片光合特性的影响[J].植物学报,1999,41(8):867-870.
    崔瑾,马志虎,徐志刚,张欢,常涛涛,刘海俊.不同光质补光对黄瓜、辣椒和番茄幼苗生长及生理特性的影响[J].园艺学报,2009,36(5):663-670.
    崔瑾,徐志刚,邸秀茹.LED在植物设施栽培中的应用和前景[J].农业工程学报,2008,24(8):249-253.
    邓江明,蔡群英,潘瑞炽.光质对水稻幼苗蛋白质、氨基酸含量的影响[J].植物学通报,2000,17(5):419-423.
    邸秀茹,崔瑾,徐志刚,常涛涛,张欢,刘海俊.不同光谱能量分布对冬青试管苗生长的影响[J].园艺学报,2008-35(9):1339-1344.
    邸秀茹,焦学磊,崔瑾,刘晓英,孔燕,徐志刚.新型光源LED辐射的不同光质配比光对菊花组培苗生长的影响[J].植物生理学通讯,2008b,44(4):661-664.
    杜洪涛,刘世琦,蒲高斌.光质对彩色甜椒幼苗生长及叶绿素荧光特性的影响[J].西北农业学报,2005,14(1):41-45.
    杜建芳,廖祥儒,叶步青,李萌.光质对油菜幼苗生长及抗氧化酶活性的影响[J].植物学通报, 2002,19(6):743-745.
    段奇珍,曲梅,高丽红.不同LED光源对黄瓜幼苗质量的影响[J].北方园艺,2010,15:125-128.
    范玉琴,李德红.植物的蓝光受体及其信号转导[J].激光生物学报,2004,13(4):314-320.
    高荣孚,张鸿明.植物光调控的研究进展[J].北京林业大学学报,2002,24(5-6):235-243.
    管道平,杨其长,刘文科,肖平,杨建荣.植物光自养微繁技术研究进展[J].园艺学报,2006,33(3):680-686.
    郭银生,谷艾素,崔瑾.光质对水稻幼苗生长及生理特性的影响[J].应用生态学报,2011,22(6):1485-1492.
    洪森荣,尹明华.光质对野葛叶片愈伤组织的诱导及其可溶性蛋白含量的影响[J].安徽农业科学,2007,35(9):2560-2563.
    胡春梅,侯喜林.不结球白菜主要营养成分与品种低温耐受性的关系[J].南京农业大学学报,2010,3:37-41.
    黄丽华,洪亚辉,戴雄泽,张学文.光质对辣椒离体愈伤组织诱导及分化的影响[J].湖南农业大学学报(自然科学版),2009,35(6):615-617.
    江明艳,潘远智.不同光质对盆栽一品红光合特性及生长的影响[J].园艺学报,2006,33(2):338-343.
    江莎,胡阳,郑书馨,李洁,赵娜,高玉葆,古松.不同光强与光质对“达赛莱克特”草莓叶片形态结构的影响[J].电子显微学报,2009,29(5):453-461.
    焦海华,铁军.不同光质对一品红幼茎愈伤组织的诱导和器官分化影响的研究[J].内蒙古师范大学学报(自然科学汉文版),2003,32(3):168-170.
    柯学,李军营,李向阳,邬春芳,徐超华,晋艳,龚明.不同光质对烟草叶片生长及光合作用的影响[J].植物生理学报,2011,47(5):512-520.
    孔云,王绍辉,沈红香,马承伟,姚允聪.不同光质补光对温室葡萄新梢生长的影响[J].北京农学院学报,2006,21(3):23-25.
    李胜,李唯,杨德龙,武季玲,杨宁,曹孜义.不同光质对葡萄试管苗根系生长的影响[J].园艺学报,2005,32(5):872-847.
    李承志,廉世勋,张华京,石鹏途,杨焕栋.光合仿生农膜的作物栽培试验[J].湖南农业科学,2001,5:22-23.
    李韶山,潘瑞炽.蓝光对水藕幼苗叶绿体发育的影响[J].中国水稻科学,1994,8(3):185-188.
    李雯琳,郁继华,张国斌,杨其长.LED光源不同光质对叶用莴苣幼苗叶片气体参数和叶绿素荧光参数的影响[J].甘肃农业大学学报,2010,45(1):47-51.
    梁钾贤,陈彪.光质对甘蔗愈伤组织分化出苗的影响[J].中国糖料,2006,3:9-11,15.
    梁学芬,蚁伟南,颜梓兴,肖安裕,黄剑波.不同光质的辅助光对香蕉组培苗的影响[J].中国南方 果树,2001,30(4):34.
    林碧英,张瑜,林义章.不同光质对豇豆幼苗光合特性和若干生理生化指标的影响[J].热带作物学报,2011,32(2):235-239.
    林小苹,赖钟雄,黄浅.不同光质对龙眼胚性愈伤组织生长和细胞膜保护酶活性的影响[J].福建农林大学学报(自然科学版),2008,37(3):253-256.
    刘浩,李胜,马绍英,罗丽媛,薛冲,方艳,张真,刘媛.LED不同光质对萝卜愈伤组织诱导、增殖和萝卜硫素含量的影响[J].植物生理学通讯,2010,4:347-350.
    刘明,赵琦,王小菁,赵玉锦,童哲.植物的光受体及其调控机制的研究[J].生物学通报,2005,40(5):10-12.
    刘寿东,杨再强,苏天星,费玉娟,黄川容,黄海静.不同光质对温室甜椒光合特性的影响[J].大气科学学报,2010,33(5):600-605.
    刘晓英,徐志刚,常涛涛,郭世荣.不同光质LED弱光对樱桃番茄植株形态和光合性能的影响[J].西北植物学报,2010,30(4):645-651.
    刘晓英.LED光源对樱桃番茄生育和光合作用影响的研究[D].南京农业大学博士学位论文,2007.
    刘媛,李胜,马绍英,张真,张青松,罗丽媛,薛冲,裴晓利.不同光质对葡萄试管苗离体培养生长发育的影响[J].园艺学报,2009,36(8):1105-1112.
    柳金凤,伍会萍,刘晓刚,郑国琴.不同光质对枸杞试管苗生长的影响[J].中国农学通报,2011,27(22):109-113.
    罗丽媛,李胜,马绍英,刘浩,薛冲,方艳,张真,刘媛.LED不同光质对葡萄愈伤组织及白藜芦醇合成的影响[J].甘肃农业大学学报,2010,5:46-50.
    马光恕,廉华,闫明伟.不同覆盖材料对大棚内番茄生长发育的影响[J].吉林农业科学,2002,27(4):41-43.
    马琳,刘世琦,张自坤,杨晓建,张宇,尉辉.光质对大蒜愈伤组织诱导、增殖及器官分化的影响[J].西北农业学报,2011,20(6):118-122.
    马绍英,李胜,牛俊义,张真,刘媛,薛冲,刘浩,罗丽媛,方艳.LED不同光质对葡萄砧木试管苗生理生化特性的影响[J].甘肃农业大学学报,2010,5:56-62.
    马稚昱,辜松,罗锡文.不同光质对嫁接砧木下胚轴生长的影响[J].农机化研究,2010,11:185-187,192.
    毛金水,杨大旗.光质对稻苗生长的影响[J].西南农业大学学报,1991,13(4):446-449.
    毛娟娟,潘会堂,唐明.光质对胭脂花幼苗生长的影响[J].安徽农业科学,2009,37(17):7961-7962,7982.
    毛学文,陈荃.不同光质对毛地黄愈伤组织诱导和增殖的效应[J].植物学通报,1997,14(1):55-56.
    倪纪恒,陈学好,陈春宏,徐强.补充不同光质对温室黄瓜生长发育、光合和前期产量的影响[J].中国农业科学,2009,42(7):2615-2623.
    潘瑞炽.植物生理学[M].北京:高等教育出版社.2008.
    蒲高斌,刘世琦,刘磊,任丽华.不同光质对番茄幼苗生长和生理特性的影响[J].园艺学报,2005a,32(3):420-425.
    蒲高斌,刘世琦,张珍,任丽华.光质对番茄幼苗生长及抗氧化酶活性的影响[J].中国蔬菜,2005b,9:21-23.
    齐连东.光质对菠菜生理特性及其品质的影响[D].山东农业大学硕士学位论文,2007.
    钱善勤,王忠,袁秋华.植物向光素[J].植物生理学通讯,2004,40(5):617-623.
    沈红香,沈漫,程继鸿,李娜娜,张婧.不同光质补光处理对郁金香生长和开花的影响[J].北京农学院学报,2007,1:16-18.
    石岭,霍秀文,郝春光.不同光质对河套蜜瓜器官培养的影响[J].内蒙古农业大学学报(自然科学版),1999,20(2):76-79.
    史宏志,韩锦峰,管春云,远彤.红光和蓝光对烟叶生长碳氮代谢和品质的影响[J].作物学报,1999,25(2):215-220.
    苏天星,杨再强,黄海静,黄川容,张波,张继波,顾礼力.不同光质对温室甜椒气孔导度的影响[J].干旱气象,2010,28(4):443-448.
    孙非,曹悦群,刘立侠,唐树延.不同光质下栽培人参硝酸还原酶(NR)活性和蛋白质含量的变化[J].生物物理学报,1993,9(1):153-157.
    孙庆丽,陈志,徐刚,陈敏,陈剑平.不同光质对水稻幼苗生长的影响[J].浙江农业学报,2010,22(3):321-325.
    孙燕,许志茹.植物的蓝光受体[J].植物生理学通讯,2008,44(1):144-150.
    唐大为,张国斌,张帆,潘香梅,郁继华.LED光源不同光质对黄瓜幼苗生长及生理生化特性的影响[J].甘肃农业大学学报,2011,1:44-48.
    唐凤鸾,黄宁珍,黄志民,付传明.自然光照下补照不同光质光对马蹄莲光合速率及生长的影响[J].植物生理学通讯,2007,43(5):879-881.
    唐海明,陈金湘.漂浮育苗移栽棉花的产量构成及生理特性初探[J].棉花学报,2008,20(2):148-150.
    童哲.植物生理与分子生物学[M].北京:科学出版社.1992.
    王绍辉,孔云,程继鸿,杨瑞.补充单色光对日光温室黄瓜光合特性及光合产物分配的影响[J].农业工程学报,2008,24(9):203-206.
    王婷,李雯琳,巩芳娥,郁继华.LED光源不同光质对不结球白菜生长及生理特性的影响[J].甘肃农业大学学报,2011,4:69-73.
    王欣欣,赵文东,郭修武,满丽婷,高圣华,赵海亮.不同光质对延迟栽培‘巨峰’葡萄新梢生长及生理特性的影响[J].北方果树,2009,3:3-5.
    王宣山.不同育苗方式对棉花生长发育及产量的影响[J].江苏农业科学,2011,3:100-102
    王政,李高燕,何松林,刘先芸.不同比例光质冷阴极荧光灯(CCFL)培养后非洲菊试管苗移栽生长情况的研究[J].河南农业科学,2010,11:85-89.
    魏灵玲,杨其长,刘水丽.LED在植物工厂中的研究现状与应用前景[J].农业工程科学,2007,23(11):408-411.
    魏胜林,王家保,李春保.蓝光和红光对菊花生长和开花的影响[J].园艺学报,1998,25(2):203-204.
    魏星,顾清,戴艳娇,徐志刚.不同光质对菊花组培苗生长的影响[J].中国农学通报,2008,24(12):344-349.
    闻婧,鲍顺淑,杨其长,崔海信.LED光源R/B对叶用莴苣生理性状及品质的影响[J].中国农业气象,2009,30(3):413-416.
    闻婧,杨其长,魏灵玲,程瑞锋,刘文科,鲍顺淑,周晚来.不同红蓝LED组合光源对叶用莴苣光合特性和品质的影响及节能评价[J].园艺学报,2011,38(4):761-769.
    吴家森,胡君艳,周启忠,郑军,周国泉,付顺华.LED灯补光对萝卜生长及光合特性的影响[J].北方园艺,2009,10:30-33.
    谢以萍,杨再强,苏天星,易礼胜.不同光质对瓜叶菊生长发育的影响[J].北方园艺,2010,3:53-56.
    徐根娣,李瑶.光质和碳素对早芹体细胞胚发生的影响[J].浙江师范大学学报(自然科学版),1995,18(2):57-60.
    徐景致,李同凯,葛大勇,杨景发,刘玉颖.植物生长发育对光波段选择性吸收的研究进展[J].河北林果研究,2002,17(2):180-184.
    徐凯,郭延平,张上隆,戴文圣,符庆功.不同光质对丰香草莓生长发育的影响[J].果树学报,2006,23(6):818-824.
    徐立华,张培通,杨长琴,刘瑞显.棉花育苗移栽新技术的发展及在生产中的应用[J].江苏农业科学,2009,5:1-3,20.
    徐学基.研究和开发21世纪照明新光源.“世纪之光”学术研讨会论文集专辑[D].2000,12:78-80.
    徐志刚,崔瑾,邸秀茹.不同光谱能量分布对文心兰组织培养的影响[J].北京林业大学学报,2009,31(4):286-288.
    许桂芳,董诚明,周吉源,赵洁,熊丽.不同光质对华黄茂愈伤组织诱导增殖及器官分化的效应[J].华中师范大学学报(自然科学版),1994,28(4):533-537.
    许莉,刘世琦,齐连东,梁庆玲,于文艳.不同光质对叶用莴苣光合作用及叶绿素荧光的影响[J]. 中国农学通报,2007,23(1):96-100.
    薛冲,李胜,马绍英,刘浩,罗丽媛,方艳.不同光质对西兰花愈伤组织及萝卜硫素含量的影响[J].甘肃农业大学学报,2010,4:95-99.
    杨长娟,凌青,任兴平,杨红飞,李枝林.LED不同光质对洋桔梗组培苗增殖的影响[J].北方园艺,2011,18:154-156.
    杨红飞,杨长娟,任兴平,唐敏,高尔尼斯,李枝林.LED不同光质对洋桔梗组培苗淀粉含量的影响[J].现代农业科技,2011,20:363-364.
    杨其长,徐志刚,陈弘达,泮进明,魏灵玲,刘文科,周泓,刘晓英,宋昌斌.LED光源在现代农业的应用原理与技术进展[J].中国农业科技导报,2011,13(5):37-43.
    杨其长,张成波.植物工厂概论[M].北京:中国农业科学技术出版社.2005.
    杨其长.LED在农业与生物产业的应用与前景展望[J].中国农业科技导报,2008,10(6):42-47.
    杨铁钢,谈春松.棉花工厂化育苗技术及其高产高效技术规程[J].河南农业科学,2003,9:23-24.
    杨晓建,刘世琦,张自坤,马琳,张宇,尉辉.不同发光二极管对青蒜苗营养品质的影响[J].营养学报,2010,5:518-520.
    姚发兴,邵锦震.光质对水仙叶片组织培养的效应[J].湖北师范学院学报(自然科学版),1995,15(6):89-91.
    余让才,潘瑞炽.蓝光对水稻幼苗光合作用的影响[J].华南农业大学学报,1996,17(2):88-92.
    袁莉民,仇明,王朋,王志琴,杨建昌.C4转基因水稻秧苗叶片气孔与叶鞘维管束结构特征[J].中国农业科学,2006,39(5):902-909.
    曾斌,王庆亚,唐灿明.三个转Bt基因杂交棉杂种优势的解剖学分析[J].作物学报,2008,34:496-505.
    张超,杨晓盆,王文梅,陈娅娅,张旺军.不同光质对美国红栌叶片结构的影响[J].山西林业科技,2008,1:4-6.
    张欢,徐志刚,崔瑾,谷艾素,郭银生.不同光谱能量分布对菊花试管苗增殖及生根的影响[J].园艺学报,2010a,37(10):1629-1636.
    张欢,徐志刚,崔瑾,谷艾素,郭银生.不同光质对萝卜芽苗菜生长和营养品质的影响[J].中国蔬菜,2009,10:28-32.
    张欢,徐志刚,崔瑾,谷艾素,郭银生.光质对番茄和莴苣幼苗生长及叶绿体超微结构的影响[J].应用生态学报,2010b,21(4):959-965.
    张欢.光环境调控对植物生长和发育的影响[D].南京农业大学硕士学位论文,2007.
    张立伟,刘世琦,张自坤,杨茹,杨晓建.不同光质对豌豆苗品质的动态影响[J].北方园艺,2010a,8:4-7.
    张立伟,刘世琦,张自坤,杨茹,杨晓建.不同光质下香椿苗的生长动态[J].西北农业学报,2010b, 19(6):115-119.
    张立伟,刘世琦,张自坤,杨茹,杨晓建.光质对萝卜芽苗菜营养品质的影响[J].营养学报,2010c,32(4):390-392,396.
    张汝民.绿豆幼苗脱黄化初期质体发育生理生化机制的研究[M].北京:北京林业大学.2005.
    张瑞华,徐坤,董灿兴,李莹莹,吕杰.光质对姜生长及光能利用特性的影响[J].园艺学报,2008,35(5):673-680.
    张以顺,黄霞,陈云凤.植物生理学实验教程[M].北京:高等教育出版社.2009.
    张易.野生马铃薯光敏色素基因PHYA和PHYB的克隆与表达载体构建[D].南京农业大学硕士学位论文,2007.
    张真,李胜,李唯,刘媛,吴兵,张青松,李婷.不同光质光对葡萄愈伤组织增殖和白藜芦醇含量的影响[J].植物生理学通讯,2008,1:106-108.
    章东方,罗昭锋,顾江涛,苏卫华,王玉珍.植物光受体的研究进展[J].安徽农业科学,2003,31(3):391-394,414.
    赵德修,李茂寅,邢建民,童哲.光质、光强和光期对水母雪莲愈伤组织生长和黄酮生物合成的影响[J].植物生理学报,1999,25(2):127-132.
    赵玉国,吴沿友.光质对组培苗叶绿素含量和碳酸酐酶活性及生长的影响[J].现代农业科学,2009,16(4):16-18.
    赵占娟,李光,王秀生,唐志远.光质对绿豆幼苗叶片超微弱发光及叶绿素含量的影响[J].西北植物学报,2009,29(7):1465-1469.
    周波,李玉花.植物的光敏色素与光信号转导[J].植物生理学通讯,2006,1:134-140.
    邹英宁.不同光质对中国李“海湾红宝石”茎段组织培养的影响[J].福建林业科技,2011,38(2):107-109,125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700