用户名: 密码: 验证码:
Ni60A/MoS_2复合润滑涂层的润滑耐磨机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以45钢作为基体材料,喷涂粉末为NiCrAl、Ni60A、La_2O_3和镍包覆MoS_2润滑剂。将三种不同含量镍包覆MoS_2润滑剂的涂层粉末,采用机械混粉方式将所选定的合金粉末与润滑剂均匀混合,采用DH-1080型高能束等离子喷涂设备进行减摩耐磨涂层的热喷涂成形。本实验采用UMT-2微观磨损试验机(USA)测试其摩擦磨损性能,利用S-3000N扫描电子显微镜观察试样摩擦表面的磨损表面形貌,分析其摩擦磨损机理。
     研究结果表明:在摩擦试验时间内,自润滑复合涂层摩擦系数随摩擦时间的变化呈现较为剧烈的变化趋势。随摩擦时间的延长,摩擦系数的变化可分为三个阶段,即快速降低阶段;缓慢降低阶段;稳定维持阶段。随着MoS_2含量的增加,涂层摩擦系数随着MoS_2含量的增大显现先减小后增大的趋势,并且在镍包覆MoS_2的质量分数分别为35%时达到最小值。Ni60A/MoS_2润滑复合涂层低摩擦性能应归功于摩擦表面MoS_2润滑膜的形成,涂层摩擦系数的降低与摩擦表面的MoS_2润滑膜的覆盖面积是成比例的。
     固体润滑剂起润滑作用的机理就在于它能够转移到对磨面形成转移膜,从而将对摩表面间的摩擦转变为固体润滑剂之间的摩擦。在摩擦过程中,由于较大拉应力的存在以及疲劳损伤将导致裂纹的产生与扩展,从而使润滑膜产生剥落磨损,把整个过程可分为膜的厚度不断减小、裂纹的产生、裂纹的扩展和润滑膜的剥落四个阶段。由分析可得知,Ni60A/MoS_2自润滑材料润滑膜的裂纹产生是由机械应力和热应力共同作用的结果。
This article use 45 steel as the substrate material, the spraying powder include NiCrAl、Ni60A、La_2O_3 and MoS_2-coated by Ni. The coating powder with three different contents of the MoS_2-coated by Ni adopt mechanical mixed powder means to uniformity mix alloy powder selected with lubricants, using DH-1080 high energy beam plasma spraying equipment to product the thermal spray anti-friction coating. The research adopts UMT-2 microscopic wear tester (USA) to test the friction and wear characteristics of the coating, and discuss the mechanism of the coating. Using S-3000N scanning electron microscope observes the worn surface morphology of the friction surface, and analyses the friction and wear mechanism.
     The result shows that during the friction experimental time, the friction coefficient of the self-lubricating composite coating changed with the friction time, which presents dramatically diversification. With the prolongation of friction time, the change of the friction coefficient can be divided into three stages, that is, rapidly decreasing stage; slowly decreasing stage; steady maintaining stage. With increasing the content of MoS_2, the friction coefficient of the coating which changed with the increasing content of the MoS_2 presents firstly decreases then increases and the value reach the minimum value when the quality percent of MoS_2 wrapped with Nickel is 35%. Low-friction property of the Ni60A/MoS_2 composite coating is due to the forming of MoS_2 lubricating film. The decreasing of the friction coefficient of the coating is in proportion to the coverage area of MoS_2 lubricating film.
     The lubricating mechanism caused by solid lubricant is that it could divert to the grinding surface to form the transfer film, in order to change the friction between surfaces into the friction between solid lubricants. During the friction process, the existing of the tensile stress and the fatigue leads the generation and expansion of the crack, thus the lubricating film flakes off, the whole process could be divided into four phases, the decreasing of the thickness of the film, the existing of the crack, the expanding of the crack and the flaking of the lubricating film. It analyses that the existing of the crack of the Ni60A/MoS_2 self-lubricating materials film is caused by the united effects of the mechanical stress and the thermal stress.
引文
[1]汪德涛.润滑技术手册[M].北京:机械工业出版社,2002:0~120
    [2] Wyn-Roberts D.New frontier for space tribology[J].Tribology International,1990,23:149~155
    [3]徐滨士.热喷涂材料的应用与发展[J].新材料产业,2002,Vol.104(7):3~57
    [4]张志坚.高温等离子弧喷涂应用进展综述[J].云南冶金,1997,Vol.26(4):40
    [5]熊党生.氧化物的润滑作用[J].材料导报,1998,12(5) :12~14
    [6] Xua J,Zhua ,MH,Zhou ZR.An investigation on fretting wear life of bonded MoS2 solid lubricant coatings in complex conditions[J].Wear,2003,255:253~258
    [7] Nainaparampila J J,Phanib A R,Krzanowski J E.Pulsed laser-ablated MoS2-Al films:friction and wear in humid conditions[J].Surface&Coatings Technology,2004,187:326~335
    [8]赵运才,刘洋.等离子Ni60A/MoS2复合润滑涂层摩擦学特性[J].河南科技大学,2008,Vol.29(5)
    [9]陈文威等.金属表面涂层技术与应用[M].北京:人民交通出版社,1996:0~253
    [10] Hultman L,Neidhardt J,Hellgren N,eta1.Modification of contact surfaces by fullerene-like solid lubricantNan particles[J].Surface and Coatings Technology, 2003:163~164
    [11]周静,曹兴进,张隆平.激光重熔等离子喷涂复合润滑涂层的组织与性能研究[J],现代制造工程,2002(9):11~13
    [12] Ozkan Sarikaya,Selahaddin Anik,Erdal Celik,S. Cem Okumus and Salim Aslanlar.Wear behavior of plasma-sprayed AlSi/B4C composite coatings[J].Materials & Design, In Press, Corrected Proof, Available online, 27 September, 2006
    [13]王海斗,庄大明,王昆林.FeS固体润滑涂层的结构分析及磨损行为比较[J],金属学报,Vol.39 2003(10) :1031~1036
    [14]王春明.掺杂纳米SiC的硫化物等离子喷涂复合涂层摩擦学性能研究[J][硕士学位论文],江苏:南京:10~12
    [15]曹兴进,周静,张隆平.等离子喷涂NiCr合金基复合梯度润滑涂层的组织与力学性能究[J],表面技术,Vol.19,2002(3) :17~21
    [16]关耀辉,徐杨,郑仲瑜.纳米-亚微米MoS2涂层的结构和摩擦性能[J].焊接学报,Vol.26,2005(12) : 51~55
    [17]王庆年,隋忠祥,张明喆等.国外某些金属基自润滑复合材料的开发与进展[J].摩擦学学报,1997,17 (5) :89~96
    [18]曹同坤.自润滑陶瓷刀具的设计开发及其自润滑机理研究[D][博士学位论文].山东:山东大学,2005
    [19]顾明亮.镍包石墨自润滑涂层摩擦磨损性能研究[D][硕士学位论文].江苏:江南大学,2008
    [20] Venu Gopal A,Venkateswara Rao P.Performance improvement of grinding of SiC using graphite as a solid lubricant[J].Materials and Manufacturing Processes,2000,19(2) :177~186
    [21] Weicheng Liha,U SH,Yangb.Effects of process parameters on molten particle speed and surface temperature and the properties of HVOF CrCrNiCr coatings[J].Surface and Coatings Technology,2000,33 (13) :454~600
    [22]周静.子喷涂NiCr合金基复合梯度润滑涂层的组织与力学性能研究[J].表面技术,2002(6) :9~10
    [23] Erdemirb A.Modern Tribology Handbook(II)[M].Bo-ca Raton:CRC Press,2001
    [24]李建,王颖.智能涂层及其研究现状[J].表面工程资讯,2006,Vol.6(1) :25~26
    [25]吴子健等.热喷涂技术与应用[M].北京:机械工业出版社.2005,10:15~20
    [26]轶名.热喷涂技术及其在汽车行业中的应用[J].热加工工艺.2007(19) :11~15
    [27]徐婷婷.固体润滑材料纳米二硫化钼的制备及表征[J][硕士学位论文].湖北,华中科技大学
    [28] http://baike.baidu.com/view/27410.html?wtp=tt
    [29]林河成.二硫化钼的生产及应用[J].湿法冶金1998,2:53~56
    [30] Thurston T R,Wilcoxon J P.Photooxidation of Organic Chemicals Catalyzed by Nanoscale MoS2 [J]. Journal of Physical Chemistry B,1999,103(1):11~17
    [31] Miremadi B K,Morrison S R.High Activity Catalyst from Exfoliated MoS2[J].Journal of Catalysis,1987 103(2) :334~345
    [32] Payen E,Hubaut R,Kasztelan S,et al.Morphology Study of MoS2-and WS2-based ydrotreating Catalysts by High-resolution Electron Microscopy[J].Journal of Catalysis,1994 147(1) :123~132
    [33] Benavente E,Santa Ana MA.Mendizhbal Fet al.Intercalation Chemistry of Molybdenum Disulfide[J]. Coordination Chemistry Reviews,2002,224:87~109
    [34]党兴.等离子喷涂Al2O3与ZrO2及其复合涂层的耐磨性能研究[D][硕士学位论文].山东:山东大学, 2008:13~14
    [35]肖明颖.耐磨自润滑涂层的组织和性能研究[D][硕士学位论文].北京:中国石油大学,2007
    [36]佚名.DH-1080等离子喷涂设备.http://www.itysf.com.cn/prodetail.asp?prod1id=174&id=2699
    [39]聂德明.固体润滑的研究[J].固体润滑,1993,3(2) :127~128
    [40]戴俊锋.宽温带自润滑镍基材料的制备及摩擦学行为研究[D][硕士学位论文].江苏,南京大学,2006:19~20
    [37]谭昌瑶,王钧石.实用表面工程技术[M].北京:新时代出版社,1998 :53~60
    [38]王海军,郭永明,陆欢.电弧功率对超音速等离子喷涂氧化铝粒子状态及涂层性能的影响[J].装甲兵工程学院,2007,Vol.21(5)
    [41] Normandy B.Tribological properties of plasma sprayed alumina titanic coatings role and control of the microstructure [J].Surface and Coatings Technology.2000, 123:278~287
    [42]顾明亮.镍包石墨自润滑涂层摩擦磨损性能研究[D][硕士学位论文].江苏:江南大学,2008
    [43]刘宇雄.固体润滑剂对陶瓷摩擦材料摩擦性能影响和机理研究[J].北京:北京化工大学,2008
    [44] Stachowiak G W,Stachowiak G B,Bachelor A W.Metallic film transferred Metal-ceramic unlubrieated sliding wear[J],1989,132:361~381
    [45]吴芳.碳化翻陶瓷及其摩擦学研究[D][博士学位论文].长沙:中南大学,2001:50~56
    [46]路新春,温诗铸.徽观摩擦磨损研究的新进展.摩擦学学报[J],1995,15(2):177~183
    [47]聂时春,张用伟,王洪波,高芒米.原子力显微镜在纳米摩擦学中应用的进展.摩擦学学报[J],1998,18(3):88~96
    [48]杜春宽.铜基石墨自润滑材料制备及其摩擦磨损性能研究[D][硕士学位论文].安徽:合肥工业大学,2007:26~27
    [49]曹凯博.等离子喷涂Al2O3陶瓷涂层的机理研究[D][硕士学位论文].陕西:西安理工大学,2006
    [50]陈雄伟.Cr2O3涂层干摩擦磨损性能研究[D][硕士学位论文].湖南:中南大学,2008
    [51]李娟.润滑抗磨剂的耐磨延寿机理及其工程[D][硕士学位论文].湖南:中南大学,2008
    [52]梅方胜.添加MoS2的Ti3SiC2复合陶瓷的制备及其性能研究[D][硕士学位论文].湖北:武汉理工大学,2008:25~35
    [53]侯锁霞,贾晓呜,吴超,固体润滑材料涂层高速钢刀具的减摩性能[J],工具技术, Vol.42, 2008(5), :53~60
    [54]吴运新,汪复兴.镍合金增强MoS2基白润滑复合材料的组织与摩擦学性能[J],摩擦学学报,1995, 15 (3):36~64
    [55]陈传忠,李士同,周香林,Ni60A等离子喷涂层的组织结构及其摩擦磨损特性[J],钢铁研究学报,Vol.11,1999(5) :56~59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700