用户名: 密码: 验证码:
NO对蒜苔衰老的延缓作用及其机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NO作为一种新型的细胞间和细胞内信息传递的信号分子成为人们研究的热点。已经发现NO对多种果蔬有延缓衰老的作用。蒜苔采后由于物质再转运导致食用品质下降,对于此类模式果蔬的衰老机制至今尚不完全清除。本研究以物质再转运的典型模式材料蒜苔为研究对象,研究一氧化氮(NO)对蒜苔衰老的延缓作用机制,为解决此类园艺产品的贮藏保鲜问题提供科学依据。
     本实验利用不同浓度的一氧化氮(nitric oxide,NO)供体硝普钠(sodium nitro prusside,SNP)及NO和H_2O_2清除剂抑制剂处理,采朋生理生化方法结合激光共聚焦扫描显微镜技术,初步探索NO对蒜苔采后物质再转运作用机制。
     实验结果表明:
     1.适宜浓度SNP处理对蒜苔的保鲜效果显著。能够延缓蒜苔苔苞膨大、基部可溶性糖、可溶性蛋白含量的下降以及纤维化程度的升高,且苔茎保持鲜绿。其中,0.1mmol·L~(-1)的SNP浸泡苔茎基部3h效果最佳。高于0.5 mmol·L~(-1)的SNP处理,对蒜苔造成伤害。
     2.SNP处理能显著地抑制苔苞直径的膨大及H_2O_2含量的增加。在4±1℃冷藏过程中,0.1mmol·L~(-1)的SNP处理抑制了苔苞膨大、苔茎基部H_2O_2含量增加、相对膜透性上升和POD活性的提高;提高了SOD、CAT和抗坏血酸过氧化物酶(APX)和顶部POD活性。
     3.APase酶活性在贮藏前期有很高的活性,但随着贮藏时间的推移,活性呈下降趋势;SNP处理能够延缓APase酶活性高峰期的出现。
     4.蒜苔中内源NO分布和内含物转运的程度有关:转运程度比较低的组织中分布比较均匀,随着转运程度的升高,逐步会由周缘维管束向中央维管束转移,但是,顶端组织NO分布和水平没有太大变化;外源NO处理能够诱导内源NO水平升高,这可能是通过NOS途径起作用。
     5.H_2O_2参与蒜苔的物质转运过程。在整个转运过程中,H_2O_2在所有组织中都有分布,衰老组织中H_2O_2含量很少或者没有。生长旺盛顶端组织中,水平很高;高浓度的H_2O_2促进物质转运,降低基部H_2O_2含量,可以抑制物质转运。并且在物质转运过程中二者相互影响。
     6.在蒜苔物质再转运过程中NO抑制物质转运的作用与内源H_2O_2的水平有关。
NO as a new type of intercellular and intracellar signaling molecule messaging become a research hotspot. NO has been found the role of delaying in a variety of fruits and vegetables senescence. Redistribution of cell in excised garlic scape lead to decline in eating quality, of such models of the aging mechanism of fruits and vegetables is unknown. In this study, garlic scape as the typical models of transport of substances, study the effects of NO on the role of senescence mechanisms transduction in excised garlic scape, in order to provide scientific basis to solve this kind of horticultural products of storing and keeping fresh problems.
     Using sodium nitro prusside (SNP) as a nitric oxide (NO) donor, Hemoglobin (HB) as a NO scavenger, N~ω-nitro-L-arsinine methylter (L-NAME) as a NOS inhibitor, Sodium Tungstate as a NR inhibitor, Diphenyl iodine (DPI) as a NADPH oxidase inhibitor, Ascorbic acid (ASA) as a H_2O_2 scavenger, Physiological and biochemical methods combined with confocal laser scanning microscopy technology, Preliminary exploration of mechanisms of NO on transport of substances in excised garlic scape. The results as follows:
     1. The results showed that suitable concentration of SNP had a remarkable effect on garlic scape preservation. It can inhibited the diameter of garlic bulbet and the degree of fibrosis increased, delayed the content of soluble suger and soluble protein in the basal of garlic scape, and the garlic scape were keeped viridity. 0.1 mmol·L~(-1) SNP solutions three hours at the basal of garlic scape was the best effect concentration in Preservation. But overhigh concentration of SNP (0.5mmol·L~(-1)) will cause the garlic sacape tissues injuries.
     2. SNP treatment could significantly inhibit the increased of the diameter of garlic bulbet and the content of H_2O_2. 0.1 mmol·L~(-1) SNP inhibited the increased of the diameter of garlic bulbet and the content of H_2O_2 in basal garlic scape, relative membrane permeability increased, activities of peroxidase (POD) in basal garlic scape increased and promoted the activity of catalysis of superoxide dismutase (SOD), catalysis of catslase (CAT), ascorbate peroxidase (APX) in garlic scape and POD in apical garlic scape during four centigrade degree cold storage.
     3. The acid phosphatase activities in the clove and the basal scape were very high, especially in the earier period of the pre-storage. However, with the time of torage, the acid phosphatase activities were a downward trend; Exogenous NO obviously slowed down the peak of acid phosphatase activities duing storage.
     4. Distribution of endogenous NO related to the speed and extent of redistribution of cell content. Endogenous NO distributed evenly in low degree of transport of tissues, with the degree of transport increasing, endogenous NO would gradually transfer from peripheral vascular metastasis to the central vascular and with the growth of cloves of garlic scape, not much change in distribution and the level of NO. Exogenous NO may induce endogenous NO level increased, which maybe through the ways of nitric oxide synthase.
     5. H_2O_2 Participate in postharvest nutrient re-distribution of garlic scape. Endogenous H_2O_2 has distributed in entire tissue of garlic scape throughout the transfer process, but in the aging tissues the congruent of H_2O_2 was no or very low. The H_2O_2 was very hige in eugenic apical tissue; High concentrations of H_2O_2 promoted redistribution of cell content and reduced the content of H_2O_2 in the basal garlic scape tissues could inhibit this action.
     6. Inhibition effect of endogenous NO on postharvest nutrient re-distribution of garlic scape maybe regulate to the endogenous H_2O_2 level in garlic scape.
引文
[1]Nathan C,Xie Q W.Nitric oxide synthase:roles tolls and controls[J].Cell,1994,78:915-918
    [2]Squadrito G L,Pryor W A.Oxidative chemistry of nitric oxide:the roles of superoxide,peroxynitrite,and carbon dioxide[J].Free Radic Biol Med,1998,25(4/5):392-403
    [3]王瑾文,周玫等.一氧化氮、超氧阴离子和过氧亚硝酸的作用和相互作用的研究进展[J].生命的化学,1998,18(1):3-6
    [4]Goldstein S,Squadrito G L,et al.Direct and indirect oxidation by peroxynitrite,neither involving the hydroxyl radical[J].Free Radic Biol Med,1996,21:965-974
    [5]Wink D A,Mitchell J B.Chemical biology of nitric oxide insights into regulatory,cytotoxic and cytoprotective mechanisms of nitric oxide[J].Free Radio Biol Med,1998,25:434-456
    [6]Klepper L.Evolution of nitrogen oxide gases from herbicide treated plant tissues.WSSA Abstracts,1975,184:70
    [7]Klepper L.Nitric oxide(NO) and nitrogen dioxide(NO_2) emissions from herbicide-treated soybean plants[J].Atmos Environ,1979,13:537-542
    [8]Klepper L.NOx evolution by soybean leaves treated wit h salicylic acid and selected derivatives.Pestic Biochem Phys,1991,39(1):43 -48
    [9]刘维仲,张润杰,裴真明,何奕昆.一氧化氮在植物中的信号分子功能研究[J]:进展和展望.自然科学进展,2008,18(1):1-22
    [10]Lamattina L,Garcia-Mata C,Graziano M,et al.Nitric oxide:The versatility of an extensive signal molecule.Annu Rev Plant Biol,2003,54:109-136.
    [11]Wendehenne D,Pugin A,Klessig D F,et al.Nitric oxide:comparative synthesis and signaling in animal and plant cells[J].Trends Plant Sci,2001,6:177-183.
    [12]Ninnemann H,Maier J.Indications for occurrence of nitric oxide synthases in fungi and plants and involvement in photoconidiation of Neurospoar crassa[J].Photochem Photobiol,1996,64:393-398
    [13]Delledone M,Xia y,Dixon RA,et al.Nitric oxide functions as a signal in plant disease resistance[J].Nature,1998,394:585-588
    [14]Ayako Yamamoto,Shinpei Katou,Hirofumi Yoshioka,et al.Nitrate reductase,a nitric oxide-producing enzyme: induction by pathogen signals[J]. Journal of General Plant Pathology, 2003, 69(4):218-229.
    [15] Beligni MV, Lamattina L. Nitric oxide in plants: the history is just beginning[J]. Plant Cell Environ, 2001, 24:267-278
    
    [16] Yamasaki H, SakihamaY Takahashi S.An alternative pathway for nitric oxide production in plants: New features of an old enzyme[J]. Trends in Plant Sci, 1999, 4(4):128-129
    [17] Chandok M R, Ytterberg A J, Wijk van K J, et al. The pathogen-inducible nitric oxide synthase(iNOS) in plants is a variant of the P protein of the glycine decarboxylase complex[J]. Cell, 2003, 113:469-482
    [18] Guo F-O, Okamoto M,Crawford N M. Identification of a plant nitric oxide synthase gene involved in hormonal signaling[J]. Science, 2003, 302:100-103
    [19] Corpas-F J, Barroso J B, Carreras A , et al. Constitutive arginine-dependent nitric oxide synthase activity in different organs of pea seedlings during plant development[J]. Planta, 2006, 224 (2): 246-254
    [20] The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana[J]. Nature, 2000, 408 (6814): 796-815
    [21] Desikan R, riffiths R, Hancock J, et al. A new role for an old enzym: Nitrate reductase-mediated nitric oxide generation is required for abscisic acid-induced stomatal closure in Arabidopsis thaliana[J]. Proc Natl Acad Sci USA, 2002, 99 (25): 16314-6318
    [22] Vanin AF, Svistunenko DA, Mikoyan VD, et al. Endogenous superoxide production and the nitrite/ nit rate ratio control the concent ration of bioavailable free nitric oxide in leaves[J]. J Biol Chem, 2004, 279 (23): 4100-4107
    [23] Meyer C, Lea US, Provan F, et al. Is nit rate reductase a majorplayer in the plant NO( nitric oxide) game [J]? Photosynth Res, 2005, 83 (2): 181-89
    [24] Richardson D J, Berks B C, Russell D A, et al. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases[J]. Cell Mol Life Sci, 2001, 58(2):165-178
    [25] Rocket P, Strube F, Rocket A et al.Regulation of nitric oxide(NO)production by plant nitrate reductase in vivo and in vitro[J]. Jour Exp Bot, 2002, 53(366):103-110
    [26] Yamasaki H, Sakihama Y Simultaneous production of nitric oxide and peroxy nitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species[J]. FEBS Lett, 2000, 468(1):89-92
    [27] Car O A, Puntarulo S. Nitric oxide generation by soybean embryonic axes: possible effect on mitochondrial function[J]. Free Rad Res, 1999, 31: S205-12
    [28] Chen Z, Klessig DF. Active oxygen s pecies in the inducti on of plant systemic acquired resistance by salicylic acid[J]. Science, 1993, 262: 1883-886
    [29] Dean J V, Harper J E. Nitric oxide and nitrous oxide production by soybean and winged bean during the in vivo nitrate reductase assay[J]. Plant Physiol, 1986, 82: 718-23
    [30] Shingles R, Roh M H, McCarty R E. Nitrite transport in chloroplast inner envelope vesicles (Direct measurement of proton-linked transport)[J]. Plant Physiol, 1996,112(3):1375-1381
    [31] Bethke PC, Badger MR, Jones RL. Apoplastic synthesis of nitric oxide by plant tissues[J]. Plant Cell, 2004, 16 (2): 332 -41
    [32] Beligni MV, Fat h A, Bethke PC, et al. Nitric oxide act s as an antioxidant and delays programmed cell death in barley aleurone layers[J]. Plant Physiol. 2002. 129(4): 1642-1650
    [33]Yamasaki H, Sakihama Y. Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species [J]. Federation of European Biochemical Societies Leers, 2000, 468(1):89-92
    [34] Beligni M V, Lamattina L. Is nitric oxide toxic or protective?[J]. Trends Plant Sci, 1999,4(8):299-300
    [35] Wendehenne D, Durner J, Klessig DF. Nitric oxide: A new player in plant signalling and defence responses[J]. Curr Opin Plant Biol, 2004, 7 (4): 449-455
    [36] Crawford NM, Guo FQ. New insights into nitric oxide metabolism and regulatory functions[J]. Trends Plant Sci, 2005, 10 (4): 195-200
    [37] Lamotte O, Courtois C, Barnavon L, et al. Nitric oxide in plants: The biosynthesis and cell signalling properties of a fascinating molecule. Planta, 2005, 221 (1): 1 -4
    [38] Grubisic D, Konjevic R. Light and nitrate interaction in phytochrome-controlled germination of Paulownia tomentosa seeds[J]. Planta, 1990, 181: 239-243
    [39] Grubisic D, Giba Z, Konjevic R. The effect of organic nitrates in phytochrome-controlled germination of Paulownia tomentosa seeds[J]. Photochem Photobiol, 1992, 56: 629-632
    [40]李善菊,任小林.外源NO浸种对杏种子萌发和生长的影响[J].陕西农业科学,2004,(5):21-23.
    [41]张绍颖,任小林等.外源一氧化氮共体浸种对玉米种子萌发和幼苗生长的影响[J].植物生理学通讯,2004,40,(3):309-310
    [42]Zhang H,Shen WB,Zhang W,et al.A rapid response of betaamylase to nitric oxide but not gibberellin in wheat seeds during the early stage of germination[J].Planta,2005,220(5):708-716
    [43]Leshem Y Y,Wills R B H,Ku V V V.Evidence for the function of the free radical gas-nitricoxide(NO.)-as an endogenous maturation and senescence regulating factor in higher plant[J].PlantPhysiol Biochem,1998,36(11):825-833
    [44]Beligni M V,Lamattina L.Nitric oxide stimulates seed germination and deetiolation,and inhibits hypocotyl elongation,three lightinducible responses in plants[J].Planta,2000,210:215-221
    [45]Gouvea C M C P,Souza J F,Magalhaes A C N.No-releasing substances that induce growth elongation in maize root segments[J].Plant Growth Reg,1997,21:183-187
    [46]Zhang L,Wang Y,Zhao L,et al.Involvement of nitric oxide in light mediated greening of barley seedlings[J].Plant Physiol,2006,163(8):818-26
    [47]He Y K,Tang R H,Hao Y,et al.Nitric oxide represses the Arabidopsis floral transition[J].Science,2004,305:1968-1971
    [48]阮海华,沈文飚,叶茂炳等.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应[J].科学通报,2001,46(23):1993-1997
    [49]Leshem Y Y,Haramaty Z.The chatacterization and contrasting effects of the nitric oxide free radicalin vegetative stress and senescence of Pisum sativum Linn.foliage[J].Plant Physiol,1996,148:258-263
    [50]Guo F Q,Craw-ford N M.Arabidopsis nitric oxide synthasel is targeted to mitochondria and protects against oxidative damage and dark-induced senescence [J].Plant Cell,2005,17:3436-3450
    [51]Leshem Y Y,Wills R B H.Harnessing senescence delaying gases nitric oxide:a novel approach to postharvest control of fresh horticultural produce[J].Biol Plant,1998,41(1):1-10
    [52]刘孟臣,朱树华,周杰.植物体内一氧化氮生理作用研究进展[J].山东农业大学学报(自然科学版),2007,38(3):487-492.
    [53] Leshem Y Y, Pinchasov Y.Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa(Duch.) and avocados Persea americana(Mill.)[J]. Exp Bot, 2000, 51(349): 1471-1473
    [54] Mishina TE, Lamb C, Zeier J. Expression of a nitric oxide degrading enzyme induces a senescence programme in Arabidopsis[J]. Plant Cell Environ, 2007, 30 (1): 39-52
    [55] Wills R B H, Ku V V V, Leshem Y Y. Fumigation with nitic oxide to extend the postharvest life of strawberries[J]. Postharvest Biol Technol, 2000, 18:75-79
    [56] Neill S J, Desikan R, Hancock J T. Nitric oxide signalling in plants[J]. New Phytologist, 2003, 159: 11-35
    
    [57] Zhang Y, Wang L, Liu Y, et al. Nitric oxide enhances salt tolerance in maize seedlings t hrough increasing activities of proton-pump and Na + / H + antiport in the tonoplast[J]. Planta, 2006, 224 (3): 545-555
    
    [58] Alamillo JM, Garcia-Olmedo F. Effects of urate, a natural inhibitor of peroxynitrite-mediated toxicity, in the response of Arabidopsist haliana to the bacterial pathogen Pseudomonas syringae[J]. Plant J, 2001, 25 (5): 529-540
    [59] Pedroso MC, Magalhaes J R, Durzan D. A nit ric oxide burst precedes apoptosis in angiosperm and gymnosperm callus cells and foliar tissues[J]. J Exp Bot, 2000, 51 (347): 1027-1036.
    [60] Durner J, Wendehenne D, Klessig D F. Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP ribose[J]. Proc Natl Acad Sci USA, 1998,95:10328-10333.
    [61] Garcia-Mata C, Lamat tina L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J]. Plant Physiol, 2001, 126 (3):1196-1204
    [62] Zhao Z, Chen G, Zhang C. Interaction between reactive oxygen species and nitric oxide in drought-induced abscisic acid synthesis in root tips of wheat seedlings[J]. Austr J Plant Physiol, 2001, 28 (10):1055-1061
    [63] Scherer GFE. Nitric oxide in cytokinin and polyamine signaling: Similarities and potential crosstalk. In: Lamat tina L, Polacco J, eds. Nitric Oxide in Plant Growth, Development and Stress Physiology[J]. Verlag Berlin Heidelberg: Springer, 2007, 131 -152.
    [64]Neill S J,Desikan R,Clarke A,et al.Hydrogen peroxide and nitric oxide as signalling molecules in plants[J].J Exp Bot,2002,53(372):1237-1247
    [65]Rao MV,Davis KR.The physiology of ozone induced cell death[J].Planta,2001,213(5):682-690
    [66]Rao M V,Davis K R.The physiology of ozone induced cell death[J].Planta,2001,213:6 82-69
    [67]Ederli L,Morettini R,Borgogni A,et al.Interaction between nitric oxide and et hylene in t he induction of alternative oxidase in ozone-treated tobacco plants[J].Plant Physiol,2006,142(2):595-608.
    [68]Mackerness SAH,John CK Jordan B,et al.Early signaling components in ult raviolet-B responses:Distinct roles for different reactive oxygen species and nit ric oxide[J].FEBS Lett,2001,489(2-3):237-242
    [69]Wang YS,Yang ZM.Nitric oxide reduces aluminum toxicity by preventing oxidative stress in the roots of Cassia tora L[J].Plant Cell Physiol,2005,46(12):1915-923
    [70]Pedros oM C,Magalhaes J R,Durzan D.Nitric oxide induced cell death in Taxus cells[J].Plant Sci,2000,157:173-180
    [71]陈明,沈文飚,阮海华等.一氧化氮对赫胁迫下小麦幼苗根生长和氧化损伤的影响[J].植物生理与分子生物学学报,2004,30(5):569-576
    [72]Chung H T,Pae H O,Choi B M,et al.Nitric oxide as a bioregulator ofapoptosis[J].Biochem Biophys Res Commum,2001,282:1075-1079
    [73]Mad I V.Pass the nitric oxide[J].Proc.Natl.Acad.Sci.USA,1993,90:4329- 4331
    [74]Pryor W A.Nitric oxide and peroxynitrite[J].Soc.Free.Rad.Res.New slet,1994,4:12
    [75]Wink DA,Ford PC.Nitric oxide reactions important to biological systems:A survey of some kinetics investigations[J].Methods:A companion to methods enzymology.1995,7:14-20
    [76]李倩,朱晓晴,何家骐,程津培.一氧化氮生物有机化学研究进展[J].高等学校化学学报.2001,22:2026-2031.
    [77]Padmaja S,Huie RE.The reaction of nitric oxide with organic peroxyl radicals[J].Biochemical and Biophysical Research Communications.1993,195:539-544.
    [78]凌亦凌,黄善生,谷振勇.过氧亚硝基阴离子的细胞代谢及病理损伤作用.生理科学进展[J].1999,30:71-73.
    [79]孙素群,许霖水.一氧化氮间接作用机制的研究进展[J].生理科学进展.2002,33:167-169.
    [81]张文利,沈文飚,徐郎莱.一氧化氮在植物体内的信号分子作用[J].生命的化学,2002,22(1):61-62
    [82]Neill S J,Desikan R,Clarke A,Hurst RD,Hancock JT.Hydrogen Peroxide and nitric oxide as signalling molecules in Plants[J].J EXP BOT 2002,53(372):1237-1247.
    [83]Clark D,Durner J,Navarre DA,et al.Nitric oxide inhibition of tobacco catalase and ascorbate peroxidase[J].Mol.Plant Microbe In,2000,13:1380-1384
    [84]Vranova E,Inze D,Breusegen F V.Signal transduction during oxidative stress[J].Journal of Experimental Botany.2002,53:1227-1236.
    [85]Urban P,Mignotte C,Kazmaier M,et al.Cloning yeast expression and characterization of the coupling of two distantly related Arabidopsis thaliana NADPH-cytochrome P450 reductase with P450 CYP73A5[J].Journal of Biological Chemistry[J].1997,272:19176-19186.
    [86]Delledonne M,Zeier J,Marocco A,et al.Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J].Proc Natl Acad Sci USA,2001,98(23):13454-13459
    [87]Fath A,Bethke P C,Jones R L.Enzymes that scavenge reactive oxygen species are down-regulated prior to gibberellic acid-induced programmed cell death in barley aleurone[J].Plant Physiol,2001,126(1):156-166.
    [88]Maxwell D P,Nickels R,McIntosh L.Evidence of mitochondrial involvement in the transduction of signals required for the induction of genes associated with pathogen attack and senescence[J].Plant J,2002,29(3):269-279
    [89]Desikan R,Hancock J T,Ichimura K,et al.Harpin induces activation of the Arabidopsis mitogen-activated protein kinases AtMPK4 and AtMPK6[J].Plant Physiol,2001,126(4):1579-1587
    [90]Ren D,Yang H,Zhang S.Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis[J].J Biol Chem,2002,277(1):559-565
    [91]Desikan R,Cheung M K,Bright J,et al.ABA,hydrogen peroxide and nitric oxide signalling in stomatal guard cells[J].J Exp Bot,2004,55(395):205-212
    [92]Bright J,Desikan R,Hancock J T,et al.ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H_2O_2 synthesis[J].Plant J,2006,45(1):113-122
    [93]Delledonne M,Zeier J,Marocco A,et al.Signal inter actions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response[J].Proc Natl Acad Sci USA,2001,98(23):13454-13459.
    [94]Beligni M V,Lamattina L.Nitric oxide counteracts cytoxic processes mediated by reactive oxygen species in plant tissues[J].Planta.1999,208:337-344.
    [95]Delledonne M,Murgia I,Ederle D,et al.Reactive oxygen intermediates modulate nitric oxide signaling in the plant hypersensitive disease-resistance response[J].Plant Physiology and Biochemistry.2002,40:605-610.
    [96]Wildt J,Kley D,Rockel A,et al.Emission of NO from higher plant species[J].Journal of Geophysical Research.1997,102:5919-5927.
    [97]Neil S J,Desikan R,Clarke A,et al.Nitric oxide is a new component of abscisic acid signaling in stomatal guard cells[J].Plant Physiology.2002,128:13-16.
    [98]扈文盛.食品常用数据手册[M].北京:中国食品出版社,1987.
    [99]张伟成,严文梅,陈梓卿,娄成后.蒜苔大分子物质的细胞间迁徙及其细胞内含物再分配再利用的关系[J].植物学报,1981,5:23(3)169-178.
    [100]王文宏,谭志一,松松扬.脱落酸(ABA)在蒜苔衰老中的作用[J].植物学报,1988,30(2):169-175.
    [101]娄成后,邵莉嵋,段静霞.高等植物衰老叶片中原生质的撤退现象以及原生质运动在有机物运输中可能具有的作用[J].植物学报,1973,15:204-216.
    [102]张伟成,严文梅,陈梓卿,等.蒜苔中大分子物质的细胞问迁移及其与细胞内含物再分配再利用的关系[J].植物学报,1981,23(3):169-175.
    [103]张蜀秋,张培元,娄成后.蒜苔贮藏过程中某些生理变化和物质再分配[J],北京农业大学学报,1993,19(3):105-106.
    [104]黄承祥,花宝光,王学臣等.贮藏蒜苔中细胞内含物由衰退茎组织向顶端珠蒜的再分配[J].北京农业大学学报,1982,8:1-4.
    [105]Nooden L D,Guiamet J J,John I,Senescence mechanisms[J].Physiol Plant,1997,101:746-753.
    [103]王毅,娄成后,杨世杰.离体蒜苔贮存中薄壁细胞超微结构的变化[J].植物学报,1994,36(3):165-169.
    [104]李明义.胞间通道的形成机理与物质运输[J].湖北大学学报,1997,19(2):175-181.
    [105]张伟成.高等植物中原生质细胞问运动研究的进展[J].植物学报,2002,44(9):1068-1074.
    [106]娄成后.大蒜植株中细胞内含物由衰退叶片向顶端生长部位的循序转移[J].北京农业大学学报,1981,7:1-16.
    [107]娄成后,吴素营,张伟成.大蒜中原生质的细胞问运动与有机物运输[J].植物学报,1956,5:345-362.
    [108]蔡可,娄成后.贮藏过程中蒜苔细胞内含物再分配的激素控制[J].植物生理学报1985;11(4):403-408.
    [109]张映璜,方建雄,张炎.离体蒜苔衰老过程中乙烯的产生和纤维素酶活力的变化[J].植物生理学报,1990,16(2):206-208.
    [110]赵林川,韩涓涓.GA_3对离体蒜苔细胞内含物再分配过程中H_2O_2的代谢的作用[J].发育与生殖生物学报2000,9(2):43-52.
    [111]赵林川,H_2O_2参与离体蒜苔细胞内含物再分配的调控[J].发育与生殖生物学报2002,11(2):88-94
    [112]范黎,郭顺星,肖培根.墨兰菌根的结构及酸性磷酸酶定位研究[J].云南植物研究,1999,2I(2):197-201
    [113]欧阳学智,谢绍萍.甜菊愈伤组织中的质膜内陷:超微结构和酸性磷酸酶细胞化学定位[J].植物学报,1996,38(8):589-593
    [114]Lott J N A,Buttrose M S.Globoidsin pr.otein bodies of Legume seed cotyledons[J].Aust J Plant Physiol,1978,5:89-111
    [115]Mlodzianowski F.The fine structure of protein bodies in lupine cotyledons during the course of seed germination[J].Z P Planzenphysiol,1978,86:1-13
    [116]Hall J L,Davie C A U.Localization of acid Phosphatase activity in Zea mays L.root tips[J].Ann Bob,1971,35:849-855
    [117]Halperin W.Ultrastcutarl Localization of acid Phosphatase in culuter cells of Daucus caroat[J].Planta,1969,88:91-102
    [118]Joshi PA,Stewart J M.Grahma E T.Localization of β-glycerophosphatase activity in cotton fiber during diffrentiation[J].Protoplasma,1985,125:75-85
    [119]Onofeghara F A.Histochemcal localization of enzymes in Talpinanthus benwensis:Acid Phosphatase[J].Amer J Bot,1972,59:549-556
    [120]Sexton T,Cronshaw J,Hall J L.A study of the biochemistry and cytochemical Localization of β-glycorPhosphatase activity in root tips of maize and Pea[J].Protoplasma,1971,73:417-441.
    [121]孙朝煌,张蜀秋,娄成后.大葱叶片推陈出新中细胞内含物的再分配[J].实验生物学报,2003,36:13-17.
    [122]朱丽琴,朱树华,周杰.NO延缓园艺产品成熟和衰老的生理效应研究进展[J].园艺学报,2008,35(10):1539-1544.
    [123]张少颖,饶景萍.一氧化氮对瓶插月季呼吸作用及相关酶活性影响[J].园艺学报,2007,34(1):183-188.
    [124]张晓平,任小林,任亚梅等.NO处理对采后猕猴桃贮藏性及叶绿素含量的影响[J].食品研究与开发,2007,28(1):145-148.
    [125]李建华,刘银谦.H_2O_2在黄瓜和绿豆下胚轴不定根形成中的作用[J].西北植物学报,2006,26(12):2506-2510
    [126]高俊凤主编.植物生理学试验指导[M],世界图书出版社.2006年五月第一版.135-146
    [127]刘新,张蜀秋.植物体内一氧化氮的来源及其与其他信号分子之间的关系[J].植物生理学通讯,2003,39(5):513-517
    [128]张绪成,上官周平,高世铭.NO对植物生长发育的调控机制[J].西北植物学报,2005,25(4):812-818
    [129]肖强,郑海雷.植物中的一氧化氮信号分子[J].植物学通报,2005,40(11):17-18
    [130]屠杰,沈文飚,叶茂炳等.外源NO供体对小麦的离体叶片过氧化氢酶代谢的影响[J].植物学通报,2002,19:336-341
    [131]樊怀福,郭世荣,焦彦生等.外源一氧化氮对NaCl胁迫下黄瓜幼苗生长、活性氧代谢和光合特性的影响[J].生态学报,2007,27(2):546-553
    [132]Desikan R,Last K,Harrett-Williams R,et al.Ethylene-indueed stomatalelosure in Arabidopsis occurs via Atrboh F-mediated hydrogen Peroxide synthesis[J].The Plant Journal,2006,47:907-916
    [133]Wang X Y,Shen W B,Xu L L.Exogenous nitric oxide alleviates osmotic stress induced membrane lipid peroxidation in wheat seedling leaves[J].Journal of Plant Physiology and Molecular Biology,2004,30(2):195-200
    [134]Lum H K,Butt Y K,Lo S C.Hydrogen peroxide induces a rapid Production of nitric oxide in mung bean(Phaseolus aureus)[J].Nitric Oxide,2002,6:205-213
    [135]Delledonne M,Xia Y,Dixon R A,et al.Nitric oxide functions as a signal inplant disease resistance[J].Nature,1998,394:585-588
    [136]魏凤菊,张迎迎,等.蒜鳞片薄壁细胞衰退过程中酶的细胞化学定位及DNA生 化分析[J].实验生物学报,2005,38(5):387-396
    [137]Asghar R,DeMasonD A.Diffirential activities of acid Phosphatase from adaxial and Abaxial regions of Lupinus luteus(Fabaceae) coytledons[J].Amer J Bot,1992,79:1134-1144
    [138]郑易之,李晶,高杨等.大豆子叶内酸性磷酸酶活性的超微结构定位[J].植物学报,1996,38(2):925-929
    [139]韦存虚,蓝盛银,徐珍秀.水稻胚乳细胞质膜内陷的超微结构和磷酸酶的细胞化学定位[J].植物生理与分子生物学学报,2002,28(3):221-226
    [140]魏凤菊.蒜鳞茎薄壁细胞衰退过程中内含物撤退机理的初步探讨[D].2005,22-31
    [141]李师翁,薛林贵,冯虎元等.植物中的H_2O_2信号及其功能[J].中国生物化学与分子生物学报,2007,23(10):804-810

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700