用户名: 密码: 验证码:
浅海海底悬空管道动力响应分析及治理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管线是海上油田的生命线,海洋油田的油、气、水等的集输、储运,多是通过海底管道来完成的,海底管线把海上油田的整个生产系统有机地联系了起来。然而,由于海底管道所处的海洋环境非常复杂,特别是当海底管道因为冲刷、残余应力等原因出现悬空后将直接受到波浪、海流等的作用,存在着诸多不确定因素,使得海底管道的运营风险俱增。因此对海底管道出现悬空后动力特性的分析及悬空的治理显得尤为重要。鉴于此,本文以浅海海底水平悬空管道及立管为研究对象,以流体动力学理论、流固耦合理论及有限元理论为基础,用通用有限元软件ANSYS建立立管及水平悬空管道的有限元模型,对海底悬空管道的动力特征进行了全面的分析,并针对埕岛海域海洋平台立管管卡的破坏情况设计出了一套适用性更强的海底立管管卡—灌浆式立管管卡。研究结果表明,管跨的悬空长度对其动力响应起决定性的作用,管跨的各动力特征均随悬跨长度的增大而大幅增大,且管跨的自振频率随悬空长度的增大而减小,使得管跨越容易发生涡激共振。如何有效的减小管跨的悬空长度成为治理海底管道因悬空发生破坏的关键,本文所设计的灌浆式管卡及针对目标海域所制定的悬空管道的治理对策和方案均可以很好的解决管跨发生涡激共振。
Submerged pipelines are the lifeline of the offshore oil field, which connect the whole production system together. Most of the gathering and storage of oil, gas, water in Marine oil fields, is accomplished through a submarine pipeline.However, the marine environment of a submarine pipeline is very complex. Especially when the submarine pipeline appears hanging. The situation is directly caused by the wave vacancies arise and the role of ocean currents because of erosion, residual stress and other factors. It is likely that the risk of the operation of submarine pipeline will increase because of many uncertainties factors. Therefore, it is particularly important to analyze of dynamic response of the hanging suspended pipeline and the control of hanging. Taking riser and horizontal hanging pipes in shallow seas as the research objects, a finite element model of riser and horizontal hanging pipe has been built up by the software-ANSYS on the basis of Hydrodynamic theory, Fluid-solid coupling theory and Finite element theory. Based on the comprehensive analysis of dynamic response of suspended pipeline in shallow seas, a set of benthic riser clamps of high adaptability named filling riser clamp have been designed based on the destruction of riser of offshore platform in Chengdao sea area. The results show that the span length of the pipe cross plays the most important part in dynamic response: all the dynamic responses increase and the natural frequency reduces with the increasing length of the pipe cross. It makes the pipe cross occur vortex-induced resonance more easily. How to reduce the span length of the pipe cross effectively has become the key factor to control damages related to pipe cross in submarine pipelines. The filling clamps and control countermeasure of span pipes which are researched in the paper can solve vortex-induced resonance of the pipe cross.
引文
[1] Sarpkaya.T , In-line and Transverse Forces on Cylinder Near a Wall in Oseillatory Flow at High Reynolds Number. J. Ship Researeh. 1977,21(4):200一216
    [2] Sarvkaya. T. & F. Rajabi. Hydrodynamic drag on bottom-mounted smooth and rough cylinders in Periodic flow,11th Annual OTC. Houston, 1979 no.3761
    [3] Sarpkaya. T. & Isaaeson. M. Meehanies of wave forces on offshore structures. Van Nostrand Reinhold Co, 1981
    [4] Sumer, B. M. ; Fredsoe, J: Fredsoe , J. Pressure measurements around a pipeline exposed to combined waves and current In: Proceedings of the International Offshore Mechanism And Arctic Engineering Symposium, v5, nptA, Pipeline Technology, 1992, p113-121
    [5]李玉成,陈兵,Marchal JLJ, Rigo Ph. D.波浪作用下海底管线的物理模型实验研究[J].海洋通报.1996, 15(5):68-73
    [6]孟昭瑛,杨树耕,王仲捷.水下管道涡激振动的实验研究[J].水利学报,1994, 7:43-50.
    [7]方华灿,隋信众.海底管道管跨的流激涡旋振动的试验研究与安全可靠性分析[J].中国海上油气(工程),1998,10(2):20-23
    [8] Yamamoto, T. , Nath, J. H. and Slotta, L,S., Wave Forces on cylinders Near Plane Boundary, Jour.Waterways ete. Div., ASCE.Vol.100, No.ww4, PP.345-359, 1974
    [9] Gryta, O. (Norwegian Inst of Technology): To rum, A. On wave and current forces on Pipelines on the sea bed.In: Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v5, n8th, 1989, P143-148
    [10] Lee YG, Hong S. W.Kang K. J. Anumerical simulation of vortex motion behind a circular cy1inder above a horizonta1 P1ane boundary.In:Proceedings of the Fourth Internationa1 Offshore and Polar Engineering Conferenee, Osaka. Japan ISBNI-880653 -10-9(set);ISBN 1-880653-13-3, 1994, 427-433
    [11]李玉成,陈兵.海底管线上波浪力的大涡模拟及三步有限元数值模拟[J].海洋通报.1999, 21(6),:87-93
    [12]吕林.海洋工程中小尺度物体的相关水动力数值计算:(博士学位论文) [M].大连:大连理工大学,2006
    [13] Sumer, B. M. and Fedsoe, J. Transverse vibrations of an elastically mounted cylinderexposed to an oscillating flow, ASME Journal of Offshore Mechanics and Arctic Engineering.1988, 110:387-394
    [14] Bruschi R, Montesi M, Tura F, Vitali L and Accerboni E.Field tests with pipeline free spans exposed to wave flow and steady current. Offshore Technology Conference, 1989, PaPer No.6152
    [15] G. K. Furnes and J. Berntsen. On the response of a free span pipeline subjected to ocean currents [J].Ocean Engineering, 2003, 30:1 553-1577
    [16] S.Hong and Y. R. Choi. Experiment study on the vortex-induced vibration of towed pipes [J]. Journal of Sound and vibration, 2002, 249(4):649-661.
    [17] Pantazopoulos MS, Crossley CW, Orgill G, Lambrakos KF.Fourier methodology for Pipelines span vortex-induced vibrations analysis in combined flow[C]. Proceeding of OMAE'9 3, 1993
    [18] Anfinsen K.A. Review of free spanning pipelines[C].Proceeding of ISOPE'95, 1995
    [19]李磊岩,李华军,梁丙臣,王树青.海底管线管跨段在内外流体作用下的竖向动力特性研究[J].中国海洋大学学报[20 ]蔡洪滨,黄维平.基于管道振动实验的涡激升力频谱分析.中国水运(学术版), 2006,6(5):45-47
    [21]祖楠,黄维平.考虑流固祸合时的海底管道悬跨段非线性动力分析.中国海洋大学报,2006, 36(1):168-172
    [22]约翰B?赫比希.海底管道设计原理[M].石油工业出版社, 1988.10
    [23]聂武,刘玉秋.海洋工程结构动力分析[M].哈尔滨工程大学出版社, 2002
    [24]徐进.海底管道的疲劳可靠性分析[D].西南石油大学硕士学位论文, 2006
    [25]娄敏.海底管道悬跨段涡激振动动力特性及动力响应的数值模拟[D].中国海洋大学硕士学位论文,2005.6
    [26]祖楠.考虑流固耦合时的海底管道悬跨段非线性动力分析[D].中国海洋大学研究生学位论文,2005.7
    [27]邓合霞.海洋立管在非线性波浪载荷下的极值响应研究[D].哈尔滨工程大学工学硕士学位论文,2006.1
    [28]阎通,李萍,李广雪.埕北海域海底管线冲刷稳定性研究[J].青岛海洋大学学报, 29(4):721-726 Oct,1999
    [29]苗文成.埕岛海域海底管道隐患分析及治理[J].石油工程建设, 2004.6
    [30]王利金,刘锦昆.埕岛油田海底管道冲刷悬空机理及对策[J].油气储运,第23卷第1期, 2004
    [31]任艳荣,刘玉标,顾小芸.弹塑性海床上的管土相互作用分析[J].工程力学,第21卷第2期, 2004.4
    [32]青岛海洋大学.海底管线现状勘测报告,2003.5
    [33] Waldemar Magda, Wave-induced Uplift Force on a Submarine Pipeline Buried in a Compressible Seabed. Ocean Eng[J]. 1997, Vol.24, No6:551-576
    [34] W.Magda. Wave-induced Uplift Force Acting on a Submarine Buried Pipeline Finite Element Formulation and Verification of Computations, Computers and Geotechnics [J]. 1996, Vol.19, No.1: 47-73
    [35] Vijayakumar, S.Neelamani, S.Narasimha Rao. Wave Pressures and Uplift Forces on and Scour Around Submarine Pipeline in Clayey Soil, Ocean Engineering [J]. 30(2003):271-295
    [36] Vijaya kumar, S.Neelamani, S.Narasimha Rao. Wave Interaction with a Submarine Pipeline in Clayey Soil due to Random Wave, Ocean Engineering, 32(2005):1517-1538
    [37] G.W.Housner, Pasadena, Calif. Bending Vibrations of a Pipe Line Containing Flowing Fluid. Journal of Applied Mechanics, June, 1952
    [38] G. G. Muntean. Multifractals in Elastic Tube Vibrations due to Internal Flow. Journal of Fluids and Structures [J]. (1995)9: 787-799
    [39]顾小芸.海底管土相互作用研究概述[J].中海洋平台, 2004(1)
    [40]马良.波浪作用下海底管道的水动力和在位稳定性研究的近代进展[J].水动力学研究与进展, 1995, 10(2): 135-145
    [41]马良.部分埋入海底的管道上的波浪力[J].国外油气储运, 1992, 10(6): 25-27
    [42]闰澎旺.砂土对管道约束力的模型实验研究[J].海洋工程, 1996, 14(1): 62-72
    [43]马良,张日向.海底部分埋设管道在波流作用下水动力效应的实验研究[J].中国海上油, 1998, 10( 4): 33-37
    [44]吴鑫.砂质海底管土相互作用有限元分析[D].中国科学院力学研究所硕土论文, 1999
    [45]竺绝艳.海洋工程波浪力学[M].天津大学出版社, 1991
    [46]挪威船级社.海洋管道规程[M].石油工业出版社, 1981
    [47]中国船级社.海洋管道系统检验规范[M].人民交通出版社, 1992
    [48]罗延生.海底管线管跨段涡激振动下模糊疲劳可靠性评估的研究[D].石油大学, 1999.
    [49]王贵春.在稳定流中海洋管道的旋涡激发振动[D].天津大学, 1987
    [50] Chen, Y. N. Fluctuating lift forced of the Karman vortex streets on single circular cylinder and in tube bundles [J]. Journal of Eng. For Industry, Tran.Of ASME , Ser. B, 1972, Vo1. 94 (2):603-628
    [51]凌国灿.圆柱体非定常运动初期漩涡运动[J].力学学报, 1983, 3: 211-216
    [52] Sarpkaya, T. Vortex-induced oscillation: a selective review [J]. Journal of Applied Mechanics, 1979, 4 6, 241-258

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700