用户名: 密码: 验证码:
增强UV-B辐射对青榨槭和红桦幼苗生长和生理生态的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在中国科学院茂县生态站选择2年生青榨槭与红桦幼苗进行室外盆栽实验,以人工增强0.27μw·cm-2·s-1(7.7 kJ·m-2·d-1)的UV-B辐射剂量,模拟当地平流层臭氧削减15%时近地面太阳UV-B的增强,研究增强UV-B辐射对两种阔叶树幼苗生长与生理生态特性的影响。试验期间观测幼苗生长、形态,测定气体交换参数和叶绿素荧光参数,并取样测定色素、营养元素、UV吸收物质及解剖结构,研究结果表明:
    1.增强UV-B辐射显著降低了两种幼苗的单叶展开、叶面积、叶片数、生物量,减慢青榨槭生长速率,在处理末期加快红桦生长速率。
    2.增强UV-B辐射处理对青榨槭和红桦幼苗叶片的N、P含量没有显著影响。
    3.增强UV-B辐射处理降低两种幼苗的叶绿素含量。增强UV-B辐射显著降低青榨槭叶片的最大净光合速率Pmax,显著增加暗呼吸速率Rd和光补偿点LCP,对表观量子产量a影响不明显; 对红桦叶片的最大净光合速率Pmax,光补偿点LCP没有显著影响,显著降低暗呼吸速率Rd和表观量子产量a。增强UV-B辐射处理降低青榨槭幼苗一日净光合速率和水分利用效率,以及原初光化学效率(Fv/Fm)和实际光化学量子产量(ΦPSП); 对红桦一日净光合速率和水分利用效率没有显著影响,增加其原初光化学效率(Fv/Fm)和实际光化学量子产量(ΦPSП)。
    4增强UV-B辐射处理降低了两种幼苗UV-B吸收物质含量和类胡萝卜素含量,增加青榨槭表皮层厚度和红桦栅栏组织厚度。
(Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041) Abstract: At Maoxian Ecological Station of Chinese Academy of Sciences located in northwest Sichuan province, 2-year-old seedlings of two native maples (Acer davidii and Betula albo-sinensis) were potted and grown in the open. The plants received an enhanced UV-B radiation (280-320 nm) of 0.27μw·cm-2·s-1 (7.7 KJ·m-2·d-1) was applied with an artificial lamp system, which approximated the predicted enhanced UV-B reaching the earth surface when stratosphere ozone was depleted by 15% in the local area, and the control plant received the ambient UV-B. During the experimentation, the height and diameter of every seedling was measured, and the gas exchange was made to examine the capacity of photosynthesis. Chlorophyll fluorescence were used to determine changes in the efficiency of light utilization for electron transport, the occurrence of photoinhibition of photosystem II photochemistry and the possibility of stomatal patchiness across leaves. Additionally, leaves were sampled to determine the chlorophylls, carotenoid and UV-absorbing compounds content. After four months’ treatments, the seedlings were sampled to determine the total biomass, leaf area, N and P content and morphological of transverse section .The results show as follows:
    1 The total biomass, total leaf area, leaf number and single leaf expanding of both species were reduced by enhanced UV-B treatment.The enhanced UV-B radiation slowered the growth of Acer davidii and accelerate the growth of Betula albo-sinensis.
    2 Enhanced UV-B had no singnificant effects on N and P contnts of both species.
    3 Results showed that chlorophyll content of both species were marked reduced. The effects of enhanced UV-B radiation on the photosynthesis of Acer davidii were that the maximal net photosynthetic rate was significantly lowered, the respiration rate and light compensation point were raised, but the quantum yield was not significantly affected. Simultaneity, the results showed that the enhanced UV-B had no effect on the maximal net photosynthetic rate and light compensation point of Betula albo-sinensis, lowered its respiration rate and quantum yield. The diurnal changes in net photosynthetic rates, water use efficiency, quantum efficiency of photosystem II centers (Fv/Fm) and quantum yield of photosystem II photochemistry (ΦPSП) of Acer davidii seedlings were reduced under enhanced UV-B radiation, while diurnal changes in net photosynthetic rates, water use efficiency of Betula albo-sinensis was unaffected and its quantum efficiency of photosystem II centers (Fv/Fm) and quantum yield of photosystem II photochemistry (ΦPSП) were increased. 4 The enhanced UV-B radiation reduced the epidermis thickness of Acer davidii and palisade tissue thickness of Betula albo-sinensis. Contrary to what was expected, enhanced UV-B radiation decreased the carotenoid UV-absorbing compound content in leaves of both species suggesting a reduction in protection provided.
引文
1. Scotto J. Biologically effective ultraviolet: surface measurements in the United States, 1974 to 1985. Science, 1988, 239: 762~764.
    2. Herman J R, Bhartia P K, Kiemke J, Ahmad Z, Larko D. UV-B increases (1979-1992) from decreases in total ozone. Geophysical Research Letters, 1996, 23: 2117~2120.
    3. Farman J C, Gardiner B G, Shanklin J D. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 1985, 315: 207-210.
    4. Caldwell M M. Alterations in competitive balance. In: Lumsden, P J (ed). Plants and UV-B responses to environmental change. Cambridge: Cambridge University Press, 1997, 307-315.
    5. Johanson U C, Gehrke L, Bj?rn O, Callaghan T V. The effects of enhanced UV-B radiation on the growth of dwarf shrubs in a subarctic heathland. Functional Ecology. 1995a, 9: 713~719.
    6. Johanson U C, Gehrke L, Bj?rn O, Callaghan T V, Sonesson M. The effects of enhanced UV-B radiation on a subarctic heath ecosystem. Ambio, 1995b, 24: 106~111.
    7. Gwynn-Jones D, Lee J A, Callaghan T V. Effects of enhanced UV-B radiation and elevated carbon dioxide concentrations on a sub-arctic forest heath ecosystem. Plant Ecology, 1997, 128:242~249.
    8. Zepp R G, Callaghan T V, Erickson D J. Effects of increased solar ultraviolet radiation on biogeochemical cycles. Ambio, 1995, 24: 181~187.
    9. Phoenix G K, Gwynn-Jones D, Callaghan T V, Sleep D, Lee J A. Effects of global change on a sub-arctic heath: effects of enhanced UV-B radiation and increase summer precipitation. Journal of Ecology, 2001, 89:256~267
    10. 蒋高明. 当前植物生理生态学研究的几个热点问题. 植物生态学报, 2001, 25(5):514~519.
    11. 周秀骥,罗超,李维亮. 中国地区臭氧变化与青藏高原低值中心.科学通报,1995,40(15): 1396~1398.
    12. Booker F L, Fiscus E L, Philbeck R B, Heagle A S, Miller J E, Heck W W. A supplemental ultraviolet-B radiation system for open-top field chambers. Journal of Environmental Quality, 1992, 21: 56~61.
    13. Bassman J H, Edwards G E, Robberecht R. Long-term exposure to enhanced UV-B radiation is not detrimental to growth and photosynthesis in Douglus-fir. New Phytologist, 2002, 154:107~120.
    14. Phoenix G. K. Effects of ultraviolet radiation on sub-arctic heathland vegetation. Ph D thesis, The University of Sheffield, Sheffield, UK. 2000.
    15. Rosa de la T M, Julkunen-Tiitto R, Lehto T, Aphalo P J. Secondary metabolites and nutrient concentrations in silver birch seedlings under five levels of daily UV-B exposure and two relative nutrient addition rates. New Phytologist, 2001, 50:121~131.
    16. Lumsden P J. Plants and UV-B responses to environmental change. UK Cambridge: Cambridge University Press, 1997
    17. Biggs R H, ssuth S V. Effects of ultraviolet-B radiation enhancements under field conditions. In: UV -B Biological and Climatic Effects Research (BACER) , Final Report, 1978
    18. Mark U, Tevini M. Combination effects of UV-B radiation and temperature on sunflower (Helianthus annuus L, cv. Polstar) and maize (Zea mays L., cv. Zenit 2000) seedlings. Journal of Plant Physiology, 1996, 148 (1-2): 49-56.
    19. Teramura A H, Ziska L H, Sztein A E. Changes in growth and photo synthetic capacity of rice with increased UV-B radiation. Physiology Plant, 1991, 83: 373~380.
    20. Dai,Q J, Coronel V P, Vergara B S. Ultraviolet-B radiation effects on growth and physiology of four rice cultivars. Crop Science, 1994, 32 (5): 1269-1274.
    21. Sullivan J H, Teramura A H. Field study of interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant Physiology, 1990, 92: 141~146.
    22. Teramua A H. Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiology Plant, 1983, 58: 415~427.
    23. Hopkins L, BondM A, Tobin A K. Effects of UV-B on the development and ultra structure of the primary leaf of wheat (Triticum aestivum ). Journal of experimental Botany, 1996, 47 : 20~29
    24. 李海涛, 庄欠来, 沈文清. 由臭氧层衰竭导致的 UV-B 辐射增加对陆生植物的影响. 世界科技研究与进展, 2001, 4: 63~72
    25. 冯虎元,陈拓,徐世健. UV-B 辐射对大豆生长、产量和稳定碳同位素组成的影响. 植物学报, 2001, 43(7): 1564~1568
    26. Dickson J G, Caldwell M M. Leaf development of Rumex-patientia Polypodiaceae exposed to UV radiation 280-320 nanometers. American Journal of Botany, 1978, 65 (8): 857~863.
    27. Biggs RH, Kossuth SV, Teramura AH. Response of 19 cultivars of soybeans to ultraviolet-B irradiance. Physiology Plant, 1981, 53: 19-26.
    28. Sullivan J H, Teamura A H, Dillenbury L R. Growth and photo synthetic responses of field grown sweetgum(Liquid ambar sty raciflua; Hamamelidaceae) seedlings to UV-B radiation. American Journal of Botany, 1994, 81: 826~832.
    29. Britz S J, Adamse P. UV -B induced in specific leaf weight of cucumber as a consequence of increased starch content. Journal of Photochemical Photobiology, 1995, 60: 116~119.
    30. Teramura A H, Sullivan J H. Potential effects of increased solar UV-B on global plant productivity. In: Riklis E(ed.) .Photobiology. New York: Plenum Press, 1991: 625-634
    31. Caldwell M M, Teramura A H, Tevini M, Bornman J E, Bjorn L O, Kulandaivelu G.. Effects of increased solar ultraviolet radiation on terrestrial plants. Ambio, 1995, 4:166-173.
    32. Joe H S, Alan H T, Lewis H Z. Variation in UV-B sensitivity n plants from A 3,000-m elevational gradient in Hawaii. Aerican Journal of Botany, 1992, 79(7): 737-743.
    33. Hart R H, Carlson G E, Klueter H H. Response of economically valuable species to ultraviolet radiation. In: Nachtwey D S ed. Climatic Impact Assessment Program(CIAP), Monograph 5, U.S.Dept.Trans., Report No. DOT-TST-55, 1975. 263~275.
    34. Kim H Y, Kobayashi K, Nouchi I, Yoneyama T. Enhanced UV-B radiation has little effect on growth, delta-13C values and pigments of pot-grown rice (Oryza sativa) in the field. Physiologia Plantarum, 1996, 96 (1):1~5.
    35. Ziskal H & Teramura A H. Carbon dioxide enhancement of growth and photosynthesis in rice Oryza-sativa modification by increased ultraviolet-B radiation. Plant Physiology (Rockville) 1992, 99 (2): 473~481.
    36. 侯扶江, 贲桂英. 紫外线-B 辐射对植物的影响研究进展. 植物学通报, 1997, 14(4):18~23.
    37. 王传海, 何都良, 郑有飞, 刘芳. 连续两年紫外线-B 辐射增强对玉米种子发芽及幼苗生长的影响. 农村生态环境, 2003, 19(3): 23~25
    38. 郑有飞,杨志敏,颜景义. 作物对太阳紫外线辐射增加的生物效应及其评估. 应用生态学报, 1996, 7(1):107~109
    39. Blair J S, James H C. Impact of enhanced ultraviolet-B radiation on flower polien and nectar production. Amercian Journal of botany, 1999: 86(1): 108~114
    40. Bj?rn L O. Effects of ozone depletion and increased UV-B on terrestrial ecosystems. – International Journal of environment and Sustainable Development , 1996, 51:217~243.
    41. 王传海, 郑有飞, 万长建, 宋玉芝, 张富存. 紫外辐射增加对作物种子发芽及幼苗生长的影响. 中国农业气象, 2000, (21)3: 33~35.
    42. Teramura A H. Effects of ultraviolet-B radiation on soybean. I. Importance of phto tsynthetically active radiation in evaluating ultraviolet-B irradiance effects on soybean and wheat growth. Physiology Plant, 1980 , 48: 333~339
    43. Tevini M M, Thoma U, Iwanzik W. Effects of enhanced UV-B radiation on germination seedling growth leaf anatomy and pigments of some crop plants. Zeitschrift fuer Pflanzenphysiologie. 1981, 109 (5): 435~448.
    44. Basiouny F M, Van T K, Biggs R H. Some morphological and biochemical characteristics of 3 carbon and 4 carbon plants irradiated with UV-B. Physiologia Plantarum, 1978, 42 (1): 29~32.
    45. Sinha R. P, Lebert M H, Kumar D, H?der P D. Disintegration of phycobilisomes in a rice field cyanobacterium, Nostoc sp.following UV irradiation. Biochemistry and Molecular Biology, 1995,37:697~706
    46. H?der D P, Worrest R C,Kumar H D Smith R C.. Effect of increased solar ultraviolet on aquatic ecosystems. Ambio, 1995, 24: 174~180
    47. Gehrke C U, Johanson T V, Callaghan D, Chadwick C, Robinson H. The impact of enhanced ultraviolet-B radiation on litter quality and decomposition processes in Vaccinium leaves from the Subarctic. Oikos, 1995, 72:213~222
    48. Zepp R.G, Callaghan T V, Erickson. D J, Effects of enhanced solar ultraviolet radiation on biogeochemical cycles. Journal of Photochemistry and Photobiology B: Biology, 1998, 46: 69~82
    49. Mirecki R M. Teramura A H. Effects of ultraviolet-B irradiance on soybean. V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiology, 1984, 74: 475~480.
    50. 杨景宏,陈拓,王勋陵,增强紫外线B辐射对小麦叶绿体膜组分和膜流动性的影响,植物生态学报, 2000, 24(1): 102~105
    51. Lingakumar K, Amudha P, Kulandaivelu G. Exclusion of solar UV-B (280-315nm) radiation on vegetative growth and photosynthetic activities in Vigna unguiculata L.. Plant Science, 1999, 148: 97~103.
    52. Láposi R, Veres S, Mile O, Mészáros I. Photosynthesis-ecophysiological properties of beech (Fagus sylvatica L.) under the exclusion of ambient UV-B radiation. Acta Biologica Szegediensis, 2002, 46: 243~245.
    53. 师生波,韩发,李红彦. 高寒草甸麻花艽和美丽风毛菊的光合速率午间降低现象,植物生理学报, 2001, 27(2): 123~128
    54. Teramura A H, Sillivan J H, Ziska L H. Interaction of elevated ultraviolet-B radiation and CO 2 on productivity and photosynthetic characteristics in wheat, rice and soybean. Plant Physiology, 1990, 94: 470~475
    55. Arnold W. The effect of ultraviolet light on photosynthesis. The Journal of Genernal Physiolgy, 1933, 17: 135~143
    56. Tevini M, Braun J, Fieser G. The protective function of the epidermal layer of rye seedilings against ultraviolet-B radiation. Photochemistry and Photobiology, 1991, 53: 329~333.
    57. 孙谷畴,赵 平,曾小平. 不同光强下焕镛木和观光木的光合参数变化.植物生态学报, 2002, 8(4):335~340
    58. 杨志敏, 颜景义, 郑有飞. 紫外线辐射增加对大豆光合作用和生长的影响. 生态学报, 1996, 16: 154~159.
    59. Vu C V, Jr. Allen L H, Garrard L A. Effects of supplemental UV-B radiation on growth and leaf photosynthetic reactions of soybean Glycine-max cultivar Bragg. Physiologia Plantarum, 1981, 52 (3): 353~362.
    60. Keiller D R, Holmes M G. Effects of long-term exposure to elevated UV-B radiation on the photosynthetic performance of five road-leaved tree species. Photosynthesis Researh, 2001, 67: 229~240.
    61. 赵平, 曾小平, 孙谷畴. 陆生植物对 UV-B 辐射增量响应研究进展. 应用与环境生物学报,2004, 10(1):122~127.
    62. Brandle J R, Cappell W S, Sisson W B. Net photosynthesis, electron transports capacity and ultra-sture of Pisum satium L. exposed to UV-B radiation. Plant Physical , 1977, 60 :165~169
    63. Strid A, Robert J. Alterations in pigment content in leaves of Pisum sativum after exposure to supplementary UV-B. Plant and Cell Physiology, 1992, 33 (7): 1015~1023.
    64. Sisson W B, Caldwell M M. Atmospheric ozone depletion reduction of photosynthesis and growth of a sensitive higher plant exposed to enhanced UV B radiation. Journal of Experimental Botany, 1977, 28 (104): 691~705.
    65. Larkum A W D, Wood W F. The effect of UV-B radiation on photosynthesis and respiration of photoplaskton benethci macrloagae and searassesi. Photosynthesis Research, 1993, 36(1): 17~23.
    66. EL-Manssey H, Salisbury F B. Biochemical response of X-anthjum leaves to ultraviolet radiation. Radiation Botany, 1971, 11: 326~335.
    67. 侯扶江, 贲桂英, 颜景义等. 田间增加紫外线(UV)辐射对大豆幼苗生长和光合作用的影响. 植物生态学报, 1998, 22: 256~261
    68. Negash L, Bjorn L O. Stomatal closure by ultraviolet radiation. Physiologia Plantarum, 1986, 66:360~364.
    69. 李元,王勋陵. 紫外辐射增加对春小麦生理、产量和品质的影响. 环境科学学报,1998, 18: 504~509.
    70. Gaber??ik A, Von?ina M, Tro?t T. Growth and production of buckwheat (Fagopyrum esculentum) treated with reduced, ambient, and enhanced UV-B radiation. Journal of Photochemistry and Photobiology B: Biology, 2002, 66: 30~36.
    71. Fiscus E L, Booker F L. Growth of Arabiopsis flavonoid mutant is challenged by radiation longer than the UV-B band. Environmental and Experimental Botany, 2002, 48: 213~224.
    72. 师生波, 贲桂英, 韩发. 不同海拔地区紫外线B辐射状况及植物叶片紫外线吸收物质含量的分析.植物生态学报, 1999, 23(6): 529~535.
    73. 林植芳,林桂珠,彭长连. .亚热带植物叶片 UV-B 吸收化合物的积累. 生态学报,1998, 18(1) : 90~95
    74. 李元, 祖艳群, 王勋陵. 大气臭氧层减薄、地表紫外辐射增强与植物的响应. 武汉植物学研究,2000,18(5):426~430
    75. Gausman H W. Ultraviolet radiation reflectance by plant leaf epidermises. Agronomy Journal, 1975, 67: 719~724
    76. Robberecht R, Caldwell M M. Leaf epidermal transmittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury. Oecologia, 1987, 32: 277~287
    77. Murali N S, Teramura A H. Effects of ultraviolet-B irradiance on soybean,V1,Influence of phosphorus nutrition on growth and flavonoid content. Physiology Plant, 1985, 63: 413~419
    78. Li J, Ou-Lee T M, Raba R. Arabiodopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell, 1993, 5: 171~179.
    79. Murali N S, Teramura A H. Intraspecific difference in Cucumis sativus sensitivity to ultraviolet-B radiation. Physiology Plant, 1986, 68: 673~677
    80. Mitchell J F, Mananbe F S, Meleshlo V, Tolioka T. Equilibrium climate change and its implications for the future. In: Houghton J T, Jenkins G J Ephraums J J(eds). Climate Change The IPCC Scientific Assessment, Cambridge: Cambridge University Press, 1990
    81. 赵广琦, 王勋陵,岳明, 李方民. 增强UV-B辐射和CO2复合作用对蚕豆幼苗生长和光合作用的影响. 西北植物学报, 2003, 23(1): 6~10.
    82. Zhao D, Reddy K R, Kakani V G. Growth and physiological responses of cotton (GossypiumhirsutumL.) to elevated carbon dioxide and ultraviolet-B radiation under controlled environmental conditions. Plant Cell and Environment, 2003, 26: 771~782.
    83. Lavola A, Julkunen-Tiito R, Roininer H, Aphalo P. Host-plant preference of an insect herbivore mediated by UV-B and CO2 in relation to plant secondary metabolites. Biochemical Systematics and Ecology, 1998, 26(1): 1~12
    84. Kulandaivelu G, Nedunchezhian N. Synergistic effects of ultraviolet-B enhanced radiation and growth temperature on ribulose 1, 5-bisphosphate carboxylase and 14CO2 fixation in Vigna sinensis L.. Photosynthetica, 1993, 29: 377~383.
    85. Nedunchezhian N, Kulandaivelu G. Effects of ultraviolet-B enhanced radiation and temperature on growth and photo chemical activities in Vigna agriculture. Biological Plant, 1996, 38(2): 205~214.
    86. Li S, Paulsson M, Bj?rn L O. Temperature-dependent formation and photorepair of DNA damage induced by UV-B radiation in suspension-cultured tobacco cells, Journal of Photochemical Photobiology, 2002, 66: 67~72.
    87. Takeuchi Y, Murakami M, Nakajima N, Kondo N, Nikaido O. Induction and repair of damage to DNA in cucumber cotyledons irradiated with UV-B. Plant Cell Physiology, 1997, 37: 181~187.
    88. Sullivan J H, Teramura A H. Effects of ultraviolet-B radiance on soybean. Plant Physiology, 1984, 74: 475~480.
    89. 聂磊, 刘鸿先, 彭少麟. 水分胁迫对长期 UV-B 辐射下柚树苗生理特性的影响. 植物资源与环境, 2001, 10: 19~24.
    90. Hunt J E, McNeil D L. Nitrogen status affects UV-B sensitivity of cucumber. Australian Journal of Plant Physiology, 1998 25:79~86.
    91. 强维亚, 杨晖, 陈拓. 镉和增强紫外线-B辐射复合作用对大豆生长的影响. 应用生态学报, 2004, 15(4): 697~700.
    92. 周青,黄晓华,施国新,戴玉锦. 钙对紫外线B胁迫下小麦幼苗若干生物学特性的影响. 环境科学, 2001, 22(6): 79~82.
    93. Robson T M, Pancotto V A, Flint S D, Ballaré C L, Sala O E, Scopel A L, Caldwell M M. Six years of solar UV-B manipulations affect growth of Sphagnum and vascular plants in a Tierra del Fuego peatland. New Phytologist, 2003, 160: 379~389.
    94. 岳明,王勋陵. 紫外线辐射对小麦和燕麦竞争性平衡的影响-小麦和燕麦生物量结构与冠层结构. 环境科学学报,1999, 19(5): 526~531
    95. Barnes P W, Jordan P W, Gold WG. Competition, morphology and canoy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-B radiation. Functional Ecology, 1988, 2: 319~330.
    96. Gold W G, Caldwell M M. The effects of ultraviolet-B radiation on plant competition in terrestrial ecosystems. Physiologia Plantarum, 1983, 58: 435~444
    97. Fox F M, Caldwell M M. Competitive interaction in plant populations exposed to supplementary ultraviolet-B radiation. Oecologia, 1978, 36: 173~190
    98. Dimambro M E. Growth and nitrogen responses to environmental change in temperate and sub-arctic vegetation. Ph D thesis, UK, University of Wales aberystwyth, 2003
    99. Elena K, Ann W, Riitta J-T. Growth, structure, stomatal responses and secondary metabolites of birch seedlings (Betula pendula) under elevated UV-B radiation in the field. Automatica, 2001, 37:453~460
    100. Rozema J, van de S J, Bjorn L O. UV-B as an environmental factor in plant life:stress and regulation. Trends Ecologcial. Evolution, 1997, 12: 22~28
    101. Mohr H, Drumm-Herrel H. Coaction between phytochrome and blue/UV light in anthocyanin synthesis in seedlings. Physiology Plant, 1983, 58: 404~414
    102. 宋丽丽, 郭延平, 徐 凯. 温州蜜柑叶片光合作用光抑制的保护机理. 应用生态学报, 2003, 14(1) : 47~45
    103. Singh A. Growth, physiological and biochemical responses of three tropical legumes to enhanced UV-B radiation. Canadian Journal of Botany, 1996: 74 (1): 135~139.
    104. Field C, Mooney H A. The photosysthesis-nitrigen relationship in wild plants. In: Givnish,T.J.(ed). On the Economy of Plant Form and Function. Cambridge, Cambridge University Press: 1986: 25~55.
    105. Hunt J E, and McNeil D L. The influence of present-day levels of ultraviolet-B radiation on seedlings of two Southern Hemisphere temperate tree species. Plant Ecology, 1999, 143: 39~50
    106. Yue M, Li Y, Wang X L. Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions. Environmental and Experimental Botany, 1998, 40: 187~196.
    107. Newsham K K, Splatt P, Coward P A. Negligible influence of elevated UV-B radiation on leaf litter quality of Quercus robur. Soil Biology & Biochemistry, 2001, 33: 659~665.
    108. Wright LAJ, Murphy T M. Photoreactivation of nitrate reductase production in Nicotiana tabacum var.Xanthi. Biochemical Biophysical Acta , 1975, 407: 338~346.
    109. Weih M, Johanson U, Gwynn-Jones D. Growth and nitrogen utilization in seedlings of mountain birch (Betula pubescens ssp. tortuosa) as affected by ultraviolet radiation (UV-A and UV-B) under laboratory and outdoor conditions. Trees, 1998, 12: 201-207.
    110. He J, Huang L, Whitecross M. Chloroplast ultrastructure changes in pisum sativum associated with supplementary ultraviolet(UV-B) radiation. Plant Cell Environ, 1994, 19, 771~775
    111. Day T A, Vogelmann T C. Alterations in photosynthesis and pigment distributions in pea leaves following UV-B exposure. Physiologia Plantarum, 1995, 94 (3): 433~440.
    112. Eichhorn M, Dohler G, Augsten H. Impact of UV-B radiation on photosynthetic electron transport of Wolffia arrhiza ( L.) Wimm. Photosynthetica. 1993, 29(4): 613~618
    113. Brown S B, Houghton J D, Hendry G A F. Chlorophyll breakdown. In: Scheer H.(Ed). Chlorophylls. CRC Boca. Raton Press, FL, 1991
    114. Greenberg B M, Gaba V, Canaani O, Malkin S, Mattoo A K Edelman M, Separate photosensitizers mediate degradation of the 32-kDa photosystem Ⅱ reaction center protein in the visible and UV spectral regions .Proc.Natl.Acad.Sci.USA 1989, 86:6617~6620
    115. Kinnunen H, Laakso K. Huttunen S. Methanol-extractable UV-B-absorbing compounds in Scots pine needles. Chemosphere: Global Change Science ,1999, 1: 455-460.
    116. Cen Y, Bornman J F. The effect of exposure to enhanced UV-Bradiation on the penetration of monochromatic and polychromatic UV-B radiation in leaves of Brassica napus. Physiology Plant, 1993. 87 (3): 249-255.
    117. Newsham K K, Lewis G C, Greenslade P D, Mcleod A R. Neotyphodium lolii, a fungal leaf endophyte, reduces fertility of Lolium perenne exposed to elevated UV-B radiation. Annals of Botany, 1998, 81:397~403
    118. Nagel L M, Bassman J H, Edwards G E, Robberecht R, Franceshi V R. Leaf anatomical changes in Populus trichocarpa,Quercus rubra,Pseudotsuga meziesii and Pinus ponderosa exposed to enhanced ultraviolet-B radiation. Physiology Plant, 1998, 104:385~396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700