用户名: 密码: 验证码:
幽门螺杆菌CagA羧基端多态性分析及诱导AGS IL-8表达水平研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
幽门螺杆菌(Helicobacter pylori,简称H.pylori或HP)感染是慢性胃炎、消化性溃疡、胃癌的主要致病因素,严重胃部疾病患者携带的HP通常含cag致病岛(cag PAI),其中所包含的cagA基因编码的细胞毒素相关蛋白A(CagA)介导宿主胞内一系列信号转导反应最终致不同程度的炎性组织损伤甚至癌变。西方国家患者感染cagA~+HP患严重胃肠道疾病几率明显增高,而东亚国家患者cagA~+检出率达90%以上,不同东亚菌株间CagA羧基端多态性与不同临床结局密切相关。CagA磷酸化位点位于羧基端EPIYA基序(Glu-Pro-Ⅱe-Tyr-Ala)的酪氨酸残基,EPIYA多态性在东西方HP中主要表现在其侧翼保守序列、EPIYA基序本身及其拷贝数上。目前根据EPIYA侧翼保守序列特征可将HP分为西方型和东亚型:东亚型HP CagA具有高亲和SHP-2 SH2结构域的序列(SHP-2 bindingsequence,ESS),可有效激活胞内磷酸化激酶级联系统,与西方型HP相应序列存在明显差异,西方型HP EPIYA-C基序与上述共有序列匹配程度较低,致病力相对较弱。上述东西方HP CagA羧基端序列特征决定了东亚型HP CagA在功能上不同于西方型HP携带的CagA。由于HP的高度重组及变异特征,经典HP东西方分型理论依赖的保守区出现局部或整体缺失、突变,这对现有CagA序列特征与HP致病力的认识提出了挑战。同时,EPIYA-A和B通过抑制性磷酸化基序对上述环路起负反馈调节,近年有研究认为完整的EPIYA-B基序对HP感染引起宿主细胞前炎性因子IL-8高水平分泌十分关键。可见,HP CagA羧基端多态性与致病力关系复杂,尤其在东亚型HP普遍具有CagA蛋白的情况下,引起临床疾病严重程度差异较大,HP CagA羧基端序列特征、对宿主的致病力机制研究对HP感染的防治具有重要意义。
     本实验选用100株中国浙江HP临床菌株进行CagA羧基端序列扩增,与NCBI核苷酸/氨基酸数据库中世界各地来源的287株该序列区信息一同进行氨基酸水平比对分析,发现东西方HP又一保守的差异特征标志,该段序列长度在6-19个氨基酸残基,位于CagA第840氨基酸残基附近,侧翼序列保守性高,利用该标志序列可将HP东西方分型效力从经典方法的80.10%提高至98.45%,两种方法一致率99.44%,因而该标志点有助于今后在氨基酸序列特征上分析东西方HP致病机制的不同。
     本实验发现一株携带EPIYA-A-D的中国浙江HP菌株,经100:1感染比体外攻击AGS细胞4小时及36小时均导致宿主细胞IL-8表达水平均较携带1~2个EPIYA-B的浙江菌株及西方型HP26695高,提示中国HP促进宿主细胞高水平表达IL-8不依赖EPIYA-B,不同于西方菌株相应致炎机制,与HP EPIYA-B具有胞内信号转导负反馈调控作用结论一致。此外,HP感染宿主细胞机制中介导CagA多聚化的CM序列特征在东西方HP中明显不同,再次提示东西方HP CagA作为毒力因子致病机制的差异及复杂性。
Helicobacter pylori(H.pylori) is the main pathogenic factor of chronic gastritis, peptic ulcer and gastric cancer.Patients with serious gastric diseases are usually infected by H.pylori containing cag PAI,Cytotoxin-associated protein A(CagA) coded by cagA participates in a series of signal transductions in host cells and results in inflammatory damage of tissues even canceration on different levels.Patients in the western who suffer from serious gastric disorders are infected by cagA~+ H.pylori, while 90%patients in East Asian are infected by cagA~+ HP,the polymorphism of CagA carboxy-terminal sequence among various strains in East Asian leads to diverse clinical endings.The phosphorylation site of CagA exists in the Tyr locating in EPIYA (Glu-Pro-Ⅱe-Tyr-Ala) motif,and mainly shows in surrounding sequences and the repetition of EPIYA.Based on the surrounding sequences of EPIYA,H.pylori,all over the world,are divided into Western and East Asian types.The East Asian-type CagA binds to SHP-2 more strongly than the Western-type because of the East Asian SHP-2-binding sequence(ESS),which activates effectively the phosphorylation kinase system in cells.The Western-type CagA contains WSS and shows weak pathogenicity.These facts indicate the function of CagA is different between H.pylori strains in East Asian and Western.Due to largely recombination and variation of H. pylori,conservative regions used by classical typing theory appear deletion and mutation in some cases partially or integrally,which make a challenge to current recognitions about structural characteristics of CagA and the correlative pathogenicity. EPIYA-A and B motifs act inverse feedback to the phosphorylation through suppressant phosphorylated motifs.Certain investigation indicated that the completed EPIYA-B is essential during the expression of pro-inflammator IL-8 in infected host cells.Therefore,the relationship between the polymorphism of H.pylori CagA Cterminal characters and pathogenicity is intricate,expecially among East Asian strains which almost all carry with the CagA.
     100 C-sequences of H.pylori CagA amplified from Zhejiang strains and other 287 strains submitted in NCBI from all over the world participated in the study,and were implemented the multiple sequence alignment.The result indicated a new potential oligopeptide biomarker which contained 6 to 19 residues,located around the 840~(th) amino acid residue of CagA and possessed highly conservative surrounding sequences could enhance the validity of H.pylori identification from 80.10%used by classical method to 98.45%,the consistency of two methods reached to 99.44%,and it may be as a characteristic marker in further study of cagA~+ H.pylori pathogenicity.
     Furthermore,a Chinese H.pylori isolate carrying EPIYA-A-D,which naturally EPIYA-B absence but showed stronger activity in stimulation of IL-8 expression compared to other Chinese strains and Western 26695,both after co-culture with AGS 4h and 36h.This suggested the IL-8 expression in host cells was independent of EPIYA-B in Chinese H.pylori,which was significantly different from Western strains' correlative mechanism.The Alignment results also indicated CagA multimerization(CM) sequence appeared different characteristics between Western and East Asian H.pylori.
引文
1. Masanori Hatakeyama. Helicobacter pylori CagA —a bacterial intruder conspiring gastric carcinogenesis. 2006. [J] Int. J. Cancer: 119,1217-1223.
    2. Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, Rappuoli R, Covacci A. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. [J] Proc Natl Sci USA 1996; 93: 14648-14653.
    3. Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Youree BB, Reece CA, Bukanow NO, Drazek ES, Roe BA, Berg DE. Analyses of the cag pathogenicity island of Helicobacter pylori. [J] Mol Microbiol 1998; 28: 37-53.
    4. Segal ED, Cha J, Lo J, Falkow S, Tompkins LS. Altered states: involvement of phosphorylated CagA in the induction of gastric carcinoma risk in Japanese American population. [J] J Infect Dis 2002; 186: 1138-1144.
    5. Asahi M, Azuma T, Ito Y, Suto H, Nagai Y, Tsubokawa M, Tohyama Y, Maeda S, Omata M, Suzuki T, Sasakawa C. Helicobacter pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells. [J] J Exp Med 2000; 191: 593-602.
    6. Backert S, Ziska E, Brinkmann V, Zimny-Arndt U, Fauconnier A, Jungblut PR, Naumann M, Meyer TF. Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. [J] Cell Microbiol 2000; 2: 155-164.
    7. Odenbreit S, Puls J, Sedlmaier B, Gerland E, Fischer W, Haas R. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. [J] Science 2000; 287: 1497-1500.
    8. Stein M, Rappuoli R, Covacci A. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. [J] Proc Natl Acad USA 2000; 97: 1263-1268.
    9. Selbach M, Moese S, Hauck CR, Meyer TF, Backert S. Src is the kinase of the Helicobacter pylori CagA protein in vitro and in viro. [J] J Biol Chem 2002; 277: 6775-6778.
    10. Stein M, Bagnoli F, Halenbeck R, Rappuoli R, Fantl WJ, Covaaci A. c-Src / Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. [J] Mol Microbiol 2002; 43: 971-980.
    11. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama, M. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. [J] Science. 2002; 295: 683-686.
    12. Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T, Hatakeyama M. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. [J] Proc Natl Acad Sci USA 2002; 99: 14428-14433.
    13. Argent RH, Kidd M, Owen RJ, Thomas RJ, Limb MC, Atherton JC. Determinants and consequences of different levels of CagA phosphorylation for clinical isolates of Helicobacter pylori. [J] Gastroenterology 2004; 127: 514-523.
    14. De Souza D, Fabri LJ, Nash A, Hilton DJ, Nicola NA, M. Baca M. SH2 domains from suppressor of cytokine signaling-3 and protein tyrosine phosphatases SHP-2 have similar binding specificities. [J] Biochemistry 2002; 41: 9229-9236.
    15. Azuma T, Yamazaki S, Yamakawa A, Ohtani M, Muramatsu A, Suto H, Ito Y, Dojo M, Yamazaki Y, Kuriyama M, Keida Y, Higashi H, et al. Assiciation between diversity in the Sric homology 2 domain-containing tyrosine phosphatase binding site of Helicobacter pylori CagA protein and gastric atrophy and cancer. [J] J Infect Dis 2004; 189: 820-827.
    16. Azuma T, Ohtani M, Yamazaki Y, Higashi H, Hatakeyama M. Metanalysis of the relationship between CagA seropositivity and gastric cancer. [J] Gastroenterology 2004; 126: 1926-1927.
    17. Brandt S, Kwok T, Hartig R, Konig W, Backert S. NF-kB activation nad potentiation of proinflammatory responses by the Helicobacter pylori CagA protein. [J] Proc Natl Acad Sci USA 2005; 102: 9300-9305.
    18. Zhu Y, Zhong X, Zheng S, Du Q, Xu W. Transformed immortalized gastric epithelial cells by virolence factor CagA of Helicobacter pylori through Erk mitogen-activated protein kinase pathway. [J] Oncogene 2005; 24: 3886-3895.
    19. Youli Zhang, Richard H. Argent, Darren P. Letley, Rachael J. Thomas, and John C. Atherton. 2005. [J] Clinical Microbiology p. 786-790.
    20. Asahi, M., Y. Tanaka, T. Izumi, Y. Ito, H. Naiki, D. Kersulyte, K. Tsujikawa, M. Saito, K. Sada, S. Yanagi, A. Fujikawa, M. Noda, and Y. Itokawa. 2003. Helicobacter pylori CagA containing ITAM-like sequences localized to lipid rafts negatively regulates VacA-induced signaling in viro. [J] Helicobacter 8; 1-14.
    21. Chomvarin, C, Namwat, W., Chaicumpar, K., Mairiang, P., Sangchan, A., Sripa, B., Tor-Udom, S. & Vilaichone, R. K. 2008. Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA and babA2 genotypes in Thai dyspeptic patients. [J] Int J Infect Dis 12, 30-36.
    22. Mimuro, H., T. Suzuki, J. Tanaka, M. Asahi, R. Haas, and C. Sasakawa. 2002. Grb2 is a key mediator of Helicobacter pylori CagA protein activities. [J] Mol. Cell 10: 745-755.
    23. Lam Tung Nguyen, Omohisa Uchida, Kazunari Murakami, Toshio Fujuoka and Masatsugu Moriyama. 2008. Helicobacter pylori virulence and the diversity of gastric cancer in Asia. [J] Medical Microbiology 57, 1445-1453.
    24. Ali, M., Khan, A. A., Tiwari, S. K., Ahmed, N., Rao L. V. & Habibullah, C. M. 2005. Association between cag-pathogenicity island in Helicobacter pylori isolates from peptic ulcer, gastric carcinoma, and non-ulcer dyspepsia subjects with histological changes. [J] World J Gastroenterol 11, 6815-6822.
    25. Backert, S. & Meyer, T. F. 2006. Type IV secretion systems and their effectors in bacterial pathogenesis. [J] Curr Opin Microbiol 9, 207-217.
    26. Brenner, H., Arndt, V., Stegmaier, C, Ziegler, H. & Rothenbacher, D. 2004. Is Helicobacter pylori infection a necessary condition for noncardia gastric cancer? [J] Am J Epidemiol 159, 252-258.
    27. Chaudhuri, S., Chowdhury ,A., Datta, S., Mukhopadhyay, A. K., Chattopadhya, S., Saha, D. R., Dhali, G, Santra, A., Nair, G. B. & other authors. 2003. Anti-Helicobacter pylori therapy in India: differences in eradication efficiency associated with particular alleles of vacuolating cytotoxin (vacA) gene. [J] J Gastroenterol Hepathol 18, 190-195.
    28. Choi, K. D., Kim N., Lee, D. H., Kim, J. M., Kim, J. S., Jung, H. C. & Song, I. S. 2007. Analysis of the 3'-variable region of the cagA gene of Helicobacter pylori isolated in Koreans. [J] Dig Dis Sci 52, 960-966.
    29. Stefano Censini, Christina Lange, Zhaoying Xiang, Jean E. Crabtree, Paolo Ghiara et al. 1996. cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence fators. [J] Proc. Natl. Acad. Sci. USA Vol 93: 14648-14653.
    30. Xiang, Z. Y., Censini, S., Bayeli, P. F, Telford, J. L., Figura, N.. et al. 1995. [J] Infect. Immun. 63: 94-98.
    31. Fetherston, J. D., Schuetze P., Perry, R. D. 1992. Loss of the pigmentation phenotype in Yersinia pestis is due to the spontaneous deletion of 102 kb of chromosomal DNA which is flanked by a repetitive element. [J] Molecular Microbiology. 6(18): 2693-2704.
    32. Gouin E., Mengaud, J., Cossart, P. 1994. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. [J] Infection & Immunity. 62(8): 3550-3553.
    33. Hacker J., Bender L., Ott M., Wingender J., et al. 1990. Deletions of chromosomal regions coding for fimbriae and hemolysins occur in vitro and in vivo in various extraintestinal Escherichia coli isolates. [J] Microbial Pathogenesis, 8(3): 213-225.
    34. Takeshi A., Akiyo Y, Shiho Y, Masahiro O., Yoshiyuki I., et al. 2004. Distinct Diversity of the cag Pathogenicity Island among Helicobacter pylori Strians in Japan [J] Journal of Clinical Microbiology p. 2508-2517
    35. Yoshio Y, Mototsugu K. and Masahiro A. 2008. Geographic Differences in Gastric Cancer Incidence Can be Explained by Differences between Helicobacter pylori Strains. [J] Internal Medicine 47: 1077-1083.
    36. Takeshi Azuma. 2004. Helicobacter pylori CagA protein variation associated with gastric cancer in Asia. [J] J Gastroenterol 39: 97-103.
    37. Lam Tung Nguyen, Omohisa Uchida, Kazunari Murakami, Toshio Fujuoka and Masatsugu Moriyama. 2008. Helicobacter pylori virulence and the diversity of gastric cancer in Asia. [J] Medical Microbiology 57, 1445-1453.
    38. Ali, M., Khan, A. A, Tiwari, S. K., Ahmed, N., Rao L. V. & Habibullah, C. M. 2005. Association between cag-pathogenicity island in Helicobacter pylori isolates from peptic ulcer, gastric carcinoma, and non-ulcer dyspepsia subjects with histological changes. [J] World J Gastroenterol 11, 6815-6822.
    39. Brenner, H., Arndt, V., Stegmaier, C, Ziegler, H. & Rothenbacher, D. 2004. Is Helicobacter pylori infection a necessary condition for noncardia gastric cancer? [J] Am J Epidemiol 159, 252-258.
    40. El-Etr, S. H., Mueller, A., Tompkins, L. S., Falkow, S. & Merrell, D. S. 2004. Phosphorylation-independent effects of CagA during interaction between Helicobacter pylori and T84 polarized monolayers. [J] J Infect Dis 190, 1516-1523.
    41. Erzin, Y, Kokasal, V., Altun, S., Dobrucali, A., Asian, M., Erdamar, S., Dirican, A. & Kocazeybek, B. 2006. Prevalence of Helicobacter pylori vacA, cagA, cagE, iceA, babA2 genotypes and correlation with clinical outcome in Turkish patients with dyspepsia. [J] Helicobacter 11, 574-580.
    42. Fu, H. Y., Asahi, K., Hayashi, Y., Eguchi, H., Murata, H., Tsujii, M., Ysuji, S., Azuma, T. & Kawanok, S. 2007. East Asian-type Helicobacter pylori cytotoxin-assocaited gene A protein has a more significant effect on growth of rat gastric mucosal cells than the Western type. [J] J Gastroenterol Hepatol 22, 355-362.
    43. Hatakeyama, M. 2004 Oncogenic mechanisms of the Helicobacter pylori CagA protein. [J] Nat Rev Cancer 4, 688-694.
    44. Hatakeyama, M. 2006. Helicobacter pylori CagA — a bacterial intruder conspiring gastric carcinogenesis. [J] Int J Cancer 119, 1217-1223.
    45. Huang, J. Q., Zheng, G. E, Sumanac, K., Irvine, E. J. & Hunt, R. H. 2003. Meta-analysis of the relationship between cagA seropositivity and gastric cancer. [J] Gastroenterology 125, 1636-1644.
    46 Satomi, S., Yamakawa, A., Matsunaga, S., Masaki, R., Inagaki, T., Okuda, T., Suto, H., Ito, Y., Yamazaki, Y. & other authors. 2006. Relationship between the diversity of the cagA gene of Helicobacter pylori and gastric cancer in Okinawa, Japan. [J] J Gastroenterol 41, 668-673.
    47. Odenbreit, S., J. Puls, B. Sedlmaier, E. Gerland, W. Fischer, and R. Haas. 2000. Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. [J] Science 287: 1497-1500.
    48. Tsutsumi, R., Takahashi, A., Azuma, T., Higashi, H. & Hatakeyama, M. 2006. Focal adhesion kinase is a substrate and downstream effector of SHP-2 complexed with Helicobacter pylori CagA. [J] Mol Cell Biol 26, 261-276.
    49. Peek, R. M., Jr., G. G. Miller, K. T. Tham, G. I. Perez-Perez, X. Zhao, J. C. Atherton, and M. J. Blaser. 1995. Heightened inflammatory response and cytokine expression in vivo to cagA~+ Helicobacter pylori strains. [J] Lab. Invest. 73: 760-770.
    50. Joh, T., H. Kataoka, S. Tanida, K. Watanabe, T. Ohshima, M. Sasaki, H. Nakao. H. Ohhara, S. Higashiyama, and M. Itoh. 2005. Helicobacter pylori-stimulated interleukin-8 (IL-8) promotes cell proliferation through transactivation of epidermal growth factor receptor (EGFR) by disintegrin and metalloproteinase (ADAM) activation. [J] Dig. Dis. Sci. 50: 2081-2089.
    51. Ramelah Mohamed, Alfizah Hannfiah. Isa M. Rose. Mohd Rizal A. Mannaf Shiekh Anwar Abdullah. Ismail Sagap. A. van Belkum. Jasmi A. Yaacob. 2009. Helicobacter pylori cagA gene variants in Malaysians of different ethnicity. [J] Eur J Clin Microbiol Infect Dis.
    52. Kaur G, Naing NN. 2003. Prevalence and ethnic distribution of Helicobacter pylori infection among endoscoped patients in North Eastern Peninsular Malaysia. [J] Mal J Med Sci 10: 66-70.
    53. Tao R, Fang PC, Liu HY, Jiang YS, Chen J 2004. A new subtype of 3' region of cagA gene in Helicobacter pylori strains isolated from Zhejiang Province in China. [J] World J Gastroenterol 10: 3284-3288.
    54. Poppe, M., S. M. Feller, G. Romer, and S. Wessler. 2007. Phosphorylation of Helicobacter pylori CagA by c-Ab1 leads to cell motility. [J] Oncogene 26: 3462-3472.
    55. Saadat, I., Higashi, H., Obuse, C., Umeda, M., Murata-Kamiya, N., Saito, Y, Lu, H., Ohnishi, N., Azuma, T. & other authors. 2007. Helicobacter pylori CagA targets PAR1 / MAPK kinase to disrupt epithelial cell polarity. [J] Nature 447, 330-333.
    56. Hideaki Higashi, Kazuyuki Yokoyama, Yumiko Fujuu, Shumei Ren, Hitomi Yuasa, Iraj Saadat, Naoko Murata-Kamiya, Takeshi Azuma, and Masanori Hatakeyama. 2005. EPIYA motif is a membrane-targeting signal of Helicobacter pylori virulence factor CagA in mammalian cells. [J] pp. 23130-23137.
    57. Kurashima, Y., Murata-Kamiya, N., Kikuchi, K., Higashi, H., Azuma, T., Kondo, S. & Hatakeyama, M. 2008. Deregulation of β-catenin signal by Helicobacter pylori CagA requires the CagA-multimerization sequence. [J] Int J Cancer 122, 823-831.
    58. Shumei Ren, Hideaki Higashi, Huaisheng LU, Takeshi Azuma, and Masanori Hatakeyama. 2006. Structural basis and functional consequence of Helicobacter pylori CagA multimerizaiton in cells. [J] Biological Chemistry. 281: 32344-32352.
    59. Kanada, R., Uchida, T., Tsukamoto, Y., Nguyen, L. T., Hijiya, N., Matsuura, K., Kodama, M., Okimoto, T., Murakami, K. & other authors. 2008. Genotyping of the cagA gene of Helicobacter pylori on immunohistochemistry with East Asian CagA-specific antibody. [J] Pathol Int 58, 218-225.
    60. Cover, T. L., and S. R. Blanke. 2005. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. [J] Nat. Rev. 3: 320-332.
    61. Matsumoto, Y, Marusawa, H., Kinoshita, K., Endo, Y, Kou, T., Morisawa, T., Azuma, T., Okazaki, I. M., Honjo, T. & other authors. 2007. Helicobacter pylori infection triggers aberrant expression of activation-induced cytidine deaminase in gastric epithelium. [J] Nat Med 13, 470-476.
    62. Moese, S., Selbach, M, Brinkmann, V., Karlas, A., Kaimovich, B., Backert, S. & Meyer, T. F. 2007. The Helicobacter pylori CagA protein disrupts matrix adhesion of gastric epithelial cells by dephosphorylation of vinculin. [J] Cell Microbil 9, 1148-1161.
    63. Murata-Kamiya, N., Kurashima, Y, Teishikata, Y, Yamahashi, Y, Saito, Y, Higashi, H., Aburatani, H., Akiyama, T., Peek, R. M., Jr & other authors. 2007. Helicobacter pylori CagA interacts with E-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. [J] Oncogene 26, 4617-4626.
    64. Naito, M., Yamazaki, T., Tsutsumi, R., Higashi, H., Onoe, K., Yamazaki, S., Azuma, T. & Hatakeyama, M. 2006. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of Helicobacter pylori CagA. [J] Gastroenterology 130, 1181-1190.
    65. Singh, K & Ghoshal, U. C. 2006. Causal role of Helicobacter pylori infection in gastric cancer: an Asian enigma. [J] World J Gastroenterol 12, 1346-1351.
    66. Crabtree, J. E., and S. M. Farmery, 1995. Helicobacter pylori and gastric mucosal cytokines: evidence that CagA-positive strains are more virulent. [J] Lab. Invest. 73: 742-745.
    67. Ellen J. Beswick, Irina V. Pinchuk, Giovanni Suarez, Johanna C. Sierra, and Victor E. Reyes. 2006. Helicobacter pylori CagA-dependent macrophage migration inhibitory factor produced by gastric epithelial cells binds to CD74 and stimulates procarcinogenic events. [J] Immunology, 176: 6794-6801.
    68. Xia, H. H., S. K. Lam, A. O. Chan, M. C. Lin, H. F. Kung, K. Ogura, D. E. Berg, and B. C. Wong. 2005. Macrophage migration inhibitory factor stimulated by Helicobacter pylori increases proliferation of gastric epithelial cells. [J] World J. Gastroenterol. 11: 1946-1950.
    69. Chesney, J., C. Meta, M. Bacher, T. Peng, A. Meighardt, and R. Bucala. 1999. An essential role for macrophage migration inhibitory factor (MIF) in angiogenesis and the growth of a murine lymphoma. [J] Mol. Med. 5: 181-191.
    70. Nishihira, J., T. Ishibashi, T. Fukushima, B. Sun, Y. Sato and S. Todo. 2003. Macrophage migration inhibitory factor (MIF): its potential role in tumor growth and tumor-associated angiogenesis. [J] Ann. NYAcad. Sci. 995: 171-182.
    71. Leng, L., C. N. Metz, Y. Fang. J. Xu, S. Donnelly, J. Baugh, T. Delohery, U. Chen, R. A. Mitchell and R. Bucala. 2003. MIF signal transduction initiated by binding to CD74. [J] Exp. Med. 197: 1467-1476.
    72. Rhead, J. L., Letley, D. P., Mohammadi, M., Hussein, N., Mohagheghi, M. A., Eshagh Hosseini, M. & Atherton, J. C. 2007. A new Helicobacter pylori vacuolating cytotoxin determinant, the intermediate region, is associated with gastric cancer. [J] Gastroenterology 133, 926-936.
    73. Ikonen, E. 2001. Roles of lipid rafts in membrane transport. [J] Curr. Opin. Cell Biol. 13: 470-477.
    74. Viala, J., Chaput, C, Boneca, I. G, Cardona, A., Girardin, S. E., Moran, A. P., Amman, R., Memet, S., Huerre, M. R. & other authors. 2004. Nod1 reponds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. [J] Nat Immunol 5, 1166-1174.
    75. Karin, M. 2006. Nuclear factor-KB in cancer development and progression. [J] Nature 441: 431-436.
    76. Froese, N., M. Schwarzer, I. Niedick, U. Frischmann, M. Koster, A. Kroger, P. P. Mueller, M. Nourbakhsh, B. Pasche, J. Reimann, et al. 2006. Innate immune responses in NF-κB-repressing factor-deficient mice. [J] Mol. Cell. Biol. 26: 293-302.
    77. Kim, S. Y., Lee, Y. S., Kim, H. K. & Blaser, M. J. 2006. Helicobacter pylori CagA transfection of gastric epithelial cells induces interleukin-8. [J] Cell Microbiol 8, 97-106.
    78. O'Hara, A. M., A. Bhattacharyya, R. C. Mifflin, M. F. Smith, K. A. Ryan, K. G. Scott, M. Naganuma, A. Casola, T. Izumi, S. Mitra, et al. 2006. Interleukin-8 induction by Helicobacter pylori in gastric epithelial cells is dependent on apurinic / apyrimidinic endonuclease-1/redox factor-1. [J] Immunol. 177: 7990-7999.
    79. Poppe, M., S. M. Feller, G. Romer, and S. Wessler. 2007. Phosphorylation of Helicobacter pylori CagA by c-Ab1 leads to cell motility. [J] Oncogene 26: 3462-3472.
    80. Ren S, Higashi H, Lu H et al. Structural basis and functional consequence of Helicobacter pylori CagA multimerization in cells. 2006. [J] J Biol Chem 281: 32344-32352.
    81. L. A. Sicinschi, P. Correa, R. M. Peek, et al. 2009. CagA C-terminal variations in Helicobacter pylori strains from Colombian patients with gastric precancerous lesions. [J] Clin Microbiol Infect.
    1.Warren J R,Marshall BJ.Unidentified curced bacilli on gastric epithelium in active chronic gastritis.[J]Lahcet,1983,1(8336):1273-1275.
    2.Hobsley M,Tovey FI.Helicobacter pylori:the primary cause of duodenal ulceration or a secondary infection?[J]World J Gastroenterol 2001;7:149-151.
    3.刘海峰,刘为纹,房殿春,高晋华,王振华.幽门螺杆菌油倒胃粘膜上皮细胞凋亡和增生与p53基因表达。[J]世界华人消化杂志2001;9 1265-1268.
    4.王承党,黄海辉,陈玉丽.幽门螺杆菌感染对消化性溃疡患者胃G,D细胞的影响。[J]世界华人消化杂志 2000;8:847-850.
    5.彭仲生,梁湛聪,刘幕嫦,欧阳能太.幽门螺杆菌相关胃溃疡细胞增生与凋亡研究.[J]世界华人消化杂志 1999;7:218-219.
    6.Vandenplas Y.Helicobacter pylori infection.[]]World J Gastroenterol 2000;6:20-31.
    7.张建中.幽门螺杆菌与胃癌相关研究.[J]中华流行病学杂志 2003;6:437-438.
    8.顾金柱,侯天文,王晓熙.幽门螺杆菌致胃粘膜癌前期病变的横断研究.[J]世界华人消化杂志2001;9:111.
    9.陈世耀,王吉耀,纪元,张希德,朱畴文.幽门螺杆菌与蛋白激酶C在胃癌及癌前病变基因突变中的作用.[J]世界华人消化杂志 2001;9:302-307.
    10.王普选,张晓茹,尹艳芬,万东君.中国西部少数民族幽门螺杆菌感染与胃癌发病的流行病学关系.[J]世界华人消化杂志2000;8:1444.
    11.何兴祥,王家马龙,吴捷莉,袁顺玉,艾莉.胃粘膜癌变过程中幽门螺杆菌感染与端粒酶活性的表达.[J]世界华人消化杂志2000;8:505-508.
    12.全俊,范学工.幽门螺杆菌感染与胃癌发生的实验研究进展.[J]世界华人消化杂志 1999;7:1068-1069.
    13.华杰松.幽门螺杆菌细胞增生和细胞凋亡在胃癌发生中的作用.[J]世界华人消化杂志1999:9:647-648.
    14.胡品津.幽门螺杆菌与胃癌:研究面临的挑战.[J]世界华人消化杂志1999;7:1-2.
    15.Gao HJ,Yu LZ,Bai JF,Peng YS,Sun G,Zhao HL,Miu K,Lu XZ,Zhang XY,Zhao ZQ.Multiple genetic alterations and behavior of cellular biology in gastric cancer and other gastric mucosal lesions:H.pylori infection,histological types and staging.[J]World J Gastroenterol 2000;6:848-854.
    16.庄小强,林三仁.幽门螺杆菌与胃癌的研究进展.[J]世界华人消化杂志2000;8:206-207.
    17.姚永莉,张万岱.幽门螺杆菌与胃癌的关系.[J]世界华人消化杂志2001;9:1045-1049.
    18.ROLLAN A,GIANCASPER R,FUSTER F et al.The long-term reinfection rate and the course of duodenal ulcer disease after eradication of H.pylori in a developing country[J].Am J Gastroenterol,2000.95(1):50-56.
    19.CENSINI S,LANGE C,XING Z,et al.Cag,a pathogenicity island of H.pylori,encodes type Ⅰ- specific and disease-associated virulence factors .
    20. STEIN M, RAPPULI R, COVACCI A. Tyrosine phosphorylation of the H. pylori CagA antigen after cagA-driven host cell translocation [J]. Proc Natl Acad Sci, 2000,97(3): 1263-1268.
    21. Segal ED, Cha J, Lo J, et al. Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by H. pylori. [J] Proc Natl Acad Sci USA, 1999, 96: 14559-14564.
    22. Asahi M. H. Pylori CagA protein can be tyrosine phosphorylated in gastric epithelial cells.[J] Exp Med, 2000, 191:593-602.
    23. Stein M, Rappudi R, Covacci A. Tyrosine phosphorylation of the H. pylori CagA antigen after cag-driven host cell translocation. [J] Proc Natl Acad Sci. USA, 2000, 97: 1263-1268.
    24. Higashi H1 SHP-2 tyrosine phosphatase as an intracellular target of H. pylori CagA protein. [J] Science, 2002, 295(5555): 683-686.
    25. Higashi H, Yokoyama K, Fujii Y, Ren S, Yuasa H, Saadat I, Murata-Kamiya N, Azuma T, Hatakeyama M. EPIYA motif is a membrane-targeting signal of H. pylori virulence factor CagA in mammalian cells. [J] J Biol Chem 2005; 280: 23130-23137.
    26. Naito M, Yamazaki T, Tsutsumi R, Higashi H, Onoe K, Yamazaki S, Azuma T, Hatakeyama M. Influence of EPIYA-repeat polymorphism on the phosphorylation-dependent biological activity of H. pyloriCagA. [J] Gastroenterology 2006; 130: 1181-1190.
    27. Zhang Y, Argent RH, Letley DP, Thomas RJ, Atherton JC. Tyrosine phosphorylation of CagA from Chinese H. pylori isolates in AGS gastric epithelial cells. [J] Clin Microbiol 2005; 43: 786-790.
    28. Nomura AM, Kolonel LN, Miki K et al. H. Pylori, pepsinogen, and gastric adenocarcinoma in Hawaii, [J] Infect Dis, 2005, 191(12): 2075.
    29. Miehlke S, Kirsch C, Agha-Amiri K et al. The H. Pylori vacA s1, m1 genotype and cagA is associated with gastric carcinoma in Germany. [J] Int Cancer, 2000. 87(3): 322.
    30. Gatti LL, Fagundes e Souza EK, Leite KR et al. cagA, vacA alelles and babA2 genotypes of H. Pylori associated with gastric disease in Brazilian adult patients. [J] Diagn Microbiol Infect Dis, 2005, 51(4): 231.
    31. Maeda S, Ogura K, Yoshida H et al. Major virulence factors, VacA and CagA, are commonly positive in H. pylori isolates in Japan. [J] Gut, 1998, 42(3): 338.
    32. Zheng PY, Hua J, Yeoh KG et al. Association of peptic ulcer with increased expression of lewis antigens but not cagA, iceA, and vacA in H. pylori isolates in an asian population. [J] Gut, 2000, 47(1): 18.
    33. Chen XJ, Yan J, Shen YF. Dominant cagA / vacA genotypes and coinfection frequency of H. pylori in peptic ulcer or chronic gastritis patients in Zhejiang Province and correlations among different genotypes, coinfection and severity of the diseases. [J] Chin Med, 2005, 118(6): 460.
    34. You WC, Zhang L, Pan KF et al. H. pylori prevalence and CagA status among children in two counties of China with high and low risks of gastric cancer. [J] Ann Epidemiol, 2001, 11(8): 543.
    35. Pan ZJ, van der Hulst RW, Feller M, Xio SD, Tytgat GN, Dankert J, van der Ende A. Equally high prevalences of infection with CagA-positive H. pylori in Chinese patients with peptic ulcer disease and those with chronic gastritis associated dyspepsia. [J] Clin Microbil 1997; 35: 1344-1347.
    36. Shimoyama T, Fukuda S, Tanaka M, Mikami T, Saito Y, Munakata A. High prevalence of the CagA-positive H. pylori strains in Japanese asymptomatic patients and gastric cancer patients. Scand [J] Gastroenterol 1997; 32: 465-468.
    37. Censini, S., Lange, C, Xiang, Z. Y., Crabtree, J. E., Ghiara, P., et al. Cag, a pathogenicity island of H. Pylori, encodes type I-specific and disease associated virulence factors. [J] Proc Natl Acad Sci USA 1996 93: 14648-14653.
    38. Atherton JC. H. pylori virulence factors. [J] British Medical Bulletin, 1998; 54(1): 105-120.
    39. Ritter A, Gaily DL, Olsen PB, Dobrindt U, Friedrich A, Klemm P, Hacker J et al. The Pai-associated leuX specific tRNA5(Leu) affects type 1 fimbriation in pathogenic Escherichia coli by control of FimB recombinase expression. Mol Microbil, 1997; 25(Suppl 1): 149-163.
    40. Yamaoka Y, Kodama T, Kashima K et al. Variants of the 3' region of the cagA gene in H. pylori isolates from patients with different H. pylori associated diseases. [J] Clin Microbil, 1998, 36(8): 2258.
    41. 幽门螺杆菌cagA基因3'-端多态性分析及其临床意义 胡琳, 徐灿霞, 罗小玲[J] Journal of Chinese Modern Medicine 2007 年第4 卷第 7期.
    42. Azuma T, Yamakawa A, Yamazaki S, et ai. Correlation between variation of the 3' region of the cagA gene in H. pylori and disease outcome in Japan. [J] Infect Dis, 2002, 186(11): 1621-1630.
    43. Covacci A, et al. Molecular characterization of the 128kD immunodominant antigen of H. pylori associated with cytotoxicity and duodenal ulcer. [J] Proc Natl Acad Sci USA. 1993, 90 (12): 5791.
    44. Xiang Z, et al. Analysis of expression of CagA and VacA virulence factors in 43 strains of H. pylori reveals that clinical isolates can be divided into two major types and that CagA is not necessary for expression of the vacuolating cytotoxin. [J] Infect Immun, 1995, 63(1): 94.
    45. Tummuru MK, et al. H. pylori picB, a homologue of the Bordetell a pertussis toxin secretion protein, is required for induction of IL-8 in gastric epithelial cells. [J] Mol Microbiol, 1995, 18(5): 867.
    46. Peek RM, et al. Heightened inflammatory response and cytokine expression in vivoto cagA~+ H. pylori strains. [J] Lab Inveat, 1995, 73(6): 760.
    47. Atherton JC. et al. Density of H. pylori infection in vivo as assessed by quantitative culture and histology. [J] Infect Dis, 1996, 174(3): 552.
    48. Crabtree JE, et al. H. pylori induced interleukin-8 expression in gastric epithelial cells is associated with CagA positive phenotype. [J] Clin Pathol, 1995, 48(1): 41.
    49. Crabtree JE, et al. CagA cytotoxic strains of H. pylori and interleukin-8 in gastric epithelial cell lines. [J] Clin Pathol, 1994, 47(10): 945.
    50. Telford JL, et al. Gene structure of the H. pylori cytotoxin and evidence of its key role in gastric disease. [J] Exp Med. 1994, 179: 1653.
    51. Beales IL, et al. Antibodies to CagA protein are associated with gastric atrophy in H. pylori infection. Eur [J] Gastroenterlo Hepatol, 1996, 8(7): 6345.
    52. Kuipers EJ, et al. H. pylori and atrophic gastritis: importance of the cagA status. [J] Natl Cancer Inst, 1995. 87(23): 1777.
    53. Blaser MJ, et al. Infection with H. pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. [J] Cancer Res, 1995, 55(10): 2111.
    54. Parsonnet J, et al. Risk for gastric cancer in people with cagA positive or cagA negative H. pylori infection. [J] Gut, 1997, 40(3): 297.
    55. Peek RM, et al. H. pylori cagA~+ strains and dissociation of gastric epithelial cell proliferation from apoptosis. [J] Natl Cancer Inst, 1997, 18, 89(12): 863.
    56. Nilsson I, et al. Immunoblot assay for serodiagnosis of H. pylori infections. [J] Clin Microil, 1997, 35(2): 427.
    57. Basso D, et al. H. pylori infection enhances mucosal interbeukinl beta, interleukin-6, and the soluble receptor of interleukin-2. [J] Int J Clin Lab-Res, 1996, 26(3): 207.
    58. de Jong D, et al. Gastric non-Hodgkin lymphomas of mucosa-associated lymphoid tissue are not associated with more aggressive H. pylori strains as identified by CagA. [J] Am J Clin Path, 1996, 106(5): 670.
    59. Blaser MJ, Crabtree JE. CagA and the outcome of H. pylori infection. [J] Am J Clin Pathol, 1996, 106(5): 565.
    60. Sonnenberg A. The US temporal and geographic variations of disease related to H. pylori. [J] Am. J. Public Health 1993. 83; 1006-1010.
    61. Yan J, Wang Y, Shao SH, Mao YF, Li HW, Luo YH. Construction of prokaryotic expression system of 2148bp fragment from cagA gene and detection of cagA gene, CagA protein in H. pylori isolates and its antibody in sera of patients. [J] World J Gastroenterol 2004; 10: 118301190
    62. Yang GF, Deng CS, Xiong YY, Gong LL et al. Expression of nuclear factor-happa B and target genes in gastric precancerous lesions and adenocarcinoma: association with H. pylori cagA~+ infection. [J] World J Gastroenterol 2004; 10: 491-496
    63. Tartaglia M, Miemeyer CM, Fragale A, et al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. [J] Nat Genet, 2003,34: 148-150
    64. Bentrires Ali M, Paez JG, David FS, et al. Activating mutations of the Noonan syndrome associated SHP-288/ PTPN11 gene in human solid tumors and adult acute myelogenous leukemia. [J] Cancer Res, 2004,64:8816-8820
    65. Hatakeyama M, Higashi H. H. pylori CagA: a new paradigm for bacterial carcinogenesis. [J] Cancer Sci, 2005, 96(12): 835-843.
    66. Stein M, Bagnoli F, Halenbeck R, et al. c-Src/ Lyn kinases activate H. Pylori CagA through tyrosine phosphorylation of the EPIYA motifs. [J] Mol Microbiol, 2002 , 43(4): 971-980.
    67. Backert S, Moese S, Selbach M, et al. Phosphorylation of tyrosine 972 of the H. pylori CagA is essential for induction of a scattering phenotype in gastric epithelial cells. [J] Mol Microbiol, 2001, 42(3): 631-644.
    68. Mimuro H, Suzuki T, Tanaka J, Asahi M, Haas R, Sasakawa C. Crb2 is a key mediator of H. pylori CagA protein activities. [J] Mol Cell 2002; 10: 745-755.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700