用户名: 密码: 验证码:
AA肉鸡和北京油鸡脂肪酸吸收特性的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分3个日龄阶段研究了AA肉鸡和北京油鸡的脂肪酸吸收特性,比较了不同日龄2个品种间上述特性的差别,研究部分由三个试验组成。试验一体内比较了2品种肉鸡脂肪酶活性及粗脂肪消化率、腹脂率;试验二采用体外法研究2品种肉鸡脂肪酸的吸收特性,并进一步研究脂肪酸吸收与粗脂肪消化率及腹脂率的关系,试验三对2品种肉鸡脂肪酸结合蛋白的mRNA表达水平进行了研究,从分子水平进一步探索其与脂肪酸吸收的关系。
     试验一:本试验选取1日龄AA肉鸡和北京油鸡公雏各96只,每个品种鸡按3个不同日龄阶段(21 d、42 d和56 d)分别随机分为3组,每组4个重复,每个重复8只鸡。分别于21d、42 d和56 d,宰杀各重复体重相近的肉鸡5只,取其胰腺、十二指肠、空肠前段食糜测定脂肪酶活性,回肠末端食糜测定粗脂肪表观消化率。结果表明:AA肉鸡胰腺脂肪酶活性在42 d时达到最高,从42 d到56 d开始逐渐降低:而小肠食糜脂肪酶活性21d极显著高于42d、56d(P<0.01),粗脂肪表观消化率与胰腺脂肪酶活性变化趋势相同。北京油鸡56d胰腺脂肪酶活性最高,小肠食糜脂肪酶活性42 d和56 d均低于21 d,但3个日龄间粗脂肪消化率差异不显著(P>0.05)。整个试验期间,3个相应日龄北京油鸡的小肠食糜脂肪酶活性均高于AA鸡,其中21d和56d时差异显著(P<0.05),粗脂肪消化率亦如此,但只有56 d时差异显著(P<0.05)。AA肉鸡和北京油鸡的腹脂率均随着日龄的增加而升高,与其粗脂肪消化率无显著相关关系,AA肉鸡腹脂率在3个日龄阶段均显著高于北京油鸡(P<0.05)。
     试验二:分别提取42 d两品种肉鸡空肠的BBMV,用于体外比较其亚油酸的吸收特性。结果表明:AA肉鸡和北京油鸡对亚油酸的吸收均呈钠离子依赖性,随着钠离子浓度及pH升高均呈现增加趋势,其中北京油鸡在相同钠离子浓度和pH值条件下,其空肠BBMV亚油酸摄入量均高于AA肉鸡,与试验一中粗脂肪消化率的结果一致。
     试验三:分别测定了3个日龄阶段两种肉鸡小肠L-FABP和I-FABP mRNA的表达水平,进一步从分子水平探讨FABPs与脂肪酸吸收的关系。结果表明:3个日龄阶段十二指肠中I、L-FABP mRNA表达两品种肉鸡均差异不显著(P>0.05),21d和42dAA肉鸡空肠两个基因的表达量均显著高于北京油鸡(P<0.05)。21d北京油鸡回肠I-FABP mRNA表达显著高于AA肉鸡(P<0.05);42d AA肉鸡回肠中I-FABP mRNA表达高于北京油鸡,但其差异不显著(P<0.05); 56 d AA肉鸡空肠段L-FABP mRNA表达显著低于北京油鸡(P<0.05),而其I-FABP mRNA表达显高于著北京油鸡(P<0.05);回肠段北京油鸡I-FABP mRNA表达显著高于AA肉鸡(P<0.05)。
The objective of this thesis was to compare the absorptive characteristics of fatty acids between Arbor Acres and Beijing chicken at three ages. it included three experiments, The first experiment was to compare development of lipase activity, digestibility of ether extract and deposition of abdominal fat between two genotypes. The second exprement was to compare the fatty acid absorptive characteristic of two genotypes in vitro.The third experiment was to investigate the development of fatty acid binding protein mRNA expression in liver and different section of intestine of two genotypes.
     ExperimentⅠ:Ninety six 1 d old chicken of each genotype were randomly allotted to 3 groups with 4 replicates,8 birds in each replicate. Five birds of each replicate were killed, at 21 d,42 d,56 d pancreas, chyme at duodeum and ileum to determine lipase activities and ether extract digestibility. The results show that pancreas lipase activities of AA broilers achieved maximum at 42 d, and then declined gradually from 42 d to 56 d, Lipase activities in the intestinal chyme at 21 d were significantly higher than that of at 42 d and 56 d(P< 0.01).The trend of ether extract digestibility was consistent with that of pancreas. Pancreas lipase activities of Beijing chicken achieved maximum at 56 d, but lipase activities in chyme at 42 d and 56 d were lower than that of 21 d. However, ether extract digestibility was not different significantly at 3 ages (P>0.05). Overall, lipase activities in chyme of Beijing chicken were significantly higher than that of AA broiler at each age, and were higher significantly at 21 d and 56 d(P<0.05).Ether extract digestibilities of Beijing chicken were according with lipase activities in chyme, but only had statistic signifance at 56 d. Abdominal fat deposition increased with age, in two genotypes birds, but the fat percentage was not consistent with ether extract digestibility. AA broilers shown higher abdominal fat depositon than Beijing chicken at 3 ages.
     ExperimentⅡ:Jejunum BBMV(Brush Border Membrane Vesicles) from 42-day-old birds of the two genotypes were used to investigate absorptive characteristics of fatty acid(under different sodium concentration and pH value of the two genotype birds) in vitro. The results show that the uptake machanism of fatty acid were the same sodium dependent. The uptake was increased according with sodium concentration and pH value. However, that of Beijing chicken were significantly higher than AA broiler at each sodium concentration and pH value.
     ExperimentⅢ:Investigated express of L-FABP and I-FABP mRNA in different section of intestine of two genotypes birds at three ages, further development the relationship between FABP and uptake of fatty acid at the level of molecular. The result show that:Express of I, L-FABP mRNA in duodenum were no significantly between two genotype at three ages (P>0.05),and the express of I, L-FABP mRNA in jejunum of AA broilers were significantly higher than Beijing-chicken at 21 d and 42 d. the express of I-FABP mRNA in ileum of Beijing-chicken were significantly higher than AA broilers at 21 d (P<0.05),at 42 d, the result was reserve, but it was't significantly(P>0.05).The express of L-FABP mRNA in duodenum of AA broilers were significantly lower than Beijing-chicken at 56 d(P<0.05),but the express of I-FABP mRNA in ileum of Beijing-chicken were significantly higher than AA broilers(P<0.05).
引文
[1]井文倩,李同树,高秀华.肉鸡脂肪沉积及营养调控[J].山东畜牧兽医,2001,1:36-37.
    [2]Becker W A, Spencer J V, Mirosh L W, Verstrate J A. Heritabilities and genteic correlation of live and carcass weight and abdominal fat in female broilers[J].Poultry Science,1979,58:1035-1047.
    [3]Chambers J R,Gavora J S. Genetic parameters of broilers trains in synthetic parent populations[J].Poultry Science,1982,61:1434-1435.
    [4]Leclercq B, Blum J C,Boyer J P. Selection broilers for low or high abdominal fat initial observations [J].British Poultry Science,1980,21:107-113.
    [5]顾志良,赵万里,周勤宣.肉鸡脂肪沉积规律的研究[J].中国家禽,1993(1):24-27.
    [6]Sato K and Akiba Y. Lipoprotein lipase mRNA expression in abdominal adipose tissue is little modified by age and nutritional state in broiler chickens[J].Poultry Science,2002(81):846-852.
    [7]赵国志,刘喜亮,刘智峰.中碳链脂肪酸甘油酯研究概况(Ⅲ)中碳链脂肪酸甘油酯的应用[J].粮油加工与食品机械,2005,4:13-14.
    [8]Lien, T.F. The effect of supplementary dietary L-carnitine on the growth performance, serum components, carcase traits and enzyme activities in relation to fatty acid beta-oxidation of broiler chickens[J].British Poultry Science,2001,42:92-95.
    [9]Meinhart, S.Carnitine content of different tissues in broiler chicken [J].Dissertation Abstracts International,1996,57:831
    [10]沈 同,王镜岩.生物化学[M].北京:高等教育出版社,1990.
    [11]Jandack R J, Whiteside J A, HolcombeB N, etal. The rapid Hydrolysis and efficient absorption of triglyerides with octanoic acid in the 1and3 postitions and long-chain fatty acid in the 2position [J].Am J Clin Nutr,1987,45(4):940-945.
    [12]Ito K, Nakatani K, Fujii M,et al. Codon 54 polymorphism of the fatty acid binding protein gene and insulin resistance in the Japanese population[J].Diabet Med,1999,16:119-124.
    [13]Mukesh K. Sharmaa, Eileen M. Denovan-Wright.,et al. Sequence, linkage mapping and early developmental expression of the intestinal-type fatty acid-binding protein gene (fabp2) from zebrafish[J].Comparative Biochemistry and Physiology, Part B 138 (2004) 391-398.
    [14]Hauser H, Dyer J H, Nandy A., et al. Identification of a receptor mediating absorption of dietary cholesterol in the intestine[J].Biochemistry,1998,37(51):17843-50.
    [15]Young R.J and Garrett R L. Effect of oleic and linoleic acids on the absorption of saturated fatty acids in the chick.[J].Journal of Nutrition,1963,81:321-329.
    [16]Laura Amate, Angel Gil and Man'a Ramirez. Dietary Long-Chain Polyunsaturated Fatty Acids from Different Sources Affect Fat and Fatty Acid Excretions in Rats[J].Journal of Nutrition,2001,131:3216-3221.
    [17]Bernard A and Carlier H. Absorption and intestinal catabolism of fatty acids in the rat:effect of chain length and unsaturation[J].Express Physiology,1991,76:445-455.
    [18]AHMET NOYAN, LOSSOW W J, NATHAN BROT.,etal. Pathway and form of absorption of palmitic acid in the chicken[J].Journal OF Lipid Research 1964,(5):538~541.
    [19]Denstadli V., Vegusdalc A, Krogdahl.,et al. Lipid absorption in different segments of the gastrointestinal tract of Atlantic salmon[J].Aquaculture 2004, (24):385-398.
    [20]Vazquez, C. M, Rovira N, Ruiz-Gutierrez V.,et al. Developmental changes in glucose transport, lipid composition,and fluidity of jejunal BBM[J].Am. J. Physiol.1997,273:R1086-R1093.
    [21]Ling, K Y, Lee, H Y. and Hollander,D. Mechanisms of linoleic acid uptake by rabbit small intestinal brush border membrane vesicles[J].Lipids,1989,24:51-55.
    [22]Garriga C., C.M. Vazquez, V. et al. Regional Differences in Transport, Lipid Composition, and Fluidity of Apical Membranes of Small Intestine of Chicken[J].Poultry Science,2002 81:537-545.
    [23]Rocio Coleto, Jose Bolufer Rocio, and CARMEN M. VAZQUEZ. Taurocholate Transport by Brush Border Membrane Vesicles from Different Regions of Chicken Intestine[j].Poultry Science,1998 77:594-599.
    [24]Richards J D, Atwell C A, Vazquez-Anon M. Comparative In Vitro and In Vivo Absorption of 2-Hydroxy-4(Methylthio) Butanoic acid and methionine in the broiler chicken. Poultry Science,2005,84:1397-1405.
    [25]Wolf gang Stremmel. Uptake of Fatty Acids by jejunum Mucosal Cells Is Mediated by a Fatty Acid Binding Membrane Protein[J].Journal Clinical Investigation,1988,88: 2001-2010.
    [26]Hurwitz, S.,Bar, A., Katz, M., Sklan, D. and Budowski, P.(1973) Absorption and secretion of fatty acids and bile acids in the intestine of the laying fowl. J. Nutr.103,543-547.
    [27]Whitehead, C C, and Fisher, C.() The utilization of various fats by turkeys of different ages[J]. British Poultry Science,1975,16:481-485.
    [28]Robert S and Lees.Impact of dietary fat on human Health, in Omega-3 Fatty Acids in Health and Disease[M].1990.
    [29]刘坚,昊肇汉.肠吸收脂肪、糖及蛋白质功能测定的进展[J].浙江医学,2002,(1):62~64.
    [30]张根旺.主编油脂化学[M]北京:中国财经出版社,1999:159-171.
    [31]占秀安,许梓荣.L-肉碱对肉鸡腹脂沉积的影响及作用机理探讨[J].中国粮油学报,2004,19(5):75~78.
    [32]崔立,徐建雄.L-肉碱在动物营养上的研究和应用[J].饲料研究,1999,7:19-21.
    [33]Wolfe R G, Maxwell C V, Nelson E C.Effect of age and dietary fat level on fatty acid oxidation in the neonatal pig. J.Nutr,1978,108(7):1621-1625.
    [34]许宁迎,赵兴波,蒋思文,等.猪鸡肉质性状分子标记及主效基因的研究进展[J].中国畜牧杂志,2004,40(4):42-43.
    [35]Niewold T A, Meinen M, Van der Meulen J. Plasma intestinal fatty acid binding protein concentrations increase following intestinal ischemia in pigs[J]. Res Vet Sci,2004,77(1):89-91.
    [36]董解菊.脂肪酸结合蛋白测定及临床应用研究进展.国外医学·临床生物化学与检验学分册2001;22:74-76.
    [37]Storch, J., and E. A. Thumser.2000. The fatty acid transport function of fatty acid-binding proteins. Biochim. Biophys. Acta.1486:28-44.
    [38]Kurian E, Kirk W R, Prendergast F G. Affinity of fatty acid for rat intestinal fatty acid binding protein:Further examination[J].Biochemistry,1996,35:3865-3874.
    [39]Richieri, G. V, Ogata, R. T, and Kleinfeld, A. M. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB[J].J. Biol. Chem,1994,269(39):23918-23930.
    [40]冯爱娟,陈东风.脂肪酸结合蛋白研究进展[J].世界华人消化志,2003,11(9):1457-1459.
    [41]Judith Storch. and Kuo-Tung Hsu.Fatty Acid Transfer from Liver and Intestinal Fatty Acid binding Proteins to Membranes Occurs by Different Mechanisms[J].Journal Biochemistry.1996,271(23): 13317-13323.
    [42]Luis B.Agellon, Matthew J.Intracellular lipid binding proteins of the small Intestine[J].Mol Cell Biochem,2002,239:79-82.
    [43]Baier, L. J, Sacchettini, J. C, Knowler, W. C.,et al. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation,and insulin resistance[J] J Clin Invest.1995,95(3):1281-1287..
    [44]Bass, N. M.The cellular fatty acid binding proteins:aspects of structure, regulation, and function[J]. Int. Rev. Cytol,1988,3:143-184.
    [45]Mukesh K. Sharmaa, Eileen M. Denovan-Wright., et al. Sequence, linkage mapping and early developmental expression of the intestinal-type fatty acid-binding protein gene (fabp2) from zebrafish[J].Comparative Biochemistry and Physiology, Part B,2004,138:391-398.
    [46]Hsu, K. T, and Storch. J.Fatty acid transfer from liver and intestinal fatty acid-binding proteins to membranes occurs by different mechanisms[J].J. Biol. Chem.,1996,71:13317-13323.
    [47]Thumser, A. E, Tsai, J. and Storch, J. Collision-mediated transfer of long-chain fatty acids by neural tissue fatty acid-binding proteins (FABP):studies with fluorescent analogs[J].J. Mol. Neurosci,2001,16:143-150.
    [48]Corsico, B, Cistola, D P, Frieden, C.,et al. The helical domain of intestinal fatty acid binding protein is critical for collisional transfer of fatty acids to phospholipid membranes[J].Proc.Natl. Acad. Sci. USA,1998,95:12174-12178.
    [49]Wu, Corsico, F B,Flach, C R., et al.Deletion of the helical motif in the intestinal fatty acidbindingprotein reduces its interactions with membrane monolayers:Brewster angle microscopy,IR reflection-absorption spectroscopy and surface pressure studies[J].Biochemistry, 2001,40:1976-1983.
    [50]Corsico, B, Liou, H L and Storch. J. The helical domain of liver fatty acid binding protein is responsible for the diffusion mediated transfer of fatty acids to phospholipid membranes[J]. Biochemistry,2004,43:3600-3607.
    [51]Kuo-Tung Hsu and Judith Storch.Fatty Acid Transfer from Liver and Intestinal Fatty Acid binding Proteins to Membranes Occurs by Different Mechanisms[J].J Bio Chem,1996,271(23): 13317-13323.
    [52]Kim, H, and Storch. J. Mechanism of free fatty acid transfer from rat heart fatty acid-binding protein to phospholipid membranes.Evidence for a collisional process[J].J. Biol. Chem,1992,267: 20051-20056.
    [53]Wootan, M G, Bernlohr, D A. and Storch. J. Mechanism of fluorescent fatty acid transfer from adipocyte fatty acid binding protein to membrane[J].Biochemistry,1993,32:8622-8627.
    [54]Shaughnessy, S, Smith, E. R. Kodukula, S.,et al. Adipocyte metabolism in adipocyte fatty acid binding protein knockout mice after short-term high-fat feeding:functional compensation by the keratinocyte fatty acid binding protein[J].Diabetes,2000,49:904-911.
    [1]王志祥,马秋刚,关舒,等.固始鸡与蛋鸡、肉鸡生长、养分表观利用率和相关消化酶活性的比较研究[J].中国畜牧杂志,2005,41(5):38-41.
    [2]Krogdahl A. Digestion and absorption of lipids in poultry[J].Journal of Nutrition,1985, 115:675-685.
    [3]Freeman C P. Digestion and absorption of fat. In:Digestion in the fow,British Poultry Science Ltd., Edinburgh.Scotland.1976,117-142.
    [4]陈继兰,文杰,王述柏,等.鸡肉肌苷酸和肌内脂肪沉积规律研究[J].畜牧兽医学报,2005,36(8):843-845.
    [5]王启军,卢庆萍,张宏福.高温环境对北京油鸡生产性能及脂肪沉积的影响[J].广东饲料,2006,15(6):38-40.
    [6]徐淑芳,张文生.北京油鸡肥育试验及产肉性能测定[J].中国家禽,1997,4:7-8.
    [7]于旭华,汪做,孙哲,韩卫涛.黄羽肉仔鸡脂肪酶的发育规律及小麦SNSP对其活性的影响[J].动物营养学报,2001,13(3):60-64.
    [8]Siriwan P, Bryden W L, Mollah Y, Annison E F. Measurement of endogenous amino acid losses in poultry[J].British Poultry Science,1993,34:939-949.
    [9]杨胜.饲料分析及饲料质量检测技术[M].北京:中国农业大学出版社,1999,21-22.
    [10]Jin S-H,Corless A, Sell J L. Digestive system development in post-hatch poultry[J].World's Poultry Science,1998,54:335-345.
    [11]Noy Y, Sklan D. Digestion and absorption in the young chick[J].Poultry Science,1995,74:366-373.
    [12]张铁鹰.植酸酶体外消化评定技术的研究.博士学位论文.北京:中国农业科学院,2002,51-51.
    [13]安永义,周毓平,呙于明,等.0~3周肉仔鸡消化道酶发育规律的研究[J].动物营养学报,1999,11(1):17-24.
    [14]Shires A, Thompson J R, Turer B V, Kennedy P M, Goh Y K. Rate of passage of corn-canola meal and corn-soybean meal diets through the gastrointestinal tract of broiler and white leghorn chickens[J].Poultry Science,1987,66:289-298.
    [1]Hauser H, Dyer JH, Nandy A, et al. Identification of a receptor mediating absorption of dietary cholesterol in the intestine[J].Biochemistry,1998,37(5 1):17843-17850.
    [2]Young R.J and R.L. Garrett. Effect of oleic and linoleic acids on the absorption of saturated fatty acids in the chick.[J] J.Nutrition.1963,81::321-329.
    [3]Bernard A and H Carlier. Absorption and intestinal catabolism of fatty acids in the rat:effect of chain length and unsaturation[J].Exp Physiol 1991;76;445-455
    [4]Ling,K.Y. Lee,H. Y. and Hollander,D. Mechanisms of linoleic acid uptake by rabbit small intestinal brush border membrane vesicles[J].Lipids.1989,24:51-55.
    [5]Garriga C., C. M. Va'zquez, V. et al. Regional Differences in Transport, Lipid Composition, and Fluidity of Apical Membranes of Small Intestine of Chicken[J].Poultry Science.2002, 81:537-545.
    [6]Wolf gang Stremmel. Uptake of Fatty Acids by jejunum Mucosal Cells Is Mediated by a Fatty Acid Binding Membrane Protein[J]. J. Clin. Invest.1988,88:2001-2010.
    [7]Va'zquez, C. M., N. Rovira, V. Ruiz-Gutierrez, and J. M. Planas. Developmental changes in glucose transport, lipid composition,and fluidity of jejunal BBM[J]. Am. J. Physiol.1997,273: R1086-R1093.
    [8]Bradford, M. M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding[J].Anal. Biochem.1976,72:248~254.
    [9]DAHLQVIST, A. Assay of intestinal disaccharidases[J].Analytical Biochemistry,1968,22:99~107.
    [10]Colas, B.,andMaroux.S, Simultaneous isolation of brush border and basolateral membrane from rabbit enterocytes[J].Biochim. Biophys. Acta,1980,600:406-420.
    [11]李勇,蔡辉益,刘国华,等.地塞米松对肉鸡空肠二糖酶活性及黏膜形态的影响[J].畜牧兽医学报,2008,39(1):48-52.
    [12]RUEDA, E. MICHELANGELI C. AND GONZALEZ-MUJICA,F. L-Canavanine inhibits L-arginine uptake by broiler chicken intestinal brushborder membrane vesicles[J].British Poultry Science,2003,44:620-625.
    [13]ROCIO COLETO, JOSE BOLUFER, and CARMEN M. VAZQUEZ. Taurocholate Transport by Brush Border Membrane Vesicles from Different Regions of Chicken Intestine1[J].Poultry Science,1998,77:594-599.
    [14]JACQUES GORE1 ANDCLAUDE HOWARD. Linolenic Acid Transport in Hamster Intestinal Cells Is Carrier-Mediated[J].J. Nutr,1993,123:66-73.
    [1]许宁迎,赵兴波,蒋思文,等.猪鸡肉质性状分子标记及主效基因的研究进展[J].中国畜牧杂志,2004,40(4):42-43.
    [2]高妍,张永宏,李毅等.脂肪酸结合蛋白研究进展[J]动物医学进展,2007,28(1):64~67
    [3]Bass N M.The cellular fatty acid binding proteins:aspects of structure, regulation, and function[J]. Int. Rev. Cytol.1988,3:143-184.
    [4]Luis B,Agellon,Matthew J.Intracellular lipid binding proteins of the small Intestine[J].Mol Cell Biochem.2002,239:79-82.
    [5]Sambrook J, Russell D W. Molecular Cloning:A La-boratory Manual[M].3rd ed.北京:科学出版社,2001.516~532.
    [6]Philippe Besnard, Isabelle Niot.,et al. New insights into the fatty acid-binding protein(FABP) family in the small intestine[J].Mol Cell Biochem 2002,239:139-147.
    [7]李仕新,陈赞谋.猪肉质性状基因及其定位的研究进展[J].肉质与加工,2006,(3):84-86.
    [8]Wang Q, Li H,Li N., et al. Identification of Single Nucleotide Polymorphism of Adipocyte Fatty Acid-Binding protein gene and its association with fatness traits in the chicken[J].Poultry Science,2006,85:429-434.
    [9]李文娟,李宏宾,文杰,等.鸡H-FABP和A-FABP基因表达与肌内脂肪含量相关研究[J].畜牧兽医学报,2006,37(5):417-423.
    [10]Judith Storch and Kuo-Tung. Fatty Acid Transfer from Liver and Intestinal Fatty Acid-binding Proteins to Membranes Occurs by Different Mechanisms[J].J BioChem.1996,271(23):13317-13323.
    [11]Richieri, G. V, Ogata, R. T, and Kleinfeld, A. M. Equilibrium constants for the binding of fatty acids with fatty acid-binding proteins from adipocyte, intestine, heart, and liver measured with the fluorescent probe ADIFAB [J].J. Biol. Chem,1994,269(39):23918-23930.
    [12]Baier, L. J, Sacchettini, J. C, Knowler, W. C.,et al. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance[J]J Clin Invest.1995,95(3):1281-1287.
    [13]Ito K, Nakatani K, Fujii M.,et al. Codon 54 polymorphism of the fatty acid binding protein gene and insulin resistance in the Japanese population[J].Diabet Med,1999,16:119-124.
    [14]Storch, J, and Thumser E A.. The fatty acid transport function of fatty acid-binding proteins[J]. Biochim. Biophys. Acta.2000,1486:28-44.
    [15]Poirier H, Niot I, Degrace P, Monnot M C., et al. Fatty acid regulation of fatty acid-binding proteins expression in the small intestine[J].Am J Physiol 1997,273:G289-G295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700