用户名: 密码: 验证码:
钴化合物/有序介孔碳复合材料在电化学传感器中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,碳基纳米材料以其良好的导电性和化学稳定性被广泛地应用在分析和电化学工艺中。自1999年首次成功合成有序介孔碳(OMC)这种新型碳材料以来,因其具有均一可调的孔结构、较高的比表面积,较大的孔容以及化学惰性这一系列优良的特性,它在分析中的应用倍受关注。此外,OMC可以很容易地通过价格低廉的硬模板法制得,并且在二氧化硅模板被完全去除的情况下无任何杂质污染。尤其是利用OMC作为催化载体时,它能大大增强催化剂的活性并能促进被分析物质的电子传递。因此,在电化学和电分析领域中研究OMC复合材料修饰电极受到了越来越多的关注。在本论文中,我们首次研究了新型碳材料OMC作为双核酞菁钴和介孔四氧化三钴材料的催化载体,主要包括以下几个方面的研究:
     首先,我们用三嵌段共聚物P123做模板剂,正硅酸乙酯做硅源,通过溶胶-凝胶法制得了介孔氧化硅SBA-15。然后再以SBA-15为硬模板,蔗糖和硝酸钴为前驱物分别得到了OMC和介孔Co3O4材料。并用XRD,SEM,TEM和N2-吸脱附等手段对其进行了表征。
     其次,我们制备了OMC/Co3O4/Nafion/GC修饰电极,并研究了该电极对水合肼的催化氧化作用。结果表明,该修饰电极对水合肼展示出很好的催化效果,且检测的灵敏度显著提高,这与该复合物中OMC和Co3O4之间存在良好的协同效应有关。该修饰电极对水合肼的测定获得了较低的检出限(0.07μM)、较快的响应时间(4 s)和较宽的线性范围(4 ~ 320μM),使该电极有望成为有效检测水合肼的电化学传感器。
     此外,我们采用离子交换的方法成功地制备了一种新型的复合物修饰电极,即利用双核磺化酞菁钴(bi-CoPc)和阳离子交换剂双十二烷基二甲基溴化铵(DDAB)产生离子交换作用,首次制备了一种新型的有序介孔碳(OMC)复合物修饰电极(bi-CoPc/DDAB/OMC/GC)。我们通过紫外可见光谱(UV-vis),电子扫描显微镜(SEM)和电化学方法表征了此复合膜,并研究了它的电催化作用。结果表明,在有OMC的存在时增强了bi-CoPc的电子转移能力,进一步的研究发现bi-CoPc/DDAB/OMC膜在中性溶液中对氧气具4电子的电催化还原作用,能在较低的浓度下对血红蛋白(Hb)进行检测,此外作为2-巯基乙醇(2-ME)的安培检测传感器,有着较宽的线性范围2.5×10-6 M ~ 1.4×10-4 M,较高的灵敏度16.5μA mM-1和较低的检出限0.6μM (S/N=3)。这些都表明了此种新型的复合材料有较广阔的应用前景,将有可能在生物燃料电池,生物传感器和环境传感器等领域得到发展和应用。
In recent years, carbon based nanomaterials have been widely used in both analytical and industrial electrochemistry because of their good conductivity and chemical stability. Since one kind of novel carbon materials, i.e. ordered mesoporous carbon(OMC) was synthesized in 1999, intensive attention has been paid on the analytical application of OMC, because of its uniform and tailored pore structure, high specific surface area, large pore volume and chemical inertness. Besides, OMC can be easily prepared via the hard templating strategy with low cost and free from any impurities if the template silica walls are removed. Especially, the utilization of novel mesoporous carbon materials as a catalyst support could enhance the catalyst activity and promote the electron transfer of some analytes. Hence, more and more attention was focused on the electrochemistry and electrocatalysis of the composite materials based on OMC modified electrodes. In this paper, we have investigated the novel OMC was employed as the support for bi-CoPc and Co3O4 catalyst by the first time. This dissertation mainly consists of the following several aspects:
     Firstly, we obtained the mesoporous silica SBA-15 via Sol-gel process with a triblock copolymer surfactant P123 as template and tetraethyl orthosilicate (TEOS) as organosiloxane precursor. The OMC and porous single crystals Co3O4 can be prepared using mesoporous silica SBA-15 as the hard template and using sucrose and cobaltous nitrate as the precursors, respectively. The obtained mesoporous materials were characterized by XRD, SEM, TEM and N2 adsorption–desorption.
     Secondly, fabrication of the OMC/Co3O4/Nafion composite modified electrode and its application in electrocatalysis of hydrazine hydrate oxidation are studied. The modified electrode showed a good electrocatalytic response towards hydrazine hydrate and the detection sensitivity was improved dramatically because of the excellent synergistic effect in the composite. The results indicate that OMC/Co3O4/Nafion/GC electrode could be a promising candidate for effectively electrochemical sensors for the detection of hydrazine hydrate due to its very lower detection limit (0.07μM) , fast response (4 s) and wider linear range (4 ~ 320μM).
     Thirdly, a new ordered mesoporous carbon (OMC) composite modified electrode was fabricated for the first time. Binuclear cobalt phthalocyaninehexasulfonate sodium salt (bi-CoPc) can be adsorbed onto didodecyldimethylammonium bromide (DDAB)/OMC film by ion exchange. UV-vis spectroscopy, scanning electron microscopy (SEM) and electrochemical methods were used to characterize the composite film. The cyclic voltammograms demonstrate that the charge transfer of bi-CoPc is promoted by the presence of OMC. Further study indicated that bi-CoPc/DDAB/OMC film is the excellent electrocatalyst for 4-electron reduction of oxygen in a neutral aqueous solution and for hemoglobin (Hb) reduction at lower concentrations. Additionally, as an amperometric 2-mercaptoethnaol (2-ME) sensor, this modified electrode shows a wider linear range (2.5×10-6 M to 1.4×10-4 M), high sensitivity (16.5μA mM-1) and low detection limit of 0.6μM (S/N=3). All these confirm the fact that the new composite film may have wide potential applications in biofuel cells, biological and environmental sensors.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,1-10.
    [2] Kroto H W, Health J R, O’Brien S C, et al. C60: Buckyminster-fullerene[J]. Nature, 1985, 318(6042):162-163.
    [3] Iijima S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
    [4] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J. Phys. Chem. B, 1999, 103(37): 7743-7746.
    [5] Hu G, Ma D, Cheng M J, Liu L, Bao X H. Direct synthesis of uniform hollow carbon spheres by a self-assembly template approach[J]. Chem. Commun., 2002.1948-1949.
    [6] Wang Q, Li H, Chen L Q, et a1. Monodispersed hard carbon spherules with uniform nanopores[J]. Carbon, 2001, 39: 2211-2214.
    [7] Yao J F, Wang H T, Liu J, et a1. Preparation of colloidal microporous carbon spheres from furfuryl alcohol[J]. Carbon, 2005, 43: 1709-1715.
    [8] Sun X M, Li Y D. Angew. Colloidal Carbon Spheres and Their Core/Shell Structures with Noble-Metal Nanoparticles[J]. Chem. Int. Ed., 2004, 43: 597-601.
    [9] Davis Mark E. Ordered porous Materials for emerging applications[J]. Nature, 2002, 417: 813-821.
    [10] Tian B, Liu X, Tu B, Yu C, et al. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs[J].Nature Mater., 2003, 2: 159-163.
    [11] Gao F, Lu Q, Zhao D. Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique[J]. Adv. Mater. 2003, 15: 739-742.
    [12] Huo Q, Margolese D, Ciesla U, Feng P,Gier T E, Sieger P, Leon R, Petroff P M, et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J].Nature, 1994, 378: 317-321.
    [13] Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered Mesoporous Carbons[J]. Adv. Mater. 2001, 13: 677-681.
    [14] Joo S H, Jun S, Ryoo R. Synthesis ofordered mcsoporous carbon molecular sievesCMK-1[J].Micropororom Mesoporous Mater., 2001, 44:153-158.
    [15]张扬健,赵杉林,孙桂大,等. W-MCM-48中孔分子筛的微波合成与表征[J].催化学报, 2000, 21(4): 345-349.
    [16] Yang P, Zhao D, Margolese D I, et al. Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks[J]. Nature, 1998, 396: 152-155.
    [17] MacLachlan M J, Coombs N, Ozin G A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulphides from(Ge4S10)4-clusters[J]. Nature, 1999, 397: 681-684.
    [18] Fyfe C A, Fu G. Structure organization of silicate polyanions with surfactants:a new approach to thesyntheses,structure transformations,and formation mechaniams of mesostructural materials[J]. Journal of the American Chemical Society, 1995, 117: 9709-9714.
    [19] Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids, Principles, Methodology and Applications [M]. Academic Press, London, 1999:205-207.
    [20] Ciesla U, Schuth F. Ordered mesoporous materials[J]. Micro and Meso Mater, 1999, 27: 131-142.
    [21] Srdanow V I, Alxneit I, Stucky G D, et al. Optical properties of GaAs confined in the pores of MCM-41[J]. J phys chem B, 1998, 102: 3341-3344.
    [22] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. Journal of the American Chemical Society, 1992, 114(27): 10834-10843.
    [23] Huo Q, Margolese D I, Ciesla U, et al. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays[J]. Chemistry of Materials, 1994, 6(8): 1176-1191.
    [24] DiRenzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelle-templated mesoporous silica[J]. Microporous Mater., 1997, 10: 283-286.
    [25] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J]. Chem Commun, 1999, 2177-2178.
    [26] Balavoine F, Schultz P, Mioskwski C, et al. Helical crystallization of proteins on carbon nanotubes: A first step towards the development of new biosensors[J]. Angew.Chem.Int.Ed, 1999, 38(13-14): 1912-1915.
    [27] Chen R J, Zhang Y G, Dai H J, et al. Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization[J]. J.Am.Chem.Soc, 2001, 123(16): 3838-3839.
    [28] Xiao Q, Zhou X. The study of Multiwalled Carbon Nanotube Deposited with Conducting Polymer for Supercapacitor[J]. Electrochimica Acta, 2003, 48: 575-580.
    [29] Frackowiak E, khomenko V, Jurewicz K, et al. Supercapaciors based on Conducting Polymers/nanotubes Composites[J]. Journal of Power Sources, 2006, 153(2): 413-418.
    [30] Zare H R, Sobhani Z. Mazloum-Ardakani M.Electrocatalytic Oxidation of Hydroxylamine at a Rutin Multi-Wall Carbon Nanotubes Modified Glassy Carbon Electrode: Improvement of the Catalytic Activity[J]. Sensors and Actuators B, 2007, 126: 641-647.
    [31] Feng J J, Xu J J, Chen H Y. Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly[J]. Biosensors and Bioelectronics, 2007, 22(8): 1618-1624.
    [32]王小雪,陈艳玲,苗琦,贾玉萍.分析科学学报,2009,25(2).
    [33] Ndamanisha J C, Guo L P, Wang G. Mesoporous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties[J]. Micropor. Mesopor. Mater., 2008,113: 114-121.
    [34] Bai J, Qi B, Ndamanisha J C, Guo L P. Micropor. Ordered mesoporous carbon-supported Prussian blue: Characterization and electrocatalytic properties[J]. Mesopor. Mesopor. Mater, 2009, 119: 193-199.
    [35] Cui X Z, Shi J L, Zhang L X, Ruan M L, Gao J H. PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation[J]. Carbon, 2009, 47: 186-194.
    [36] Zhu L D, Yang R L, Jiang X Y, Yang D X. Amperometric determination of NADH at a Nileblue/ordered mesoporous carbon composite electrode[J]. Electrochem. Commun., 2009, 11:530-533.
    [37] Zheng D, Ye J, Zhou L, Zhang Y, Yu C. Simultaneous determination of dopamine, ascorbic acid and uric acid on ordered mesoporous carbon/Nafion composite film[J]. J. Electroanal. Chem., 2009, 82-87.
    [38]董绍俊,车广礼,谢远武.化学修饰电极[M].北京:科学出版社,2003:1.
    [39] Lenhard J R, Murray R W. Chemically modified electrodes.13.Monolayer/multilayer coverage, decay kinetics,and solvent and interaction effects for ferrocenes covalently linked to platinum electrodes[J].J. Am. Chem. Soc., 1978, 100: 7870–7875.
    [40] Oyama N, Anson F C. Factors Affecting the Electrochemical Responses of Metal Complexes at Pyrolytic Graphite Electrodes Coated with Films of Poly(4-Vinylpyridine)[J]. J.Electrochem.Soc., 1980, 127: 640-647.
    [41] Contamin O, Levart E, Magner G,et al. Restricted diffusion impedance: Theory and application to the reaction of oxygen on a hydrogen phthalocyanine film[J]. J.Electroanal.Chem., 1984, 179: 41-52.
    [42] Brown A P, Anson F C. Cyclic and differential pulse voltammetric behavior of reactants confined to the electrode surface[J]. Anal.Chem., 1977, 49: 1589-1595.
    [1] Kruk M, Jaroniec M, Ryoo R. Characterization of Ordered Mesoporous Carbons Synthesized Using MCM-48 Silicas as Templates[J]. J Phys Chem.B, 2000, 104: 7960-7968.
    [2] Davis M E. Ordered porous materials for emerging applications[J]. Nature, 2002, 417: 813-821.
    [3] Lee J S, Joo S H, Ryoo R. Synthesis of Mesoporous Silicas of Controlled Pore Wall Thickness and Their Replication to Ordered Nanoporous Carbons with Various Pore Diameters[J]. J Am Chem Soc, 2002, 124: 1156-1157.
    [4] Lee J W, Yoon S H, Hyeon T G, et al. Synthesis of a New Mesoporous Carbon and its Application to Electrochemical Double-layer Capacitors[J]. Chem Commun, 1999, 21: 2177-2178.
    [5] Yoon S B, Kim J Y, Yu J S. A direct template synthesis of nanoporous carbons with high mechanical stability using as-synthesized MCM-48 hosts[J]. Chem Commun, 2002, 14: 1536-1537.
    [6] Srivastava D N, Perkas N, Gedanken A, Felner I. Sonochemical Synthesis of Mesoporous Iron Oxide and Accounts of Its Magnetic and Catalytic Properties[J]. J.Phys.Chem.B, 2002, 106: 1878-1883.
    [7] Tian B Z, Yang H F, Liu X Y, Xie S H, Yu C Z, Fan J, Tu B, Zhao D Y. Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors[J]. Chem.Commun., 2002, 1824-1825.
    [8] Rumplecker A, Kleitz F, Salabas E L, Schuth F. Hard templating pathways for the synthesis of nanostructured porous Co3O4[J]. Chem.Mater., 2007, 19: 485-496.
    [9] Dickinson C, Zhou W, Hodgkins R P, Shi Y, Zhao D, He H. Formation mechanism of porous single-crystal Cr2O3 and Co3O4 templated by mesoporous silica[J]. Chem.Mater., 2006, 18: 3088-3095.
    [10] Wang Y, Wu Z, Wang H, Zhu J. Fabrication of metal oxides occluded in ordered mesoporous hosts via a solid-state grinding route: The influence of host-guest interactions[J]. Adv.Funct.Mater., 2006, 16: 2374-2386.
    [11] W.Yue, W.Zhou. Synthesis of porous single crystals of metal oxides via a solid-liquid route[J]. Chem.Mater., 2007, 19: 2359-2363.
    [12] Jiao F, Harrison A, Hill Ad H, Bruce P G. Mesoporous Mn2O3 and Mn3O4 with crystalline walls[J]. Adv,Mater., 2007, 19: 4063-4066.
    [13] Rumplecker A, Kleitz F, Salabas E, Schuth F. Hard Templating Pathways for the Synthesis of Nanostructured Porour Co3O4[J]. Chem.Mater. 2007, 19: 485-496.
    [14] Huo Q, Margolese D I, Ciesla U, et al. Generalized synthesis of periodic surfactant/inorganic composite materials[J]. Nature, 1994, 368: 317-321.
    [15] Sen T, Tiddy G J T, Casci J L, et al. Macro-cellular silica foams: synthesis during the natural creaming process of an oil-in-water emulsion[J]. Chem Commun, 2003, 17: 2182-2183.
    [16] Barrett E P, Joyner L G, Halenda P P. The Determination of Pore Volume and Area Distributions in Porous Substances.I.Computations from Nitrogen Isotherms[J]. J Am Chem Soc, 1951, 73: 373-380.
    [1]郑淑君.化学推进剂与高分子材料, 2005, 3: 17.
    [2] Gao G, Guo D, Li H. Electrocrystallized Ag nanoparticle on functional multi-walled carbon nanotube surfaces for hydrazine oxidation[J]. Electrochem.Commun, 2007, 9: 1582-1586.
    [3] Ozoemena K I, Nyokong T. Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer[J]. Talanta, 2005, 6: 162-168.
    [4] Garcia Azorero M D, Marcos M L, Velasco Gonzalez J, et al. Influence of changes in the total surface area and in the crystalline surface composition of Pt electrodes on their electrocatalytic properties with respect to the electro-oxidation of hydrazine[J]. Electrochim. Acta, 1994, 39: 1909-1914.
    [5] Li F, Zhang B, Wang E, et al. In situ scanning tunneling microscopy studies of nanometer size palladium particles on highly oriented pyrolytic graphite[J]. J. Electroanal. Chem, 1997, 422: 27-33.
    [6] Garrod S, Bollard M E, Nicholls A W, et al. Integrated metabonomic analysis of the multiorgan effects of hydrazine toxicity in the rat[J]. Chem. Res. Toxicol., 2005, 18: 115-122.
    [7] Vernot E H, MacEwen J D, Bruner R H, et al. Long-term inhalation toxicity of hydrazine[J]. Fund. Appl. Toxicol., 1985, 5: 1050-1064.
    [8]师玉荣.广东化工, 2006, 33: 88.
    [9] Kresge C T, Leonowicz M E, Roth W J, et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature, 1992, 359: 710-712.
    [10] Ying J Y, Mehnert C P, Wong M S. Synthesis and Applications of Supramolecular-Templated Mesoporous Materials[J]. Angew Chem Int Edit, 1999, 38:56-77.
    [11] Beck J S, Vartuli J C, Roth W J, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J. Am. Chem. Soc., 1992, 114: 10834-10843.
    [12] Zhao D Y, Feng J L, Huo Q S, et al. Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores[J]. Science, 1998, 279: 548-552.
    [13] Schüth F, Schmidt W. Microporous and Mesoporous Materials[J]. Advanced Materials, 2002, 14: 629-638.
    [14] Zhao D, Huo Q, Feng J, et al. Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures [J]. J. Am. Chem. Soc., 1998, 120: 6024-6036.
    [15] Huo Q, Margolese D I, Stucky G D. Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials [J]. Chemistry of Materials, 1996, 8: 1147-1160.
    [16] Soler-Illia G J, Sanchez C, Lebeau B, et al. Chemical Strategies To Design Textured Materials: fromMicroporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures[J]. Chemical Reviews, 2002, 102: 4093-4138.
    [17] Ryoo R, Joo S H, Jun S. Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation[J]. J. Phy. Chem. B, 1999, 103: 7743-7746.
    [18] Lee G J, Pyun S I. Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors [J]. Electrochim. Acta, 2006, 51: 3029-3038.
    [19] Walcarius A. Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials [J]. C.R. Chimie 2005, 8: 693-712.
    [20] Srivastava D N, Perkas N, Gedanken A, Felner I. Sonochemical Synthesis of Mesoporous Iron Oxide and Accounts of Its Magnetic and Catalytic Properties[J]. J.Phys.Chem.B, 2002,106: 1878-1883.
    [21] Tian B Z, Yang H F, Liu X Y, Xie S H, Yu C Z, Fan J, Tu B, Zhao D Y. Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors[J]. Chem.Commun., 2002, 1824-1825.
    [22]王兴磊,欧阳艳,罗新泽,马浩亚?艾斯江,贾孝婷.四氧化三钴超级电容器电极材料的制备与研究[J].无机盐工业, 2009, 41: 15-17.
    [23] Zheng L, Song J. Curcumin multi-wall carbon nanotubes modified glassy carbon electrode and its electrocatalytic activity towards oxidation of hydrazine[J]. Sensors and Actuators B, 2009, 135: 650-655.
    [1] McKeown N. Phthalocyanine Materials: Synthesis, Structure and Function, Cambridge University Press, Cambridge, 1998.
    [2] W.M. Sharman, J.E. Van Lier, in: K.M. Kadish, K.M. Smith, R.Guilard (Eds.), The Porphyrin Handbook, vols. 15–20, AcademicPress, NY, 2003.
    [3] Siswana M P, Ozoemena K I, Nyokong T. Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode[J]. Electrochim. Acta, 2006, 52: 114-122.
    [4] ?zcan L, ?ahin Y, Türk H. Non-enzymatic glucose biosensor based on overoxidized polypyrrole nanofiber electrode modified with cobalt(II) phthalocyanine tetrasulfonate[J]. Biosens. Bioelectron., 2008, 24: 512-517.
    [5] Agboola B, Nyokong T. Comparative electrooxidation of nitrite by electrodeposited Co(II), Fe(II) and Mn(III) tetrakis (benzylmercapto) and tetrakis (dodecylmercapto) phthalocyanines on gold electrodes[J]. Anal. Chim. Acta, 2007, 587: 116-123.
    [6] Sehlotho N, Griveau S, RuilléN, Boujtita M, Nyokong T, Bedioui F. Electro-catalyzed oxidation of reduced glutathione and 2-mercaptoethanol by cobalt phthalocyanine-containing screen printed graphite electrodes[J]. Mater. Sci. Eng. C, 2008, 28: 606-612.
    [7] Duarte J C, Luz R C S, Damos F S, Tanaka A A, Kubota L T. A highly sensitive amperometric sensor for oxygen based on iron(II) tetrasulfonated phthalocyanine and iron(III) tetra-(N-methyl-pyridyl)-porphyrin multilayers[J]. Anal. Chim. Acta, 2008, 612: 29-36.
    [8] Zagal J H. Metallophthalocyanines as catalysts in electrochemical reactions[J]. Coord. Chem. Rev., 1992, 119: 89-136.
    [9] Jiang X E, Guo L P, Du X G. Electrochemistry and electrocatalysis of binuclear cobalt phthalocyaninehexasulfonate-surfactant film modified electrode[J]. Talanta, 2003, 61: 247-256.
    [10] Zhang Y J, Li Y S, Liu Q S, Jin J, Ding B Q, Song Y L, Jiang L, Du X G, Zhao Y Y, Li T J. Molecular rectifying behaviors of a planar binuclear phthalocyanine studied by scanning tunneling microscopy[J]. Synth. Met., 2002, 128: 43-46.
    [11] Iliev V, Alexiev V, Bilyarska L. Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds[J]. J. Mol. Catal. A-Chem., 1999, 137: 15-22.
    [12] Hu N, Howe D J, Ahmadi M F, Rusling J F. Stable films of cationic surfactants and phthalocyaninetetrasulfonate catalysts[J]. Anal. Chem., 1992, 64: 3180-3186.
    [13] Hu N, Huang R, Yang J. Electrochemistry and Electrochemical Catalysis of Cobalt Phthalocyanine Tetrasulfonate-DDAB Surfactant Film Electrodes [J]. Chem. J. Chin. Univ., 1999, 8: 1203-1204.
    [14] Qiu B, Lin Z Y, Wang J, Chen Z H, Chen J H, Chen G N. An electrochemiluminescent biosensor for glucose based on the electrochemiluminescence of luminol on the nafion/glucose oxidase/poly(nickel(II)tetrasulfophthalocyanine)/multi-walled carbon nanotubes modified electrode[J]. Talanta, 2009, 78: 76-80.
    [15] Geraldo D A, Togo C A, Limson J, Nyokong T. Electrooxidation of hydrazine catalyzed by noncovalently functionalized single-walled carbon nanotubes with CoPc [J]. Electrochim. Acta, 2008, 53: 8051-8057.
    [16] McCreery R L. Advanced carbon electrode materials for molecular electrochemistry[J]. Chem. Rev., 2008, 108: 2646-2687.
    [17] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J. Phys. Chem. B, 1999, 103: 7745-7746.
    [18] Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons[J]. Adv. Mater., 2001, 13: 677-681.
    [19] Ryoo R, Joo S H. Nanostructured carbon materials synthesized from mesoporous silica crystals by replication[J]. Stud. Surf. Sci. Catal., 2004, 148: 241-260.
    [20] Lee J, Han S, Hyeon T. Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates[J]. J. Mater. Chem., 2004, 14: 478-486.
    [21] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure[J]. J. Am. Chem. Soc., 2000, 122: 10712-10713.
    [22] Joo S H, Choi S J, Oh I, Kwak J, Liu Z, Terasaki O, Ryoo R. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles[J]. Nature, 2001, 412: 169-172.
    [23] Zhou M, Ding J, Guo L P, Shang Q K. Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode[J]. Anal. Chem., 2007, 79: 5328-5335.
    [24] Zhou M, Guo L P, Lin F Y, Liu H X. Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode[J]. Anal. Chem. Acta, 2007, 587: 124-131.
    [25] Zhou M, Guo L P, Hou Y, Peng X J. Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine [J]. Electrochim. Acta, 2008, 53: 4176-4184.
    [26] Ndamanisha J C, Guo L P, Wang G. Mesoporous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties[J]. Micropor. Mesopor. Mater., 2008, 113: 114-121.
    [27] Qi B., Lin F Y, Bai J, Liu L, Guo L P. An ordered mesoporous carbon/didodecyldimethylammonium bromide composite and its application in the electro-catalytic reduction of nitrobenzene[J]. Mater. Lett., 2008, 62: 3670-3672.
    [28] Ndamanisha J C, Guo L P. Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode[J]. Biosens. Bioelectron., 2008, 23: 1680-1685.
    [29] Bai J, Qi B, Ndamanisha J C, Guo L P. Ordered mesoporous carbon-supported Prussian blue:Characterization and electrocatalytic properties[J]. Micropor.Mesopor. Mater., 2009, 119: 193-199.
    [30] Cui X Z, Shi J L, Zhang L X, Ruan M L, Gao J H. PtCo supported on ordered mesoporous carbon as an electrode catalyst for methanol oxidation[J]. Carbon, 2009, 47: 186-194.
    [31] Zhu L D, Yang R L, Jiang X Y, Yang D X. Amperometric determination of NADH at a Nile blue/ordered mesoporous carbon composite electrode[J]. Electrochem. Commun., 2009, 11: 530-533.
    [32] Gao J, Rusling J F. Electron transfer and electrochemical catalysis using cobalt-reconstituted myoglobin in a surfactant film[J]. J. Electroanal. Chem., 1998, 449: 1-4.
    [33] Bard A J, Faulkner L R. Electrochemical Methods: Fundamentals and Applications, second edition, John Wiley & Sons, Inc., 2001.
    [34] Zhan H B, Wang M Q, Chen W Z. In situ synthesis of metallophthalocyanines in inorganic matrix[J]. Mater. Lett., 2002, 55: 97-103.
    [35] Jasinski R. A new fuel cell cathode catalyst[J]. Nature, 1964, 201: 1212-1213.
    [36] Jahnke H G, Schonborn M F, Zimmerman G. Organic dyestuffs as catalysts for fuel cells[Z] Top. Curr, Chem., 1976, 61: 133-181.
    [37] Luz R C S, Damos F S, Tanaka A A, Kubota L T. Dissolved oxygen sensor based on cobalt tetrasulphonated phthalocyanine immobilized in poly-l-lysine film onto glassy carbon electrode[J]. Sens. Actuators B, 2006, 114: 1019-1027.
    [38] Baker R, Wilkinson D P, Zhang J. Facile synthesis, spectroscopy and electrochemical activity of two substituted iron phthalocyanines as oxygen reduction catalysts in an acidic environment[J]. Electrochim. Acta, 2009, 54: 3098-3102.
    [39] Baranton S, Coutanceau C, Roux C, Hahn F, Léger J M. Oxygen reduction reaction in acid medium at iron phthalocyanine dispersed on high surface area carbon substrate: Tolerance to methanol, stability and kinetics[J]. J. Electroanal. Chem., 2005, 577: 223-234.
    [40] Baranton S, Coutanceau C, Garnier E, Léger J M. How doesα-FePc catalysts dispersed onto high specific surface carbon support work towards oxygen reduction reaction (orr)? [J]. J. Electroanal. Chem., 2006, 590: 100-110.
    [41] Wu X, Li Y, Griindig B, Yu N, Renneberg R. A Novel Iron-Porphyrin-Derived Oxygen Sensor Working Near 0 V (vs. Ag/AgCl) in Neutral Solution[J]. Electroanalysis, 1997, 9: 1288-1290.
    [42] Manisankar P, Gomathi A. Mediated oxygen reduction at a glassy carbon electrode modified with riboflavin and 9,10-anthraquinones[J]. J. Power Sources, 2005, 150: 240-246.
    [43] Gu H Y, Yu A M, Chen H Y. Direct electron transfer and characterization of hemoglobin immobilized on a Au colloid-cysteamine-modified gold electrode[J]. J. Electroanal. Chem., 2001, 516: 119-126.
    [44] Sun H, Hu N, Ma H. Direct electrochemistry of hemoglobin in polyacrylamide hydrogel films on pyrolytic graphite electrodes[J]. Electroanalysis, 2000, 12: 1064-1070.
    [45] Han X, Huang W, Jia J, Dong S, Wang E. Direct electrochemistry of hemoglobin in egg-phosphatidylcholine films and its catalysis to H2O2[J]. Biosens. Bioelectron., 2002, 17: 741-746.
    [46] Sun W, Kong J, Deng J. Electrocatalytic Reduction of Hemoglobin at a Chemically ModifiedElectrode Containing Riboflavin[J]. Electroanalysis, 1997, 9: 115-119.
    [47] Li M, Xu M, Li N, Gu Z, Zhou X. Electrocatalysis of hemoglobin at C70/DDAB films in an aqueous solution[J]. J. Phys. Chem. B, 2002, 106: 4197-4202.
    [48] Griveau S, Pavez J, Zagal J H, Bedioui F. Electro-oxidation of 2-mercaptoethanol on adsorbed monomeric and electropolymerized cobalt tetra-aminophthalocyanine films. Effect of film thickness[J]. J. Electroanal. Chem., 2001, 497: 75-83.
    [49] Aguirre M J, Isaacs M, Armijo F, Basáez L, Zagal J H. Effect of the substituents on the ligand of iron phthalocyanines adsorbed on graphite electrodes on their activity for the electrooxidation of 2-mercaptoethanol[J]. Electroanalysis, 2002, 14: 356-362.
    [50] Sehlotho N, Nyokong T, Zagal J H, Bedioui F. Electrocatalysis of oxidation of 2-mercaptoethanol, l-cysteine and reduced glutathione by adsorbed and electrodeposited cobalt tetra phenoxypyrrole and tetra ethoxythiophene substituted phthalocyanines[J]. Electrochim. Acta, 2006, 51: 5125-5130.
    [51] Obirai J C, Nyokong T. Thiol oxidation at 2-mercaptopyrimidine-appended cobalt phthalocyanine modified glassy carbon electrodes[J]. J. Electroanal. Chem., 2007, 600: 251-256.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700