用户名: 密码: 验证码:
耐磨仿生几何结构表面及其土壤磨料磨损
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对土壤洞穴动物穿山甲和水生软体动物栉孔扇贝、蛤蜊、方斑东凤螺的生物体表具有耐磨料磨损的几何结构,利用逆向工程等测量技术数字化分析了其所具有的几何结构特征,并建立了数学模型。利用结构仿生理论设计出仿生棱纹结构表面,仿生凸包结构表面,仿生台阶结构表面和仿生鳞片结构表面。利用JMM型土壤磨料磨损试验机对几种仿生结构表面及平板表面进行了模拟土壤磨料磨损的试验研究。利用方差分析法对试验结果进行了对比分析。探索了滑动速度、磨料尺寸及仿生结构单体分布间距对试验结果的影响。利用离散元软件对磨料磨损过程进行了数值模拟,依据离散元分析结果,对仿生几何结构表面的耐土壤磨料磨损的机理进行了分析。
The abriseve wear is one of the main failure modes for soil-engaging components of agricultural machines and construction machines. Many researches were focused on improving the abrasive wear resistance of machine components. The abrasive wear depends upon both the properties of component materials and the geometrical structures of the component surfaces. The geometrical surface structures would change the interface interaction and dynamic properties. The acting force, speed, energy distribution and its dynamic change of contact interface between abrasive and component will significantly influence the wear of soil-engaging surface. Biomimetic geometric structure surfaces with anti-abrasion function were designed learning from the geometrical biosurfaces with anti-abrasion function; their abrasive wear against soil were carried out; their experimental examination were run; and, finally, their numerical simulation and machanisim analysis in the present work.
     Surfaces of both the pangolin (Manis pentadactyla, a type Soil burrowing animals) scale and chlamys farreri (a species of mollusc) shell have anti-abrasion geometric structures. There are many ridges on their outside surfaces. It was found that the sections of the ridges can be expressed with sine function f ( x)= asin(bx+c) (where, a, b and c are real number, a≠0, b≠0). Biomimetic abrasive wear resistant geometric structure surface ridges were designed according to the biosurface geometry and its anti-abrasion function. It was found from the quantitative analysis of the shape of clam (Mactra) shell that the clam sheel has wearable convex shell character. The spherical segment of the shape of clam can be described by function ( ) ( )x? a 2 +y?b2+(z ?c)2=r2( r > h>0). Biomimetic wearable embossed surfaces with convex domes were designed according to this function. It was found from the quantitative analysis of the shape of the outside shell of Babylonia Areolata that the outside shell surfaces display step form geometry. The secions of the steps are right-angled triangles, which have three internal angles of 30o, 60o and 90o respectively. Based on the trigonal geometry of the outside shell of Babylonia Areolata, the bioimimetic step form geometric structure surfaces were designed. The exposed parts of pangolin scales were measured using OLYCIA P3 image analysis system and it was found that the exposed parts display symmetric hexagon geometric structure; L2/L1=1.175, where, L1 is the length of the hypotenuse of symmetric hexagon and L2 is the length of the vertical border of the symmetric hexagon; the height difference between center ridge and fringe is 2-3.5mm. Wearable biomimetic scalelike geometric structure surfaces were designed using structure biomimetics theory.
     The measurement method of the wear volume loss based on the reverse engineering was investigated. Two measurment methods of abrasive wear volume loss based on reverse engineering technology were compared The results showed that the reverse engineering technology can give reliable resultes with good repeatability; the precision of the two measurements are 97.35%和96.92%, respectively.
     The orthogonal experiments of the abrasive wear of varied biomimetic geometrical structure surfaces designed biomimetically were conducted. The results showed that the distance between two adjacent biomimetic geometrical units, abrasive particle size and related sliding speed of samples with abrasive material had significant influence on experiment results of the biomimetic embossed surfaces with convex domes with the significance levels of 0.01. The sliding speed was the primary impacting factor, the distance was the secondary and abrasive particle size was the least. It was found from the orthogonal experiment resultes of the abrasive wear of the scalelike geometric structure surfaces that the distance between two adjacent biomimetic scalelike units had no significant influence on abrasive wear property, but both of the sliding speed and abrasive particle size had significant influence on abrasive wear and the related sliding speed was the primary significant factor as well. It was found form the orthogonal experiments of the abrasive wear the ridge type biomimetic geometrical structure surfaces that the sliding speed had significant influence on the experiment results with the significant level of 0.01. The distance between two adjacent biomimetic scalelike ridges had a certain effect on experiment results with significant level of 0.01 and abrasive particle size had no significant influence on experiment results. It was found that from the test results of the abrasive wear of the common smooth plate that both abrasive particle size and sliding speed had significant effects with significant level of 0.01 and the related sliding speed was the main factor. The effect of the sliding speed on experiment results is more significant than that of abrasive particle size. Generally, four biomimetic geometrical structure surfaces, including embossed surfaces with convex domes, ridges, steps and scalelike units, have higher anti-abrasion property than the conventional smooth surface, in particularly, the anti-abrasion property of step form and ridge form biomimetic surfaces have higher anti-abrasion propery than the other structure surfaces. The the abrasive volume of the biomimetic geometrical units (convex domes, steps, ridges and scalelike units) were examined and it was found from the experimental resuls that the abrasive volume of the biomimetic geometrical units decreased along the sliding direction of abrasive material, indicating that the geometrical structure units can improve the wearability of biomimetic surface and front units have protective function to the hinder units. The experiment results showed that the wearability can be improved if the biomimetic geometric structure units are made from wearable materials.
     Discrete element mumerical simulation for the abrasive wear of some biomimetic geometrical structure surfaces was carried out. It was demonstrated that the results of the computer simulation were in concordance with the experimental resultes, suggesting that the discrete element method can substitute for real experiments or improve the optimization designs of biomimetic geometrical anti-abrasion surfaces. A three-particle analysis model was established. A systemic analysis of abrasive wear machanisims of biomimetic geometrical structure surfaces was carried out using discrete element method and it was concluded that shear layer effect, guidance effect and rolling effect are the main anti-abrasion mechanisms of the biomimetic geometrical structure surafacs.
引文
[1] Dowson D. History of Tribology[M]. UK: Professional Engineering Publishing Limited, 1998.
    [2] 温诗铸, 黄平. 摩擦学原理[M]. 北京: 清华大学出版社, 2002.
    [3] 关成君, 陈再良. 机械产品的磨损——磨料磨损失效分析[J]. 理化检验:物理分册, 2006, 42(1): 50~54.
    [4] 西安交通大学铸造及耐磨材料研究所. 耐磨材料研究及其应用[J]. 铸造技术, 2002, 23(1): 56~58.
    [5] 周仲荣, 雷源忠, 张嗣伟. 摩擦学发展前沿[M]. 北京: 科学出版社, 2006. p283-305.
    [6] 材料耐磨抗蚀及其表面技术丛书编委会. 材料的磨料磨损[M]. 北京: 机械工业出版社, 1990.
    [7] 徐滨士, 朱绍华. 表面工程的理论与技术[M]. 北京: 国防工业出版社, 1998.
    [8] Eyre T S. Review of abrasive study[J]. Tribology International, 1978, (11): 91~98.
    [9] 邵荷生, 张清. 金属的磨料磨损与耐磨材料[M]. 北京: 机械工业出版社, 1988.
    [10] 张健, 周力行. 突扩回流与大速差射流回流湍流气固两相流动的数值模拟[J]. 空气动力学学报. 1996, 14(2): 154~161.
    [11] 章本照, 沈新荣, 方建农. 矩形截面弯管内气固两相流及对壁面磨损的数值分析[J]. 空气动力学学报. 1995, 13(40): 435~441.
    [12] 章本照, 陈洪波. 曲线管道气固两相流颗粒运动特性及对管壁磨损的数值分析[J]. 空气动力学学报. 1995, 13(4): 135~141.
    [13] 林建忠, 梁新南, 赵伯龙. 气固两相流离心叶轮机械磨损特性研究[J]. 流体机械, 1994, 22(1): 12~17.
    [14] 沈天耀, 林建忠, 章本照. 叶轮机械气固两相流研究[J]. 力学与实践, 1993, 15(5): 1~9.
    [15] 岑可法, 樊建人. 工程气固多相流的理论与计算[M]. 杭州: 浙江大学出版社, 1992.
    [1] Dowson D. History of Tribology[M]. UK: Professional Engineering Publishing Limited, 1998.
    [2] 温诗铸, 黄平. 摩擦学原理[M]. 北京: 清华大学出版社, 2002.
    [3] 关成君, 陈再良. 机械产品的磨损——磨料磨损失效分析[J]. 理化检验:物理分册, 2006, 42(1): 50~54.
    [4] 西安交通大学铸造及耐磨材料研究所. 耐磨材料研究及其应用[J]. 铸造技术, 2002, 23(1): 56~58.
    [5] 周仲荣, 雷源忠, 张嗣伟. 摩擦学发展前沿[M]. 北京: 科学出版社, 2006. p283-305.
    [6] 材料耐磨抗蚀及其表面技术丛书编委会. 材料的磨料磨损[M]. 北京: 机械工业出版社, 1990.
    [7] 徐滨士, 朱绍华. 表面工程的理论与技术[M]. 北京: 国防工业出版社, 1998.
    [8] Eyre T S. Review of abrasive study[J]. Tribology International, 1978, (11): 91~98.
    [9] 邵荷生, 张清. 金属的磨料磨损与耐磨材料[M]. 北京: 机械工业出版社, 1988.
    [10] 张健, 周力行. 突扩回流与大速差射流回流湍流气固两相流动的数值模拟[J]. 空气动力学学报. 1996, 14(2): 154~161.
    [11] 章本照, 沈新荣, 方建农. 矩形截面弯管内气固两相流及对壁面磨损的数值分析[J]. 空气动力学学报. 1995, 13(40): 435~441.
    [12] 章本照, 陈洪波. 曲线管道气固两相流颗粒运动特性及对管壁磨损的数值分析[J]. 空气动力学学报. 1995, 13(4): 135~141.
    [13] 林建忠, 梁新南, 赵伯龙. 气固两相流离心叶轮机械磨损特性研究[J]. 流体机械, 1994, 22(1): 12~17.
    [14] 沈天耀, 林建忠, 章本照. 叶轮机械气固两相流研究[J]. 力学与实践, 1993, 15(5): 1~9.
    [15] 岑可法, 樊建人. 工程气固多相流的理论与计算[M]. 杭州: 浙江大学出版社, 1992.
    [32] D W Bechert, M Bruse, W Hage. Experiments with three dimensional riblets as an idealized model of shark skin[J]. Exp. Fluids, 2000, 28: 403~412.
    [33] http://tech.sina.com.cn/中国科学技术信息研究所加工整理 .
    [34] Autumn, K,Liang, Y A. Hsieh S T, et al. Adhesive force of a single gecko foot-hair[J]. Nature, 2000, 405(8): 681~685.
    [35] Parker A R, Lawrence C R. Water cap ture by a desert beetle[J]. Nature, 2001, 414: 33~34.
    [36] 杨洪秀, 左文杰, 李亦文, 任露泉. 活塞表面仿生非光滑微坑贮油润滑机理的任意拉格朗日-欧拉法有限元模拟[J]. 吉林大学学报(工学版), 2008, 38(3): 591~594.
    [37] 任露泉, 丛茜, 佟金. 界面粘附中非光滑表基本特征的研究[J]. 农业工程学报, 1992, 8(1): 16~22.
    [38] 任露泉, 陈德兴, 胡建国. 土壤动物减粘脱土规律的初步分析[J]. 农业工程学报, 1990, 6(1): 15~20.
    [39] 陈秉聪, 任露泉, 徐晓波等. 典型土壤动物体表形态及减粘脱土的初步研究[J]. 农业工程学报, 1990, 6(2): 1~6.
    [40] Lu Yong Xiang. Signigicance and progress of bionics[J]. Journal of Bionics Engineering, 2004, 1(1): 1~7.
    [41] C Neinhuis, W Barthlott. Characterization and distribution of water-repellent, self-cleaning plant surfaces[J]. Annals of Botany, 1997, 79: 667~677.
    [42] W Barthlott., C Neinhuis. Purity of the sacred lotus or escape from contamination in biological surfaces[J]. Planta. 1997, 202: 1~8.
    [43] W Barthlott, C Neinhuis. The lotus-effect: non-adhesive biological and biomimetic technical surfaces[A]. Proceedings of the First International Industrial Conference Bionik[C], 2004, 211~214.
    [44] X F Gao, L Jiang. Water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.
    [45] T Wagner, C Neinhuis, W Barthlott. Wettability and contaminability of insect wings as a function of their surface sculptures[J]. Acta Zoologica (Stockholm). 1996, 77(3): 213~225.
    [46] Tong J, Sun J Y, Chen DH, Zhang S J. Geometrical features and wettabilityof dung beetles and potential biomimetic engineering applications in tillage implements[J]. Soil & Tilage Res, 2005, 80: 1~12.
    [47] Yamashita H, Nakao H, Takeuchi M. Coating of TiO2 photocatalysts on super-hydrophobic porous teflon membrane by an ion assisted deposition method and their self-cleaning performance[J]. Nuclear Instruments and Methods in Physics Research B, 2003, 206: 898~901.
    [48] Guan K. Relationship between photocatalytic activity, Hydrophilicity and self-cleaning effect of TiO2/SiO2 films[J]. Surface & Coatings Technology. 191, 2005: 155~160.
    [49] Parker A R, Lawrence C R. Water capture by a desert beetle[J]. Nature, 2001, 414: 35~36.
    [50] Dai Z D, Gorb S N, Schwarz U. Roughness-dependent friction force of the tarsal claw system in the beetle pachnoda marginata (coleoptera, scarabaeidae)[J]. Journal of Experimental Biology. 2002, 205: 2479~2488.
    [51] Gao H, Yao H. Shape insensitive optimal adhesion of nanoscale fibrillar structures[A]. Proceedings of the National Academy of Sciences of USA[C]. 2004, 101(21): 7851~7856.
    [52] Peressadko A G, Gorb S N. Surface profile and friction force generated by insect[A]. Proceedings of the First International Industrial Conference Bionik[C]. 2004, 257~263.
    [53] Hasenfuss I. The adhesive devices in larvae of lepidoptera (Insecta, Pterygota)[J]. Zoomorphology, 1999, 119(3): 143~162.
    [54] Gorb S N, Peressadko A, Spolenak R, Arzt E. Biological hairy attachment devices as a protptype for artificial adhesive systems[A]. Proceedings of the First International Industrial Conference Bionik[C], 2004, 237~242.
    [55] 孙久荣, 孙博宁, 韦建恒. 蚯蚓体表电位的测定及其与运动的关系[J]. 吉林工业大学学报, 1991, 4: 18~23.
    [56] 李建桥, 刘国敏, 邹猛, 李因武, 田喜梅. 蚯蚓非光滑体表试样的法向土壤粘附特性[J]. 中国农业科技导报,2007, 9(6): 110~114.
    [57] 李安琪, 任露泉, 陈秉聪, 崔相旭. 蚯蚓体表液的组成及其减粘脱土机理分析[J]. 农业工程学报, 1996, 6(3): 8~14.
    [58] 丛茜, 金敬福, 张宏涛, 任露泉. 仿生非光滑表面在混合润滑状态下的摩擦性能[J]. 吉林大学学报(工学版), 2006, 36(3): 363~366.
    [59] 王云鹏, 任露泉, 杨晓东. 仿生柔性非光滑表面减粘降阻的试验研究[J]. 农业机械学报, 1999, 30(4): 1~4.
    [60] 任露泉, 王云鹏, 李建桥. 典型生物柔性非光滑体表的防粘研究[J]. 农业工程学报, 1996, 12(4): 31~36.
    [61] 田丽梅, 任露泉, 韩志武. 仿生非光滑表面脱附与减阻技术在工程上的应用[J]. 农业机械学报, 2005, 36(3): 138~142.
    [62] Autumn Kellar, Peattie Anne M. Mechanisms if adhesion in geckos[J]. INTEGR. COMP. BIOL, 2002, 99(19): 12252~12256.
    [63] Gorb S N. Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles (coleoptera: tenebrionidae): design of co-opted fields of microtrichia and cuticle ultrastructure[J]. Int. J. Insect Morphol & Embryol, 1998, 27(3): 205~225.
    [64] Johnson K L, Kendall K, Roberts A D. Surface energy and the contact of elastic solids[J]. Proc R Soc Lond A, 1971, 324: 301~313.
    [65] Hazel J, Stone M, Grace M S, Tsukruk V V. Nanoscale design of snake skin for reptation locomotions via friction anisotropy[J]. Journal of Biomechanics, 1999, 32: 477~484.
    [66] Carpenter P. The right sort of roughness[J]. Nature, 1997, 388: 713~714.
    [67] Reif W F. Morphogenesis and function of the squamation in sharks[C]. Neues Jahrbuch fur Geologie and Palaen tologie. Abhandlungen Band 164, 1982, 172~183.
    [68] Ball P. Engineering shark skin and other solutions[J]. Nature, 1999, 400: 507~509.
    [69] Igarashi T. Drag reduction of a square prism by flow control using a small rod[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 69-71: 141-153.
    [70] Balasubramanian A K, Miller A C, Rediniotis O K. Microstructured hydrophobic skin for hydrodynamic drag reduction[J]. AIAAJ, 2004, 42(2): 411~414.
    [71] http://aerounix.tamu.edu/fluids/Microstructured_hydrophobic.doc.
    [72] Sirovich L, Karlsson S. Turbulent drag reduction by passive mechanisms[J]. Nature, 1997, 388: 753~755.
    [73] 佟金, 任露泉, 陈秉聪. 生物表面及仿生摩擦学——地面机械仿生. 仿生科学的前言暨发展战略研讨会, 2005. 11, 南京.
    [74] Gebeshuber I C, Stachelberger H, Drack M. Surfaces in relative motion: bionanotribological investigations[A]. Proceedings of the First International Industrial Conference Bionik[C]. 2004, 229~236.
    [75] Tong J, Ren L Q, Li J Q, Chen B C. Abrasive wear behaviour of bamboo[J]. Tribology International, 1995, 28(5): 323~328.
    [76] Tong J, Moayad B Z, Ren L, Chen B. Biomimetics in soft terrain machines: a review[J]. International Agricultural Engineering Journal, 2004, 13(3): 71~86.
    [77] 罗坤, 刘小云, 金军, 岑可法. 气固管道流动中肋条防磨效率的数值研究[J]. 中国电机工程学报, 2004, 24(5): 207~211.
    [78] 沈新荣. 抗磨肋条减少颗粒两相流对壁面磨损的机理研究[D]. 杭州: 浙江大学, 1998.
    [79] 杨卓娟, 韩志武, 任露泉. 激光处理凹坑形仿生非光滑表面试件高温摩擦磨损特性[J]. 摩擦学学报. 2005, 25(4): 374~378.
    [80] Ronen A, Etsion I, Kligerman Y. Friction-reducing surface-texturing in reciprocating automative componen[J], Trib. rans. 2001, (44): 359~366.
    [81] 克莱兹麦尔著, 钟明燕译. 仿生学[M]. 北京: 北京科学普及出版社, 1965.
    [82] 季劲松. 逆向工程中三坐标测量数据处理的研究及系统开发[D]. 杭州: 浙江大学, 硕士学位论文, 2002.
    [83] 姜元庆, 刘佩军. UG/Imageware 逆向工程培训教程[M]. 北京: 清华大学出版社, 2003.
    [84] 吴娜, 佟金, 陈东辉, 张书军, 陈秉聪. 基于逆向工程技术的蜣螂外形数据采集与处理[J]. 农业机械学报. 2006, 37(5): 117~121.
    [85] 李南南, 吴清, 曹辉林. MATLAB 7 简明教程[M]. 北京: 清华大学出版社, 2006.
    [86] 徐涛. 数值计算方法[M]. 长春: 吉林科学技术出版社, 2002.
    [87] 佟金, 吴娜. 臭蜣螂唇基表面轮廓曲线数学模型建立及分析[J]. 农业机械学报, 2006, 37(5): 113~116.
    [88] 贾兵云. 凸包形仿生非光滑表面自由式磨料磨损行为[D]. 长春: 吉林大学, 硕士学位论文, 2004.
    [89] http://www.133001.com/photos/show/26320/蜥蜴
    [90] http://www.haodoo.com/mlist/m5566.htm (蛇)
    [91] http://www.gg88.net/A002/G0051/new/Wallpapers_P5.htm
    [92] 周美立. 相似工程学[M]. 北京: 机械工业出版社, 1998.
    [93] 古特拉区. 生物进化论[M]. 上海: 大江书铺, 1929.
    [94] 叶元烈. 机械优化理论与设计[M]. 北京: 中国计量出版社, 2001.
    [95] 杨国平, 鞠春雷. Pri/Engineer 2000i 入门教程[M]. 北京: 机械工业出版社, 2002.
    [96] 鲁博, 张林文, 曾竟成. 天然纤维复合材料[M]. 北京: 化学工业出版社, 2005.
    [97] 吴培熙, 沈健. 特种性能树脂基复合材料[M]. 北京: 化学工业出版社, 2003.
    [98] 张克惠. 塑料材料学[M]. 西安: 西北工业大学出版社, 2000.
    [99] 王善勤. 塑料配方设计问答[M]. 北京: 中国轻工业出版社, 2003.
    [100] 黄发荣, 焦杨生. 酚醛树脂及其应用[M]. 北京: 化学工业出版社, 2003.
    [101] 北京农业大学. 动物生物化学[M]. 农业出版社. 1987.
    [102] 李茂林. 我国金属耐磨材料的发展和应用[J]. 铸造, 2002, 51(9): 525~529.
    [103] 张兴龙, 周平安, 杨振桓. 犁铧的失效分析[J]. 摩擦磨损, 1985, (3): 14~18.
    [104] 田振祥, 孙维连, 李凌云. 渗硼犁铧和等温淬火犁铧的磨损失效分析[J]. 摩擦磨损, 1985, (4): 13~18.
    [105] 周平安. 耐磨材料的现状与发展[J]. 新世纪水泥导报-耐磨技术, 2005, (6): 40~42.
    [106] 亢银霞, 王频, 曹鲁波. 犁铧刃口磨损规律的试验研究[J]. 新疆农业大学学报, 2000, 23(1): 62~64.
    [107] 邵荷生,张清. 金属的磨料磨损与耐磨材料[M]. 北京: 机械工业出版社,1988.
    [108] 周平安, 孙家枢, 张兴龙. 农业零件受土壤磨粒磨损表面磨痕的微观分析[J]. 固体润滑, 1981, 1(1): 15-21.
    [109] 李凌云. 内应力对等温淬火 65Mn(65SiMnR)钢犁铧耐磨性的影响[J]. 固体润滑, 1987, 7(2): 102~108.
    [110] Yan Enlan. Proceedings of International Agricultural Mechanization Conference, Beijing(China). October 16~20, 1991. 245~250.
    [111] 土壤磨料特性影响课题组. 土壤磨料特性对农机材料磨损性能的影响[J]. 农业机械学报, 1986, 17(3): 53~62.
    [112] Liu Y, Xie Y B, Yuan C J, et al. Research on an on-line ferrograph[J]. Wear, 1992, 153(2): 323~330.
    [113] Rooij M B, Schipper D J. A wear measurement method based on the comparison of local surface heights[J]. Wear, 1998, 217(2): 182~189.
    [114] Yang M Y, Kwon O D. Crater wear measurement using computer vision and automatic focusing[J]. Journal of Material Processing Technology, 1996, 58(4): 362~367.
    [115] Trumpff B. A new way to measure RCCA guide tube wear[J], Nuclear Enging. Int, 1995, 40(1): 28~30.
    [116] Kennedy D M, Hashmi M S J. Methods of wear testing for advanced surface coatings and bulk materials[J]. Journal of Materials Processing Technology, 1998, 77(1-3): 246~253.
    [117] Sansoni G, Docchio F. Three-dimensional optical measurement and reverse engineering for automotive applications[J]. Robotics and Computer Integrated Manufacturing, 2004, 20: 359~367.
    [118] Lee K H, Woo H, Suk T. Data reduction met hods for reverse engineering[J]. International Journal of Advanced Manufacturing Technology, 2001, 17(10): 735~743.
    [119] 任露泉. 试验优化设计与分析[M]. 长春: 吉林科学技术出版社. 2001.
    [120] Cundall P A. A computer model for simulating progressive large scale movements in blocky system[A]. In: Muller Led. Proceedings of Symposium of the International Society of Rock Mechanics, 1971, 8 ~ 12.1988.
    [108] 周平安, 孙家枢, 张兴龙. 农业零件受土壤磨粒磨损表面磨痕的微观分析[J]. 固体润滑, 1981, 1(1): 15-21.
    [109] 李凌云. 内应力对等温淬火 65Mn(65SiMnR)钢犁铧耐磨性的影响[J]. 固体润滑, 1987, 7(2): 102~108.
    [110] Yan Enlan. Proceedings of International Agricultural Mechanization Conference, Beijing(China). October 16~20, 1991. 245~250.
    [111] 土壤磨料特性影响课题组. 土壤磨料特性对农机材料磨损性能的影响[J]. 农业机械学报, 1986, 17(3): 53~62.
    [112] Liu Y, Xie Y B, Yuan C J, et al. Research on an on-line ferrograph[J]. Wear, 1992, 153(2): 323~330.
    [113] Rooij M B, Schipper D J. A wear measurement method based on the comparison of local surface heights[J]. Wear, 1998, 217(2): 182~189.
    [114] Yang M Y, Kwon O D. Crater wear measurement using computer vision and automatic focusing[J]. Journal of Material Processing Technology, 1996, 58(4): 362~367.
    [115] Trumpff B. A new way to measure RCCA guide tube wear[J], Nuclear Enging. Int, 1995, 40(1): 28~30.
    [116] Kennedy D M, Hashmi M S J. Methods of wear testing for advanced surface coatings and bulk materials[J]. Journal of Materials Processing Technology, 1998, 77(1-3): 246~253.
    [117] Sansoni G, Docchio F. Three-dimensional optical measurement and reverse engineering for automotive applications[J]. Robotics and Computer Integrated Manufacturing, 2004, 20: 359~367.
    [118] Lee K H, Woo H, Suk T. Data reduction met hods for reverse engineering[J]. International Journal of Advanced Manufacturing Technology, 2001, 17(10): 735~743.
    [119] 任露泉. 试验优化设计与分析[M]. 长春: 吉林科学技术出版社. 2001.
    [120] Cundall P A. A computer model for simulating progressive large scale movements in blocky system[A]. In: Muller Led. Proceedings of Symposium of the International Society of Rock Mechanics, 1971, 8 ~ 12.
    [135] Itasca Consulting Group, Inc. UDEC (Universal Distinct Element Code), Version 3.1. Minneapolis: ICG, 2000.
    [136] Itasca Consulting Group, Inc. 3DEC (3-Dimensional Distinct Element Code), Version 2.0. Minneapolis: ICG, 1998.
    [137] Itasca Consulting Group, Inc. PFC2D (Particle Flow Code in 2 Dimensions), Version 3.0. Minneapolis: ICG, 2002.
    [138] Itasca Consulting Group, Inc. PFC3D (Particle Flow Code in 3 Dimensions), Version2.0. Minneapolis: ICG, 1999.
    [139] Konietzky, H., and L. Te Kamp. Numerical Stress Field Modeling for Underground Structures[C]. Proceedings of the 1st International UDEC/3DEC Symposium, Bochum, Germany, 2004, 155~164.
    [140] Iarrez J, Gourves R., et al. Powders and Grains, Proceedings of an International Conference on Micromechanics of Granular Media[C]. Rotterdam: Balkema A. A., 1989, 401~406.
    [141] Behringer R. P., Jenkins J. T., et al. Powders & Grains’97, Proceedings of 3rd International Conference on Micromechanics of Granular Media[C]. Rotterdam: Balkema A. A., 1997.
    [142] Kishino Y., et al. Powders and Grains 2001, Proceedings of 4th International Conference on Micromechanics of Granular Media. Rotterdam: Balkema A. A., 2001.
    [143] Mustoe et al. Proceedings of the 1st International Conference on Discrete Element Methods, Colorado School of Mines, Golden, Colorado, U.S.A. 1989.
    [144] Williams, J R, Mustoe, G.W W. Proceedings of the 2nd International Conference on Discrete Element Methods, Massachusetts Institute of Technology, IESL Publications. U.S.A. 1993.
    [145] Benjamin K. Cook, Richard P. Jensen. Proceedings of the 3rd International Conference on Discrete Element Methods, ASCE Geotechnical Special Publication, Santa Fe, New Mexico, U.S.A. 2002.
    [146] Heinz Konetzky, Lisse A. Numerical modeling in micromechanics via particle methods[C]. Proceedings of the 1st International PFC Symposium in Gelsenkirchen, Germany, 2002, 101~105.
    [147] Peter Cundall, Robert Hart Y. Numerical Modeling in Micromechanics via Particle Methods[C]. Proceedings of the 2nd International PFC Symposium in Kyoto, Japan, 2004, 435~437.
    [148] P.H.S.W. Kulatilake, Bwalya Malama, Jialai Wang. Physical and particleflow modeling of jointed rock block behavior under uniaxial loading[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, (38): 641~657.
    [149] Paul W. Cleary, Rob Morrisson, Steve Morrell. Comparison of DEM and experiment for a scale model SAG mill[J]. Int. J. Miner. Process. 2003, (68): 129~165.
    [150] Yasunobu Kaneko, Takeo Shiojima, Masayuki Horio. Numerical analysis of particle mixing characteristics in a single helical ribbon agitator using DEM simulation[J]. Powder Technology, 2000, (108): 55-64.
    [151] Hiroaki Tanaka, Koji Inooku, Yuji Nagasaki, et al. Simulation of soil loosening at subsurface tillage using a vibrating type subsoiler by means of the distinct element method. Proceedings of the 8th European Conference of the International Society for Terrain-Vehicle Systems, Umea, Sweden, June 18-22, 2000: 32-38.
    [152] D. Zhang, W. J. Whiten. An efficient calculation method for particle motion in discrete element simulations[J]. Powder Technology. 1998, (98): 223~230.
    [153] D. Zhang, W. J. Whiten. A new calculation method for particle motion in tangential direction in discrete element simulations[J]. Powder Technology, 1999, (102): 235~243.
    [154] 王泳嘉. 离散单元法—一种适用于节离岩石力学分析的数值方法[C]. 第一届全国岩石力学数值计算及模型试验讨论论文集, 1986: 32~37.
    [155] 剑万禧. 离散单元法的基本原理及其在岩体工程中的应用[C]. 第一届全国岩石力学数值计算及模型试验讨论论文集, 1986: 43~46.
    [156] 王泳嘉, 刘兴国, 邢纪波. 离散单元法在崩落法放矿中应用的研究[J]. 有机金属, 1987, 39(2): 20~26.
    [157] 夏开文, 唐志平. 基于细观弹性接触的多相颗粒材料本构模型. 中国科技大学学报, 2000, 30(4): 422~433.
    [158] 张楚汉. 结构与介质相互作用理论及其应用[M]. 南京: 河海大学出版社, 1993.
    [159] 徐泳, K.D.Kafui, C.Thornton. 用颗粒离散元法模拟料仓卸料过程[J]. 农业工程学报, 1999, 15(3): 65~69.
    [160] 殷跃平, 张加桂, 陈宝荪, 康宏达. 三峡库区巫山移民新城址松散堆积体成因机制研究[J]. 工程地质学报, 2000, 8(3): 265~271.
    [161] 邢纪波, 余良群, 张瑞丰, 王泳嘉. 离散单元法的计算参数和求解方法选择[J]. 计算力学学报, 1999, 16(1): 47~51.
    [162] 罗海宁, 焦玉勇. 对三维离散单元法中块体接触判断算法的改进[J]. 岩石力学, 1999, 20(2):37~40.
    [163] 陈龙斌, 胡晓军, 唐志平. 离散元数值模拟中查找邻居元关系的改进算法[J]. 计算力学学报, 2000, 17(4): 497~499.
    [164] 徐泳, 黄文彬, 李红艳. 圆球颗粒间有幂律流体时挤压流动时的法向粘性力[J]. 农业工程学报, 2002, 18(2): 1~4.
    [165] 黄文彬, 李红艳, 徐泳. 填隙幂律流体下两刚性圆球错移时的黏性力[J]. 力学学报, 2004, 36(1): 31~36.
    [166] 张锐. 基于离散元细观分析的土壤动态研究[D]. 长春: 吉林大学, 2003.
    [167] Bernhard Peters, Algis D iugys. Numerical simulation of the motion of granular material using object-oriented techniques[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(17-18):1983~2007.
    [168] 陈仲颐, 周景星, 王洪谨. 土力学[M]. 北京: 清华大学出版社, 1992.
    [169] 徐志英. 岩石力学[M]. 北京: 水利电力出版社, 1993.
    [170] 肖昭然, 胡霞光, 刘玉. 沥青混合料细观结构离散元分析[J]. 公路, 2007, (4): 145~148.
    [171] P.H.S.W. Kulatilake, Bwalya Malama, Jialai Wang. Physical and particleflow modeling of jointed rock block behavior under uniaxial loading[J]. International Journal of Rock Mechanics & Mining Sciences, 2001, (38): 641~657.
    [172] Haiying Huang. Discrete Element Modeling of Tool-Rock Interaction. Ph.D. dissertation,Department of Civil Engineering, University of Minnesota, USA, December 1999.
    [173] 张锐, 李建桥, 李因武. 离散单元法在土壤机械特性动态仿真中的应用进展[J]. 农业工程学报, 2003, 19(1): 16~19.
    [174] 周健, 苏燕, 池永. 颗粒流模拟土壤的工程特性[J]. 岩土工程学报,2006, 28(3): 391~396.
    [175] 邹猛, 李建桥, 贾阳, 任露泉, 李因武. 月面探测测量牵引通过研究[J].测试技术学报, 2007, 21(增刊): 15~19.
    [176] Tong J, Lü T B, Ma Y H, et al. Two-body abrasive wear features of surfaces of pangolin scales[J]. Journal of Bionic Engineering, 2007, 4(2): 77~84.
    [177] Tong J, Wang H K, Ma Y H, et al. Free-abrasive wear of three mollusc shells (Lamprotula fibrosa Heude, Rapana venosa Valenciennes and Dosinia anus Philippi) [J]. Tribology Letters, 2005, 19(4): 331~338.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700