用户名: 密码: 验证码:
月面探测车辆驱动轮牵引性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
月面探测车辆是各种探测仪器的载体,其基本功能是具有在未知的复杂路面行走的能力,以满足科学探测考察的需要,由于月壤可通过能力差,且探测车辆要求工作可靠、重量轻、尺寸小。因此,深入研究在月面环境下的探测车辆牵引性能,对其性能评估及面向月球的高通过性行走机构研制具有重要意义。
     本文针对月面探测车辆驱动轮牵引性能的研究需要,以火山灰为主要原料制备了应用于月面-车辆力学试验用模拟月壤,研制了月壤-车轮土槽测试系统,设计了不同结构尺寸的被试轮。在此基础上,进行了月面探测车辆驱动轮牵引性能试验,分析了驱动轮下模拟月壤的剪切破坏形式,得出了不同结构参数和行驶条件下驱动轮的牵引性能。在土槽试验与车辆-地面力学研究成果基础上,建立了月面探测车辆驱动轮与月壤相互作用关系数学模型,通过压板试验和履带板试验确定了模拟月壤的地面力学相关参数,并利用自行编写的仿真程序对探测车辆驱动轮牵引性能进行了仿真分析。最后,本文使用颗粒流程序(PFC2D)细观分析了微重力条件下驱动轮与月壤相互作用关系,得出了驱动轮下月壤颗粒的运动轨迹、孔隙率变化、速度分布、接触力场等规律以及微重力条件下驱动轮的牵引性能。以上研究可为月面探测车辆行走系统设计、分析与验证、原理样机研制奠定基础。
China lunar exploration program has been carried out since 2004 that is the third landmark in Chinese spaceflight and it is significant for politics, economy and military. There are three stages in China lunar exploration, which are moving around the moon, dropping on the moon and returning to the earth respective, and the lunar rover is important equipment for the second and third stage. The lunar rover is special vehicle with efficiency instrument for the lunar explore. It is a complicated systems engineering for developing the lunar rover, and it relates many techniques, thereinto the traffic ability is an important technique. Some academes and universities have developed different lunar rover in China, but the traffic ability research is beginning just now and the report about it is very few. So, it is very important to research the relationship between the lunar rover and the lunar soil at present.
     The authors are grateful for the financial supported by the Key Project of Chinese Ministry of Education (No. 107035) and the 985 Project of Jilin University. First, the research simulated the lunar soil for the lunar terramechanics test, developed the soil bin equipment and designed different wheels for lunar rover, and studied the traction ability of the lunar rover based on the soil bin test in laboratory. Secondly, the lunar soil characteristics measurement is divided into a vertical and a horizontal soil strength measurement, and modeling relationship between the lunar rover wheel and lunar soil. Finally, the research used the DEM (Discrete Element Method) software to simulate lunar soil particles change under a driving wheel and analyzed the relationship.
     The basic material of simulant lunar regolith is the eruption that was mined from Huinan district Jilin province of China, and some hematite is added into it as regulator. This research made five samples according to the different particle size distribution and hematite content. The sample 2 is been selected as the simulant lunar regolith after correlative tests and comparing with the parameters of lunar soil and JSC-1. The parameter of the sample 2 is closed to those of JSC-1 and ranges in the parameters of the lunar soil. The conclusions by analyzing qualitatively and quantitatively are as followed: water content is 1.9±0.9%, the specific gravity is 2.9 after 6 percent hematite were added as regulator, angle of internal friction is 32.75o , cohesion is 1.79kPa, the mean diameter is 134.703μm, the median diameter is 97.386 μm, the d10 (effective grain diameter) is 25μm, the d60 (manipulative grain diameter) is 129μm, the Cu (coefficient of unuiformity) is 5.16 and Cc (tortuosity coefficient) is 0.937, plentiful of feldspar and pyroxene are contained in it, the coefficient of compressibility is 0.19MPa-1 and the relative compaction is 0.66. The research has tested the axial deviatoric stress versus the axial strain and the negative volumetric strain versus the axial strain of stimulant lunar soil by triaxial test. The results of the triaxial test show that the yield stress is present to 6%~10% and compress process of samples is brevity. The Young’s modulus is 68.8MPa and the Poisson's ratio is 0.34 from the triaxial tests by calculated. Finally, the hardness of stimulant lunar soil is tested by SC-900 penetrometer, and the results show that the hardness is increased with press and the hardness of surface increase more than the deep. These data indicate that the properties of simulant lunar soil is close to the real lunar soil, and can be used in the vehicle terramechanics test and other related engineering researches.
     The paper has taken the lead in researching the traction ability of lunar rover in China, and develops the soil bin test system based on the characteristic of lunar rover and structure of wheel. The soil bin test system is composed of soil bin, mechanism system and test system. The mechanism system is constructed with fixed soil bin and moving wheel, the test wheel is drove and controlled by the timing motor, the traction load is controlled by the EDC and servo D. C. motors. By the sensor, measuring instrument and software, the soil bin test system can test the DP, sinkage, velocity, torque, speed of rotation, et al ,and the test wheel can be replaced easy.
     The research has analyzed the shear failure of stimulant lunar soil. And the results show that the grouser-wheel and smooth-wheel have different track, which indicate the stimulant lunar soil with different shear failure after the test wheel passed. The track of the smooth-wheel is scale by crushed but the grouser-wheel is determined by the grousers, which explain the area and shape of the wheel have affinity with the lunar soil thrust. And the thrust of the driving wheel increases with the slip ratio. According to the indexes of the traction performance, we study the Influence of the lunar wheel configuration, load, velocity and mechanics of lunar soil on the traction ability. And the comparative indoor test was carried out on simulation lunar soil. The test results show that, the DP (drag bar pull) increases obviously when theλ(slip ratio) is between the 10% and 40%, and then the DP increases slowly whenλmore than 40%. Whenλless than 30%, the TE (traction efficiency) is is small, but increases very rapidly. Whenλcomes up to 30%, the TE reaches the max, and then it decreases untilλequals to 100%. DP and TE increase along with the wheel width and diameter increase. With the increase of the rug height, the DP increases, and the TE increases whenλis smaller then 2%, and then it reduces whenλis bigger than 20%. With the augment of the rug distributing density, the DP and TE rise at first, and then descend. The DP is increasing but the TE is descending when the load increases. The DP and TE are increasing with the velocity and hardness of stimulant lunar soil increase. The driving wheel DP is 6.7 times on the rocks as much as that on the stimulant lunar soil whenλis 10% and the others test condition is same. The traction ability is better when the test wheel passes the simulant regolith than it passes the sands, and the DP is 36.8N and 33.1N respectively when the slip ratio is 10%.
     Based on the tradition methods and theory of terra-mechanics, this paper separates the lunar surface's mechanics characteristic to the pressure-bearing characteristic, the cutting characteristic and the load-supporting characteristics, and gives the relevant model of the lunar soil under the driving wheel. As a result of this model approach the soil can be described by means of two different characteristics: pressure-sinkage relation and shear tension displacement relation. The rolling resistance caused by the lunar soil (external rolling resistance) is computed on bases of the lunar soil compaction work of the plastic soil deformation. The calculation of the tractive force is based on the local pressure and the local shear displacement in the contact patch. The push resistance may be calculated by the load model parameters. The DP and the TE is selected as criterion to evaluate the traction ability, and the software Matlab is used to develop the program to simulate interaction between rigid wheel and lunar soil. The lunar soil characteristics measurement can be divided into a vertical and a horizontal soil strength measurement. For the measurement of the vertical lunar soil strength the plate-sinkage-test is used, and the n (sinkage exponent) is 1.13, K (module of deformation) is 1056kN/mn+2 by calculated. The horizontal shear strength can be measured by means of a shear-test, and k (shearing strength displacement modulus) is 1.2cm by calculated. By comparing with the experiment data, the results show that the predicted values of the model conform to the test results that indicated the software is reasonable and fit to predict the lunar rover traction ability before an unknown lunar terrain. Finally, using the software Matlab to simulate the traction ability, the results show that the parameters below are very important to evaluate the interaction between automobile and terrain: b (wheel width), r (wheel radius), w (wheel load), grouser etc.
     The paper introduces the DEM to terra-mechanics at first time in China based on analyzing the FEM (Finite Element Method) and DEM (Discrete Element Method); and this research considers that the DEM is feasible and superior to the FEM in simulating the interaction between the wheel and the lunar soil. The model of the interaction between the rigid wheel and the lunar soil is setup. The system of soil bin is simulated by means of the software PFC2D. The linear contact-stiffness model is used as DEM contact model for lunar soil and biax-test is used to adjust particle’s micro parameters. The plate-sinkage-test and the shear-test were simulated by the PFC2D. The parameters of terra-mechanics were calculated by calculated. The results showed that parameters of simulant lunar soil in this simulation are close to the parameters of the lunar soil after adjusting the micro parameters.
     According to the results of the soil-bin test, the lunar soil kinetics characteristics are studied by DEM software PFC2D. The paper studies the influence of the friction coefficient, porosity, rmax/rmin and gravity of the lunar soil. The results of the simulation test shows that the draw bar pull (DP) increases with the increase of the friction coefficient and the gravity acceleration, and reduces with the increase of the porosity. It increases with the increase of the rmax/rmin until the rmax/rmin is bigger than 5. Soil–wheel interaction especially soil deformation caused by the wheel motion was investigated by EDM simulation. Characteristics of lunar soil deformation were summarized focusing on the behavior of displacement and distribution of velocity. DEM were examined in order to describe the displacements loci of soil particles. The results show that the particles loci under smooth-wheel have three phases: pushed, pressed and ascended, and the particles loci under grouser-wheel have two kinds, one kind similar to smooth-wheel, another kind has three phases: pressed, heaved and dropped. Shapes of the velocity distribution in simulation have onwards flow area and back flow area which closely similar to those in experiment. The porosity of the lunar soil descends and then decline when the driving wheel passes. DEM can simulate the interaction of wheel and lunar soil, and it has advantage in simulating the dynamic behavior between discrete soil and the machine, and the simulation test would be help to design the wheel of the lunar rover.
引文
[1] 栾恩杰.中国的探月工程-中国航天第三个里程碑[J].中国航天,2007,2:3-7.
    [2] 欧阳自远.我国月球探测的总体科学目标与发展战略[J].地球科学进展,2004,(3):351-358.
    [3] 叶培建,彭兢.深空探测与我国深空探测展望[J].中国工程科学,2006,8(10):13-18.
    [4] 欧阳自远.月球探测推动科学的创新与发展[J].科学中国人,2007,1:6-12.
    [5] 任露泉,贾阳,李建桥等.月球车行走性能地面模拟试验方案设想[C].中国宇航学会深空探测技术专业委员会第二届学术年会,北京,2005, 10:458-466.
    [6] 邹猛,李建桥,任露泉等.月面探测车辆牵引通过特性研究[J].深空探测研究.2007,5(3):16-21.
    [7] 胡明,邓宗全.月球探测车移动系统的关键技术分析[J].哈尔滨工业大学学报,2003,(7):32-37.
    [8] 陶建国,王林,吴凤久等.月球车车轮与土壤相互作用的力学特性分析[J].机械设计与制造,2007,17:56-57.
    [9] 邹猛,李建桥,李因武等.刚性轮-月壤相互作用预测模型及试验研究[J].农业工程学报,2007,23(12):119-123.
    [10] 陶建国,全齐全,邓宗全等.月球车不等径车轮在土壤上滚动的力学分析与实验[J].哈尔滨工程大学学报,2007,28(10):1144-1150.
    [11] 张熇,柳忠尧,饶炜.月面软着陆探测器地面力学试验方法研究[J].航天器工程,2007,16(6):33-38.
    [12] 孙鹏,高峰,李雯等.深空探测车可变直径车轮牵引通过性分析[J].北京航空航天大学学报,2007,33(12):1404-1407.
    [13] 孙刚,高峰,李雯.地面力学及其在行星探测研究中的应用[J].力学进展,2007,37(3):453-465.
    [14] 梁维奎,柏合民,孙伟等.月面巡视探移动系统的移动性能指标分析与评估方法[J].深空探测研究,2007,5(30):8-15.
    [15] Dang Zhaolong, Shen Zhenrong, Jia Yang. Development of a single wheel soil bin test bed for studying wheel-terrain interaction[C]. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, Alaska, 2007.
    [16] 邹猛,李建桥,贾阳等.月壤静力学特性的离散元模拟研究[J].吉林大学学报,2006,38(2):383-387.
    [17] Bekker M.G.地面-车辆系统导论[M].北京:机械工业出版社,1978.
    [18] J. Y. Wong.地面车辆原理[M].北京:机械工业出版社,1985.
    [19] 庄继德.计算汽车地面力学[M].北京:机械工业出版社,2002.
    [20] 庄继德.汽车通过性[M].长春:吉林人民出版社,1980.
    [21] J.Y. Wong, Wei Huang. ”Wheels vs. tracks”-A fundamental evaluation from the traction perspective [J]. Journal of Terramechanics, 2006, 43: 27-42.
    [22] A. Falk. Advanced mobility in difficult terrain [J]. Journal of Terramechanics, 2004, 41: 101-111.
    [23] Taylor JH, Burt E, Bailey AC. Effect of total load on subsurface soil compaction [J]. Trans ASAE, 1980,23(3):568-70.
    [24] Alakukku L, Elonen P. Finnish experiments on subsoil compaction by vehicles with high axle load [J]. Soil till Res., 1994, 29(3):15-25.
    [25] 庄继德.汽车地面力学[M].北京:机械工业出版社,1980.
    [26] 刘聚德.车辆沙地行驶理论[M].北京:机械工业出版社,1996.
    [27] 余群.地面机器系统的研究现状及展望[J].农业机械学报,2000,31(2):1-4.
    [28] Bernstein R. Problems of the experimental mechanics of motor ploughs. Der motorwagen, 1913, 16.
    [29] Miklethwait E W E. Soil mechanics in relation fighting vehicles. Military coll. of science, 1944.
    [30] Bekker M G. Theory of land locomotion [M]. The Univ. of Michigan press, Ann Arbor, Michigan, 1956.
    [31] Bekker M G. Off-road locomotion: research and development in terramechanics. The Univ. of Michigan press, Ann Arbor, Michigan, 1960.
    [32] J. Y. Wong, Reece A. Prediction of rigid wheel performance of driven rigid wheels, Part I [J]. Journal of Terramechanics, 1967; 4(1):81-98.
    [33] Onafko O, Reece R. Soil stresses and deformation beneath rigid wheels [J]. Journal of Terramechanics 1967; 4(1):59-80.
    [34] J.Y.Wong, J.R.Radforth, J.Preston-Thomas. Some further studies on the mechanical properties of muskeg in relation to vehicle mobility[J].Journal of Terramechanics, 1982, (2).
    [35] J.Y.Wong, J Preston Thomas. On the characterization of the pressure-sinkage relationship of snow covers containing on ice layer [J]. Journal of Terramechanics, 1983, (1).
    [36] J.Y.Wong. Application of the computer simulation model NTVPM-86 to the development of a new version of the infantry fighting vehicle ASCOD [J]. Journal of Terramechanics. 1995, 32(1):53-61.
    [37] C.H.Liu, J.Y.Wong. Numerical simulations of tire-soil interaction based on critical state soil mechanics.Journal of Terramechanics, 1996(5): 202-221.
    [38] Perumpral J V, Lilzedahl J B, Perloff W H. A numerical method for predicting the stress distribution and soil deformation under a tractor wheel [J]. Journal of Terramechanics, 1971, 8(1).
    [39] Hashiguchi K, Okayasu T, Ueno M, Shikanai T. Image processing on-line measurement for soil displacement[J]. J JSAM 1998; 60(6):11-8.
    [40] C.W. Fervers. Improved FEM simulation model for tire-soil interaction [J].Journal of Terramechanics, 2004, 41:87-100.
    [41] Koichiro Fukami, Masami Ueno, Koichi Hashiguchi, et al. Mathematical models for soil displacement under a rigid wheel [J]. Journal of Terramechanics, 2006, 43:287-301.
    [42] Ingobert C S. Interaction of vehicle and terrain results from 10 years research at IKK [J]. Journal of Terramechanics, 1995, 32 (1):3-26.
    [43] C. W Fervers. Effects of traction and slip, investigations with FEM[C]. Proceedings of the 7th European ISTVS Conference, Ferrara; 1997.
    [44] C W Fervers. Improved FEM simulation model for tire-soil interaction [J], Journal of Terramechanics, 2004:2-14.
    [45] Windisch SJ, Yong RN. The determination of soil strain-rate behaviors beneath a moving wheel [J]. Journal of Terramechanics, 1970, 7 (1):55-67.
    [46] Raper RL, Bailey AC, Burt EC, et al. Inflation pressure and dynamic load effects on soil deformation and soil–tire interface stresses [J]. Trans ASAE, 1995; 38(3):685-699.
    [47] Plackett C. A review of force prediction methods for off-road wheels [J]. J Agric Eng Res, 1985; 31:1-29.
    [48] Maciejewski J, Jarze bowski A. Optimizations of tool trajectory in soil digging processes-laboratory tests [J]. Journal of Terramechanics, 2002; 39(3):161-79.
    [49] Kawasaki H, Hirakawa D, Tatsuoka F. Experimental study on stress distribution in sand subject to roller compaction[C]. The 37th Japan National Conference on Geotechnical Engineering; 2000:1623-1624.
    [50] Yong RN, Fattah EA. Prediction of wheel-soil interaction and performance using the finite element method [J]. J Terramechanics, 1976, 13(4):227-240.
    [51] Carsten Harnisch, Bjorn Lach, Roland Jakobs. ORSIS-News and further developments [J]. Journal of Terramechanics, 2007, 44:35-42.
    [52] Thomas R. Way a, Donald C. Erbach, Alvin C. Bailey. Soil displacement beneath an agricultural tractor drive tire [J]. Journal of Terramechanics, 2005, 42: 35-46.
    [53] A. Peekna, J.L. Pickens, J.D. Priddy. Triaxial-in-a-plane soil stress gage for vehicle mobility applications [J]. Journal of Terramechanics, 2004, 41: 139-149.
    [54] H. B. Pacejka. Type and vehicle dynamics [C]// SAE paper, 2006-01-3281.
    [55] Qing Liu, Jonah H. Lee. Time-Dependent Tire-Snow Modeling for Two-Dimensional Slip Conditions [C]// SAE paper, 2006-01-1168
    [56] .Jaroslaw Pytka. A New Method for Vehicle-Terrain Interaction Research [C]// SAE paper, 2005-01-0940
    [57] Paul W. Richmond, Burhman Q. Gates, Erwin A. Baylot. Modeling Vehicle – Terrain Interaction in Army Simulations [C]// SAE paper, 2005-01-3556
    [58] Jonah H. Lee, Qing Liu. Simulation of Tire-Snow Interfacial Forces for Range of Snow Densities with Uncertainty [C]// SAE paper, 2005-01-3816.
    [59] 陈秉聪.土壤车辆系统力学[M].北京:农业机械出版社,1981.
    [60] 张克键.车辆地面力学[M].北京:国防工业出版社,2002.
    [61] 邓卓荣,由书城.水田拖拉机行走机构与土壤相互关系的研究报告[C].中国地面机械系统研究会第四届年会论文集,1987.
    [62] 李杰,庄继德,魏东等.沙漠仿生轮胎与普通轮胎牵引性能的对比试验[J].吉林大学学报,2006,36(6):510-514.
    [63] 李杰,庄继德,季学武.车辆行驶的沙漠沙承压特性的研究.兵工学报,1999,20(1) :62-64.
    [64] 李杰,庄继德,赵旗等.汽车地面力学中土的弹性本构模型研究[J].汽车技术,1997(1):31-35.
    [65] 冯启山.刚性轮与松软地面相互作用研究及仿真软件开发[D].吉林大学硕士学位论文,吉林大学,2001.
    [66] 刘大维,陈吉清,王国林.轮脚与土壤相互作用的有限元分析[J].农业机械学报,1996(3);12-17.
    [67] 季学武,樊慧文,杨延辰.轮胎-沙土相互作用的预测模型及试验研究[J].农业机械学报,2000,31(3):8-10.
    [68] 樊慧文,赵六奇.轮胎与土壤相互作用的数学模型和实验研究[J ].清华大学学报,1997,37(11):110-114.
    [69] 李杰,庄继德,叶楠.确定松软地面剪切特性模型参数的新方法[J].农业机械学报,2000,31(3):5-7.
    [70] 李杰,叶楠,庄继德.车辆行驶的沙漠沙剪切特性的研究[J].兵工学报,1999,20(3):193-198.
    [71] 李杰,庄继德,魏东.塔克拉玛干沙漠沙的剪切特性[J].吉林工业大学学报,1998,28(2):167-172.
    [72] 庄继德. 现代汽车轮胎技术[M]..北京:北京理工大学出版社, 2002.
    [73] 赵旗,徐颖,李杰等.车辆行驶工况下的沙漠沙本构特性模型的建立[J].吉林大学学报,2003,33(1):42-46.
    [74] 付晓莉,邵明安.一种改进的土壤压实模型及试验研究[J].农业工程学报,2007,23(4):1-5.
    [75] 秦四成,程悦荪,李忠等.土壤振动压实下动态性能试验研究[J].农业工程学报,2001,17(4):26-29.
    [76] 陈雯,赵长利,刘建房.车轮沙地通过性的模拟计算分析[J].重庆大学学报,2006,29(6):15-20.
    [77] 苗常青,谭惠丰,杜星文.轮胎—松软地面相互作用有限元分析[J]兵工学,2002,23(2):151-156.
    [78] 吴大林,马吉胜,王兴贵.履带车辆地面力学仿真研究计[J].计算机仿真,2004,21(12):42-46.
    [79] 沈杰,余群.湿软土壤压力下陷时间关系的建立[J].农业机械学报,1989,20(4):15-19.
    [80] 孙钢,高峰,李雯等.深空探测种车辆地面力学研究内容与方法[C].中国宇航学会深空探测技术专业委员会第二届学术年会,北京,2005, 10:445-450.
    [81] NASA JPL Uses Woking model 2D and 3D for asteroid mission with Japanese space institute. www.workingmodel.com.
    [82] Yoji Kuroda, Teppei Teshima, Yoshinori Sato. Mobility performance evaluation of planetary rover with similarity model experiment[C]. IEEE ICRA2004-Final paper, 2004, New Orleans, LA, USA.
    [83] Richter L, Ellery A, Gao Y et al. A Predictive Wheel-Soil Interaction Model for Planetary Rovers Validated in Test beds and Against MER Mars Rover Performance Data[C]. 10th European Conference of the International Society for Terrain-Vehicle Systems. Budapest, Hungary October 3– 6, 2006.
    [84] H. Nakashima, H. Fujii, A. Oida, M. Momozu. Parametric analysis of lugged wheel performance for a lunar micro rover by means of DEM[J].Journal of Terramechanics, 2007, 44: 153-162.
    [85] Kojiro I H, Kanamori, TK. Experimental Study on Rover Mobility on Lunar Simulant Terrain[C]. Proceedings of the 15th International Conference of the ISTVS. Hayama, Japan, September 25 to 29, 2005.
    [86] Iagnemma K, Shibly H, Dubowsky S. On-line terrain parameter estimation for planetary rovers[C]. Proceedings of IEEE international conference on robotics and automation; 2002.
    [87] H. Shibly, K. Iagnemma, S. Dubowsky. An equivalent soil mechanics formulation for rigid wheels indeformable terrain, with application to planetary exploration rovers [J]. Journal of Terramechanics, 2005, 42: 1-13.
    [88] Kazuyoshi Tateyama. Development of a Simple Shear Test Apparatus with Low Confining Pressure for a Regolith Simulant[C]. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, Alaska, 2007.
    [89] John. J. Caruso, Phillip B. Abel, James J. Zakrajsek. Gravity Effects on Lunar Mobility and the Human-Robotic Systems Program[C]. 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007-346.
    [90] Sachiko Wakabayashi, Hitoshi SATO, Shin-Ichiro NISHIDA. Design and Mobility Evaluation of a Tracked Lunar Vehicle[C]. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics, Alaska, 2007.
    [91] 欧阳自远.月球科学概论[M].中国宇航出版社,2005.
    [92] 郑永春,欧阳自远,王世杰.月壤的物理和机械性质[J].矿物岩石,2004,24(4):14-19.
    [93] 邹永廖,欧阳自远,徐琳等.月球表面环境特征[J ].第四纪研究,2002,22(6):533-539.
    [94] 郑永春,王世杰等.模拟月壤研制的初步计划[J].空间科学学报,2005,25(1):70-75.
    [95] 欧阳自远,邹永廖,李春来等.月球某些资源开发利用前景[J].地球科学-中国地质大学学报,2002,27(9):498-503.
    [96] 郑永春.模拟月壤研制与月壤的微波辐射特性研究[D].中国科学院地球化学研究所,中国科学院研究生院,2005.
    [97] Willman B M, Walter W. Boles, David s. McKay. Properties of lunar soil stimulant JSC-1[J]. J. Rock Mech. Mining, 1996, 33(1):13A.
    [98] David s. McKay, James L. Carter, Walter W. woles. JSC-1: A new lunar soil simulant. In: Engineering, Construction, and Operations[C]. Space IV American Society of Civil Engineers, 1994: 857-866.
    [99] Willman B M, Boles W W. Properties of lunar soil simulant JSC-1. J .Aeros. Eng. 1995, 8 (2):77-87.
    [100] Willman B M, Boles W W. Soil-tool interaction theories as they apply to lunar soil simulant[J]. J.Aeros. Eng., 1995, 8 (2):88-99
    [101] Weiblen P W, Gordon K. Characteristics of a stimulant for lunar surface materials [J]. LPI Contributions, 1988, 65(2): 252-254.
    [102] Papike J J, Simon S B, Laul J C. The lunar regolith: chemistry, mineralogy and petrology [J]. Rev. Geophys. Space Phys., 1982.20:761-826
    [103] Laul J C, Papike J J. The lunar regolith: Comparative chemistry of the Apollo sites[C]. Lunar and Planetary Science Conference.1980.
    [104] Subhayu Sen, Chandra S, Rayb, Ramana G, et al. processing of lunar soil simulant for space exploration applications [J]. Materials Science and Engineering, 2005: 592-597.
    [105] M.B. Duke, P. Eckart. The Lunar Base Handbook [M]. The McGraw Hill Companies Inc., 1999, 105-151.
    [106] R.B. Gammage, H.F. Holmes, Blocking of the water-lunar fines reaction by air and water concentrationeffects[C]. Proceedings of the Sixth Lunar Science Conference, 1975, 305-3316.
    [107] D.A. Cadenhead, et al., Some surface characteristics and gas interactions of Apollo 14 fines and rock fragments[C]. Proceedings of the Third Lunar Science Conference, M.I.T. Press, 1972, 2243-2257.
    [108] E. Robens, A. Bischoff, A. Schreiber. Investigation of surface properties of lunar regolith: Part I [J]. Applied Surface Science, 2007: 5709-5714.
    [109] Yoshida. Experimental Study on Water Production by Hydrogen Reduction of Lunar Soil Simulant in a Fixed Bed Reactor[C]. Abstract of Space Resources Roundtable II.G olden, U SA, 2000.
    [110] KanamoriH et al. Properties of lunar soil simulant manufactured in Japan[C]. Proceedings of the 6th International Conference and Exposition on Engineering Construction, and Operations in Space. Albuquerque: ASCE, 1998.
    [111] 郑永春,王世杰,冯俊明等.CAS-1 模拟月壤[J].矿物学报,2007,27(3):571-577.
    [112] 石晓波,李运泽,黄勇等.月尘/月壤环境效应地面模拟方法研究[J].空间科学学报,2007,27(1):66-72.
    [113] 石晓波,李运泽,黄勇等.月球表面环境综合模拟系统的设想[J].中国工程科学,2006,8(11):48-53.
    [114] 樊世超,贾 阳,向树红等.月面地形地貌环境模拟初步研究[J].航天器环境工程,2007,27(1):15-21.
    [115] Li Jian-qiao, Zou Meng, Jia Yang, Bin Chen, Ren Lu-quan,. Stimulation of lunar regolith for Vehicle-terramechanics research in laboratory. Proceedings of the 10th European Conference of the ISTVS. Budapest, Hungary, October, 2006, Rovers: 45.
    [116] Cundall P.A. A computer model for simulating progressive large scale movements in blocky system[C]. Proceedings of Symposium of the International Society of Rock Mechanics. Rotterdam: A.A. Balkema, 1971(1): 8-12.
    [117] Cundall P.A. The measurement and analysis of acceleration in rock slopes [D]. Ph.D. Dissertation, University of London, Imperial college of Science and Technology, 1971.
    [118] Cundall P.A. and O.D.L.Strack. A discrete numerical method for granular assemblies [J]. Geotechnique, 1979, 29(1): 47-65.
    [119] Cundall P.A. UDEC-A Generalized distinct element program for modeling jointed rock. Report PCAR-1-80 Peter Cundall Associates, European Research Office, U.S. Army, March 1980.
    [120] Cundall P.A. BALL-A Program to model granular media using the distinct element method. Dames & Moore Advanced Technology Group, London, April 20, 1978.
    [121] Strack O. D. L., Cundall P.A. The distinct element method as a tool for research in granular media. Part I. Report to the National Science Foundation, Minnesota: University of Minnseota, 1978.
    [122] Cundall P.A, Strack O. D. L. The distinct element method as a tool for research in granular media. Part II. Report to the National Science Foundation, Minnesota: University of Minnseota, 1979.
    [123] Lemos J.V. A Hybrid distinct element computational model for the half-plane, M.S. Thesis, University ofMinnesota, 1983.
    [124] Lemos J. V., Brady B. H. G. Stress distribution in a jointed and fractured medium. Rock Mechanics-Theory-Experiment-Practice, New York, 1983: 53-59.
    [125] Lorig L.J. A Hybrid computational scheme foe excavation and support design in jointed rock media [D].Ph.D. Thesis, University of Minnesota, 1984.
    [126] Lorig L.J., Brady B.H.G. and Cundall P.A., Hybrid distinct element-boundary element analysis of jointed rock [J]. J. Rock Mech. Min. Sci. & Geomech, 1986, 23: 303-312.
    [127] Itasca Consulting Group, Inc. UDEC (Universal Distinct Element Code), Version 3.1. Minneapolis: ICG, 2000.
    [128] Itasca Consulting Group, Inc. 3DEC (3-Dimensional Distinct Element Code), Version 2.0. Minneapolis: ICG, 1998.
    [129] Itasca Consulting Group, Inc. PFC2D (Particle Flow Code in 2 Dimensions), Version 3.0. Minneapolis: ICG, 2002.
    [130] Itasca Consulting Group, Inc. PFC3D (Particle Flow Code in 3 Dimensions), Version2.0. Minneapolis: ICG, 1999.
    [131] C. Wang, D.D. Tannant, P.A. Lilly. Numerical analysis of the stability of heavily jointed rock slopes using PFC2D [J].International Journal of Rock Mechanics & Mining Sciences, 2003, (40): 415-424.
    [132] R.M. Holt, I. Larsenb. Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock [J]. International Journal of Rock Mechanics & Mining Sciences, 2005, 42: 985-995.
    [133] Cundall PA. The addition of new material models to FLAC, FLAC3D, PFC2D and PFC3D, combining creep, elasticity and plasticity. Itasca Consulting Group, Inc. report to Westinghouse Electric Corporation (Waste Isolation Pilotlant, Carlsbad, New Mexico), October 1996.
    [134] N. Djordjevic, F.N. Shi, R. Morrison. Determination of lifter design, speed and filling effects in AG mills by 3D DEM [J]. .Minerals Engineering, 2004 (17): 1135-1142.
    [135] Y. Shimizu. “Fluid Coupling in PFC2D and PFC3D”, numerical modeling in micromechanics via particle methods-2004[C]. Proceeding of 2nd International PFC Conference, Balkema, 2004: 281-287.
    [136] Mustoe et al. Proceedings of the 1st International Conference on Discrete Element Methods, Colorado School of Mines, Golden, Colorado, U.S.A. 1989.
    [137] Williams, J.R. and Mustoe, G.W.W. Proceedings of the 2nd International Conference on Discrete Element Methods, Massachusetts Institute of Technology, IESL Publications. U.S.A. 1993.
    [138] Benjamin K. Cook and Richard P. Jensen. Proceedings of the 3rd International Conference on Discrete Element Methods, ASCE Geotechnical Special Publication, Santa Fe, New Mexico, U.S.A. 2002.
    [139] Heinz Konetzky, Lisse A.A. Numerical modeling in micromechanics via particle methods: Proceedings of the 1st International PFC Symposium in Gelsenkirchen, Germany, 2002.
    [140] Y. Shimizu, R. Hart, P. Cundall. Numerical Modeling in Micromechanics via Particle Methods:Proceedings of the 2nd International PFC Symposium in Kyoto, Japan, 2004.
    [141] Oda M., Iwashita K., et al. Mechanics of Granular Materials, An introduction. Rotterdam: Balkema A. A., 1999: 147-223.
    [142] S.P. Hunt, A.G. Meyers, V. Louchnikov. Modeling the Kaiser Effect and deformation rate analysis in sandstone using the discrete element method [J]. Computers and Geotechnics, 2003, 30: 611-621.
    [143] David O. Potyondy. Simulating stress corrosion with a bonded-particle model for rock[J].International Journal of Rock Mechanics & Mining Sciences, 2007 (44): 677–691.
    [144] D.O. Potyond, P.A. Cundall. Abonded-particle model for rock [J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41:1329-1364.
    [145] 王泳嘉.离散单元法—一种适用于节离岩石力学分析的数值方法[C].第一届全国岩石力学数值计算及模型试验讨论论文集,1986:32-37.
    [146] 剑万禧.离散单元法的基本原理及其在岩体工程中的应用[C].第一届全国岩石力学数值计算及模型试验讨论论文集,1986:43-46.
    [147] 徐中华,王建华.有限元法分析土壤切削问题的研究进展[J].农业机械学报,2005,36(1):134-137.
    [148] 刘凯欣,高凌天.离散元法研究的评述[J].力学进展,2003,33(4):483-490.
    [149] 傅巍,蔡九菊,董辉.颗粒流数值模拟的现状[J].材料与冶金学报,2004,3(3):172-176.
    [150] 陈沙,岳中琦,谭国焕.基于真实细观结构的岩土工程材料三维数值分析方法[J].岩石力学与工程学报,2006,25(10):1951-1959.
    [151] 廖雄华,周健,徐建平等.粘性土室内平面应变试验的颗粒流模拟[J].水利学报,2002,12:11-17.
    [152] 王泳嘉,刘兴国,邢纪波.离散单元法在崩落法放矿中应用的研究[J].有机金属,1987,39(2): 20-26.
    [153] 王泳嘉,邢纪波.崩落采矿法放矿的计算机仿真[C].全国非金属矿学术会议论文集(二),1988:22-26.
    [154] 王泳嘉,邢纪波.离散单元法及其在岩土力学的应用[M].沈阳:东北工学院出版社,1991.
    [155] 徐泳,孙其诚,张凌等.颗粒离散元法研究进展[J].力学进展,2003,33(2):251-260.
    [156] 徐泳,K.D.Kafui, C.Thornton.用颗粒离散元法模拟料仓卸料过程[J].农业工程学报,1999,15(3):65-69.
    [157] 徐泳,黄文彬,李红艳.圆球颗粒间有幂律流体时挤压流动时的法向粘性力[J].农业工程学报,2002,18(2):1-4.
    [158] 徐泳,李红燕,黄文彬.耕作土壤动力学的三维离散元建模和仿真方案策划[J].农业工程学报,2003,19(2):34-38.
    [159] 孙裕晶,马成林,于建群等.基于离散元的大豆精密排种过程分析与动态模拟[J].农业机械学报,2006,37(11):45-48.
    [160] 于建群,付宏,李红等.离散元法及其在农业机械工作部件研究与设计中的应用[J].农业工程学报,2005,21(5):1-6.
    [161] 周健,苏燕,池永.颗粒流模拟土的工程特性[J].岩土工程学报.2006,28(3):391-396.
    [162] 周健,池永.土的工程力学性质的颗粒流模拟[J].固体力学学报,2004,25(4):378-383.
    [163] 周健,池毓蔚,池永等.砂土双轴试验的颗粒流模拟[J].岩土工程学报,2000,22(6):01-704.
    [164] 周健,池永.砂土力学性质的细观模拟[J].岩土力学,2003,24(6):901-906.
    [165] 池永.土的工程力学性质的细观研究-应力应变关系剪切带的颗粒流模拟[D].同济大学博士学位论文,同济大学,2002.
    [166] H. Fujii, A. Oida, H. Nakashima, et al. Analysis of lunar terrain wheel system interaction by DEM[C]. Proceedings of the 6th Asia-Pacific Conference of the International Society for Terrain-Vehicle Systems. Bangkok, Thailand, December 3-5, 2001: 129-136.
    [167] Hiroshi Nakashima, Akira Oida. Algorithm and Implementation of Soil-Tire Contact Analysis Code Based on Dynamic FE-DE Method[C]. 14th International Conference of the International Society for Terrain-Vehicle Systems Vicksburg, MS USA, 2002
    [168] H. Tanaka, M. Momozu, A. Oida, M. Yamazaki. Simulation of soil and resistance at bar penetration by the Distinct Element Method [J]. Journal of Terramechanics, 2000, 37: 41-56.
    [169] M. Momozu, A. Oida, M. Yamazaki, A.J. Koolen. Simulation of a soil loosening process by means of the modified distinct element method [J]. Journal of Terramechanics, .2003, 39: 207-220.
    [170] Takayuki Koizumi, Nobutaka Tsujiuchi, Yusuke Kato. Design of Grouser Shape by Using Distinct Element Method[C]. 10th European Conference of the International Society for Terrain-Vehicle Systems Budapest, Hungary, 2006.
    [171] Takayuki Koizumi, Nobutaka Tsujiuchi, Jun Matsumoto. Modeling of Wet Soil for Analysis of the Terrain-Vehicle Interactions[C]. 10th European Conference of the International Society for Terrain-Vehicle Systems Budapest, Hungary, 2006.
    [172] Ha H. Bui, Taizo Kobayashi, Ryoichi Fukagawa. Simulation of soil excavations on the lunar surface[C]. 10th European Conference of the International Society for Terrain-Vehicle Systems Budapest, Hungary October 3- 6, 2006
    [173] 张锐,李建桥,李因武.离散单元法在土壤机械特性动态仿真中的应用进展[J].农业工程学报.2003.19(1):16-19.
    [174] 张锐,李建桥,许述财等.推土板切土角对干土壤动态行为影响的离散元模拟[J].吉林大学学报(工学版).2007,27(4): 822-827.
    [175] 张锐.基于离散元细观分析的土壤动态行为研究[D].吉林大学博士学位论文,吉林大学,2005.
    [176] ZHANG Rui, LI Jian-qiao. Simulation on mechanical behavior of cohesive soil by Distinct Element Method [J]. Journal of Terramechanics, 2006, 43: 303-316.
    [177] 金伯禄,张希友.长白山火山地质[M].东北朝鲜民族教育出版社,1994.
    [178] 李霓,樊棋诚,孙谦等.长白山天池火山岩浆演化-来自主矿物成分的证据[J].岩石学报,2004,20(3):575-582.
    [179] 王淑云,香晓兵,时忠民.颗粒级配和结构对粉砂力学性质的影响[J].岩土力学,2006,26(7):1029-1032.
    [180] 侍倩.土工试验与测试技术[M].北京:化学工业出版社,2004.
    [181] Blouin S, Hemami A, Lipsett M. Review of resistive force models for earthmoving processes [J]. J Aerospace Eng 2001; 14(3):102-111.
    [182] Aase JK, Bjorneberg DL, Sojka RE. Zone-sub soiling relationships to bulk density and cone index on a furrow-irrigated soil [J]. Trans ASAE, 2001; 44(3):577-83.
    [183] Raper RL, Washington BH, Jarrell JD. A tractor-mounted multiple-probe soil cone penetrometer [J]. Appl Eng Agric 1999, 15(4):287-90.
    [184] R.L. Raper. Agricultural traffic impacts on soil [J]. Journal of Terramechanics 2005, 42: 259-280.
    [185] 曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995.
    [186] 王卫星,罗锡文,区颖刚等.土槽试验计算机模拟加载系统的研究[J].农业工程学报,1997,12(4):27-30.
    [187] 赵祚喜,罗锡文.土槽遥控系统的设计与制作[J].农业机械学报.1999,5(3):5-10.
    [188] B. J. Chan, C. Sandu, M. Ahmadian. Development of a Virtual Terramechanics Rig (VTR) for Experimental Validation [C]// SAE paper, 2006-01-3481.
    [189] 刘成宇.土力学[M].北京:中国铁道出版社,1990.
    [190] 雍景荣,朱凡,胡岱文.土力学与基础工程[M].成都:成都科技大学出版社,1995.
    [191] 龚晓南.高等土力学[M].杭州:浙江大学出版社,1996.
    [192] C.J. Coetzee, A.H. Basson, P.A. Vermeer b. Discrete and continuum modelling of excavator bucket filling [J]. Journal of Terramechanics, 2007, 44: 177-186.
    [193] J. Maciejewski, A. Jarzebowski. Experimental analysis of soil deformation below a rolling rigid cylinder [J].Journal of Terramechanics, 2004, 41:223-241.
    [194] Way TR, Kishimoto T, Burt EC, et al. Tractor tire aspect ratio effects on soil stresses and rut depths [J]. Trans ASAE, 1997; 40(4):871-81.
    [195] Hiroshi Nakashima, Yasuyuki Shioji, Taizo Kobayashi, et al. Numerical Analysis of Sand Flow under Low Gravity Condition[C]. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics Fairbanks, Alaska, USA, 2007.
    [196] Kazuyoshi Tateyama. Development of a Simple Shear Test Apparatus with Low Confining Pressure for a Regolith Simulant[C]. Proceedings of the Joint North America, Asia-Pacific ISTVS Conference and Annual Meeting of Japanese Society for Terramechanics Fairbanks, Alaska, USA, 2007.
    [197] Horner, D. A., J. F. Peters, A. Carrillo. Large scale discrete element modeling of vehicle-soil interaction [J]. J. Engineering Mechanics. 2001.127(10): 1027-1032.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700