用户名: 密码: 验证码:
贵州省晴隆锑矿废渣中锑金赋存状态地球化学研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵州省晴隆锑矿主工业组分为锑。共伴生矿产丰富,主要有硫铁矿、萤石、金矿、煤矿等,通过对资料的收集整理发现,晴隆锑矿仅对主工业组分锑(辉锑矿)进行了回收利用,对大量存在的硫铁矿和萤石、金等诸多共伴生组分未进行综合利用,因此,本文以晴隆锑矿共伴生组分查定为起点和线索,重点研究晴隆锑矿尾矿和冶炼炉渣中锑和金(有益有价元素)的分布规律。
     在充分研究前人对尾矿的研究以及前人对贵州省晴隆锑矿的相关研究成果资料的基础上,采用地质及地球化学综合研究方法,包括pH值测试、微量元素地球化学、稀土地球化学、物相分析等地球化学方法,重点针对锑-硫铁矿-萤石等多矿种共伴生的特点,对尾矿中的锑金资源、赋存状态及可利用性等进行了研究,认为尾矿中锑具有潜在利用价值,从环境地球化学角度,对尾矿的现代表生地球化学特征进行了较系统的研究,从另一角度说明了尾矿资源化和利用的生态环境效益。
     通过对尾矿以及炉渣的系统取样分析,提出了Sb金属共33805t潜在资源量,Au金属共1590.30kg潜在资源量,预示着晴隆锑矿尾矿潜在资源丰富。
     通过对尾矿的表生地球化学环境特征分析,包含pH值、磁化率、电导率等特征因子,结合稀土元素分析、物相分析以及粉晶衍射试验分析,系统的对尾矿中Sb品位和Au含量、以及它们的赋存状态进行了研究。研究认为晴隆锑矿尾矿库为碱性-氧化环境,尾矿中的锑元素随着尾矿埋藏深度的变化,其赋存矿物也有明显的不同,主要从硫化矿物向氧化矿物和锑酸盐矿物转变。
     通过本文的研究,对尾矿的综合利用提出了应用建议:手选尾矿中浅部尾矿可尝试通过浮选等选矿工艺进行综合回收,而深部尾矿可尝试湿法冶金进行综合回收利用。对浅部和深部手选尾矿的赋存状态和品位均进行了测试,为手选尾矿的分层分段综合回收利用提供了相关数据。
The major industry constituent of the Qinglong antimony in Guizhou is stibium. There are kinds of paragenetic and associated minerals, such as pyrite, fluorite, gold, coal, etc. Through the data collected showed that only the main industrial constituent antimony (stibnite) was recycled by Qinglong antimony. Plenty of pyrite and fluorite, gold, and many paragenetic and associated components were not conducted comprehensive utilization. Therefore, this paper makes the paragenetic and associated components investigating as a starting point or clues, focus on the distribution of antimony and gold (useful and valuable elements) in the antimony ore tailings and smelting slag of Qinglong antimony.
     There still have a large number of available sulfide minerals such as antimonite in the tailings reservoir. It should be utilized before it's oxidized. It is raised that there have 33805t Sb metal potential resource and 1590.30kg Au metal potential resource by systematically sampling and analysis in the tailings and slag. It is indicated the potential resources is rich in the tailings of Qinglong antimony.
     Based on fully study of previous researches in tailings and the researches of Qinglong antimony, makes the tailings reservoir as a key research object, with the way of detail evidence, by using the geochemical methods of pH test, geochemistry of trace element, rare earth geochemistry and phase analysis, carried out the table tailings geochemical characteristics of the environment, including pH, magnetic susceptibility, electrical conductivity and other characteristics of factors, combined analysis of rare earth element analysis, phase analysis and X-ray powder diffraction test, systematically researched the Sb grade and Au content as well as their occurrence in the tailings. It is considered that the environment of Qinglong antimony tailing reservoir is alkaline-oxidation. As tailings buried depth, the hosting minerals of the Sb are obviously different, mainly transformed from sulfide minerals to the oxide minerals and antimonite minerals.
     With the analysis above, it is believed that there existent a large number of unsorted antimonite in the tailings. The easily sorted and using mineral antimonite has transformed into the hard sorted and using mineral oxide minerals and antimonite minerals by hypergenesis and elevation in the supergene environment. It makes a large waste of resources. Meanwhile, the antimony is a toxic element in the natural environment.
引文
[1]叶造军,贵州大厂锑矿流体包裹体与稳定同位素[J],地质地球化学,1996.5:18-20
    [2]袁万春,李院生,滇黔桂地区汞锑金砷等低温矿床组合碳,氢,氧,硫同位素地球化学[J],1997,17(4):422-426
    [3]陈燊明,黄华斌,聂爱国,贵州省晴隆大厂锑矿锰离子分配特点的初步研究[J],贵州地质,1989.3:58-64
    [4]周德忠,杨国桢,毛健全,贵州晴隆大厂火山沉积—构造改造锑矿床地质特征及成因分析[J],贵州工学院学报,1980.3:1-18
    [5]何立贤,黔西南金矿“热、液、矿”同源成矿模式[J],贵州地质,1996,13(2):154-160
    [6]陈豫,刘秀成,张启厚,贵州晴隆大厂锑矿床成因探讨[J],矿床地质,1984.3:1-12
    [7]李文亢,黔西南微细浸染金矿[M],北京:地质出版社,1988
    [8]陈代演,贵州晴隆大厂锑矿成矿流体低温地球化学特征[J],矿物岩石地球化学通讯,1992,1(1):3-5
    [9]蔡华君,李院生;滇黔桂三角地区锑矿床流体包裹体研究[J],矿物学报,1997,17(4):427-434
    [10]朱赖民,胡瑞忠,黔西南微细浸染型金矿床中金和锑共生分异现象及其热力学分析[J],中国科学D辑,1999.6:481-488
    [11]彭建堂,胡瑞忠,蒋国豪,贵州晴隆锑矿床中萤石的Sr同位素地球化学[J],2003.6,9(2):244-251
    [12]陈代演,云南富源老厂层控锑矿床的地球化学特征[J],贵州工学院学报,1990,19(2):18-27
    [13]毛德明,张启厚,安树仁等,贵州西部峨眉山玄武岩及其有关矿产[M],贵阳:贵州科级出版社,1992.6:1-147
    [14]蔡华君,辉锑矿-萤石共生矿床中萤石的稀土元素[J],地球化学,1996,24(2):103-106
    [15]王国芝,胡瑞忠,刘颖等,黔西南晴隆锑矿区萤石的稀土元素地球化学特征[J],矿物岩石,2003,23(2):62-65
    [16]Wollast, R. Rate and mechanism of dissolution of carbonates in the system CaCO3-MgCO3. In: Stumn, W. (Ed.), Aquatic chemical kinetics. John Wiley,1990, Chap 15,431-445.
    [17]Akcil A. and Koldas S, Acid Mine Drainage (AMD):Causes, treatment case studies[J]. Journal of Cleaner Production,2006,14(12-13):1139-1145,
    [18]王金龙,保护矿产资源加速我国尾矿的开发利用[J],矿山环保,2003.2:93-99
    [19]王瑞廷,欧阳建平,蒋敬业,内蒙古东部半干旱草原残丘景观区铜多金属元素表生地球化学异常特征及其评价指标体系的构建[J],矿产与地质,1999,13(6):348-353.
    [20]靳德武,煤矿水害防治中德综合水文地质分析方法[J],煤田地质与勘探,1998,26(2):52-54
    [21]岳梅,赵峰华,仁德贻,煤矿酸性水水化学特征及其环境地球化学信息研究[J],煤田地质与勘探,2004,32(3):46-50
    [22]武强,董东林,傅耀军,煤矿开采诱发的水环境问题研究[J],中国矿业大学学报,2002,31(1):19-22
    [23]许乃政,陶于祥,高南华,金属矿山环境污染及政治对策[J],火山地质与矿产,2001,22(1):63-64
    [24]麦少芝,徐颂军,梁志娇,矿业废弃地的特点及其环境影响[J],云南地理环境研究,2005,17(3):23-24
    [25]李亚新,苏冰琴,利用硫酸盐还原菌处理酸性矿山废水研究[J],中国给水排水,2000,16(2):13-16
    [26]王友保,张莉,张凤美等,大型铜尾矿库节节草根际土壤重金属形态分布与影响因素研究[J],环境科学学报,2006,26(1):76-83
    [27]王小庆,水环境条件对重金属迁移转化的影响[J],洛阳工业高等专科学校学报,2006,16(1):3-4
    [28]饶云章,侯运炳,尾矿库废水酸化与重金属污染规律研究[J],辽宁工程技术大学学报,2004,23(3):432-434
    [29]赵鹏,孙进,李龙海,酸性矿井废水中硫酸根离子的矿物吸附特性研究[J],黄金,2006,27(4):54-56
    [30]易建斌,单业华,李小明,锑的成矿构造地球化学特性研究[J],地质地球化学,1999,27(2):44-49
    [31]方维萱,胡瑞忠,苏文超等,滇黔桂湘地区中生代复合大陆动力成矿系统特征[J],大地构造与成矿学,2006,30(4):470-480
    [32]汤睿,方维萱,胡煜昭等,贵州晴隆大厂锑矿“大厂层”中Pd富集层位的发现[J],矿物学报,2009.12,增刊S1:133-135
    [33]贵州地质局112队,贵州省晴隆县大厂锑矿田西舍矿床初勘[R],贵州省晴隆锑矿,1972.
    [34]贵州省晴隆锑矿,贵州省晴隆锑矿大厂矿段、水井湾矿段、西舍矿段矿山地质勘查报告[R],贵州省晴隆锑矿,1978.
    [35]贵州地质局112队,贵州省晴隆县大厂锑矿田后坡矿床(南部)详查[R],贵州省晴隆锑矿,1978.
    [36]贵州省晴隆锑矿,贵州省晴隆锑矿固路矿段地质储量报告[R],贵州省晴隆锑矿,1978.
    [37]贵州省地质局105地质队,贵州省晴隆县大厂矿田后坡矿床北部详细普查地质报告[R],贵州省晴隆锑矿,1981.
    [38]贵州省地质局105地质队,晴隆县大厂锑矿田支氽锑矿段详细普查[R],贵州省晴隆锑矿,1987.
    [39]有色金属矿产地质调查中心,贵州省晴隆锑矿资源潜力调查[R],贵州省晴隆锑矿,2004.
    [40]贵州省晴隆锑矿,贵州省晴隆锑矿资源量/储量核实报告[R],贵州省晴隆锑矿,2004.
    [41]贵州省晴隆锑矿,贵州省晴隆县大厂锑矿田支氽矿区锑矿普查[R],贵州省晴隆锑矿,2005.
    [42]贵州省晴隆锑矿,贵州省晴隆锑矿生产报表(2006、2007、2008)[R],贵州省晴隆锑矿,2008.
    [43]昆明中色地科矿产勘查有限公司,贵州省晴隆锑矿综合利用规划研究[R],贵州省晴隆锑矿,2009.
    [44]有色金属矿产地质调查中心,贵州省晴隆县晴隆锑矿接替资源勘查报告[R],贵州省晴隆锑矿,2010
    [45]成杭新,谢学锦,严光生等,中国泛滥平原沉积物中铂、钯丰度值及地球化学巨省的初步研究[J],地球化学,1998,27(2):101-107.
    [46]迟清华,鄢明才,铂族元素在地壳、岩石和沉积物中的分布[J],地球化学,2006,35(5):461-471
    [47]赵传冬,贵州西部Pt、Pd地球化学背景值及对找寻Pt、Pd矿的启示[J],贵金属地质,2001,9(4):220-222.
    [48]Cheng Hangxin, Xie Xuejin, Yan Guangsheng, et al. Platinum and palladium abundances in floodplain sediments and their geochemical provinces[J]. Chinese Journal of Geochemistry,1999, 18(1):18-24.
    [49]成杭新,刘占元,赵传冬,初论盘江流域Pt、Pd地球化学巨省[J],长春科技大学学报,2000,30(3):226-330.
    [50]李晓敏,郝立波,甘树才等,黔西地区峨眉山玄武岩(东岩区)铂族元素地球化学特征[J],地质地球化学,2003,31(4):29-34
    [51]谢学锦,程志中,张立生等,中国西南地区76种元素地球化学图集[M],北京:地质出版社,2008:1-219
    [52]孟献松,铂金及铂金岩体[J],中国宝玉石,1998,2(2):7
    [53]刘英俊,曹励明,李兆麟等,元素地球化学[M](第一版),北京:科学出版社,1984:1-421.
    [54]阮天健,朱有光,地球化学找矿[M](第一版),北京:地质出版社,1985:84-128.
    [55]朱礼学,土壤pH值及CaCO3在多目标地球化学调查中的研究意义,四川地质学报,2001,21(4):226-228.
    [56]魏宁,方维萱,张巨伟等,个旧锡多金属矿区水体酸碱性测量及形成机制探讨[J],云南地质,2006,25(4):398-401
    [57]上海精密科学仪器有限公司,PHB-4便携式pH计使用说明书[Z],上海:上海精密科学仪器有限公司,2005:1-12
    [58]福建省福安市科立龙电子有限公司,KL-138(Ⅱ)型笔式电导率仪使用说明书[Z],福安:福建省福安市科立龙电子有限公司,2005:1-4
    [59]贵州省黔西南州统计局,黔西南州统计年鉴[J],北京:中国统计出版社,2001
    [60]中国地质大学地球化学试验室,地球化学专业试验实习讲义[Z],2005:1-17
    [61]李强,赵秀兰,胡彩荣,ISO 10390:2005土壤质量pH的测定[J],污染防治技术,2006,19(1):53-55
    [62]孙占学,朱永刚,张文,矿物-水反应的地球化学动力学研究进展[J],东华理工学院学报,2004.3,27(1):14
    [63]倪师军,藤彦国,张成江等,成矿流体活动的地球化学示踪研究综述[J],地球化学进展,1999,14(4):346-352
    [64]李志祥,关于建立成矿溶液配合物体系Eh-pH图的研究[J],地质地球化学,1998,26(4):91-98
    [65]张卫民,刘金辉,孙占学等,水岩体系Eh-pH法及其在岩型铀矿体定位研究中的应用[J],华东地质学院学报,2002,25(2):91-97
    [66]朱建才,史维浚,水岩体系Eh-pH法确定铀矿层间氧化带尖灭地段的研究[J],现代地质,2002,16(4):418-422
    [67]刘金辉,孙占学,确定岩型铀矿体定位新方法——水岩体系Eh-pH法[J],吉林大学学报,2004,34(1):44-48
    [68]韩吟文,马振东等,地球化学[M],北京:地质出版社,2004
    [69]地质矿产部情报研究所.国外地质资料选编(八十六),化探资料选编(六).地质矿产部情报研究所,1984:36-37
    [70]王瑞廷,欧阳建平,表生地球化学研究现状及进展[J],矿产与地质,2002.2,16(88):61-64
    [71]Stromberg, B., and Banwart, S. Experimental study of acidity-consuming processes in mining waste rock:some influences of mineralogy and particle size[J]. Appl. Geochem.,1999,14:1-16
    [72]McKibben, M.A., and Barnes, H.L. Oxidation of pyrite in low temperature acidic solutions: rate laws and surface texture[J]. Geochim. Cosmochim. Acta,1986,50:1509-1520
    [73]林年丰,医学环境地球化学[M](第一版),吉林:吉林科学技术出版社,1991.4:1-299
    [74]重金属一锑[J],中国有色冶金,2005,3:55-56
    [75]中国主要类型锑矿床矿物包裹体地质地球化学[J],地质与勘探,1999.6:4-8
    [76]汪贻水,我国珍贵的天然矿物——辉锑矿[J],有色金属,1980.1:3-7
    [77]R.W.Boyle, I.B.Jonasson,谭礼国,锑的地球化学[J],地质地球化学,1986.9:4-8
    [78]R.W.Boyle, I.B.Jonasson,谭礼国,锑矿物与锑矿床[J],地质地球化学,1986.10:3-6
    [79]刘建国、蔡翠青,彭涌涛,锑矿石分析[M],北京:地质出版社,1997:1-15
    [80]赵天从,锑[M],北京:冶金工业出版社,1987:1-137
    [81]何孟常,万红燕,环境中锑的分布、存在形态及毒性和生物有效性[J],化学进展,2004,16(1):131-135
    [82]何孟常,杨居荣,环境样品毒性评价方法的发展及应用[J],上海环境科学,1999,18(6):289-291
    [83]曹鸿水,黔西南“大厂层”形成环境及其成矿作用的探讨[J],贵州地质,1991,8(1):5-13
    [84]张洪,陈方伦,铂族元素:分析法、矿床地球化学及地球化学勘查[M],北京:地质出版社,1996,1-90.
    [85]李生盛,张军营、任德贻等,黔西南煤中铂族元素的发现及其地质意义[J],中国矿业大学学报,2002,31(3):258-261
    [86]代世峰,任德贻、张军营等,华北与黔西地区晚古生代煤层中铂族元素赋存状态及来源[J],地质论评,2003,49(4):439-444
    [87]成杭新,庄广民,赵传冬等,贵州西部Pt、Pd异常源稀土元素地球化学失踪的初步研究[J],地质与勘探,2003,39(2):46-51
    [88]王登红,贵州寻找铂族元素矿床的思考[J],贵州地质,2003,20(3):127-131
    [89]张光弟,李九玲,熊群尧等,贵州遵义黑色页岩铂族金属富集特点及富集模式[J],矿床地质,2002,21(4):377-386
    [90]丁忠浩,翁达,固体和气体废弃物再生与利用[M],北京:国防工业出版社,2006
    [91]刁理品,韩润生,刘鸿等,贵州晴隆大厂锑矿地质及控矿因素,第二届全国应用地球化学学术讨论会论文专辑(摘要、全文)[J],2007,25(4):467-473
    [92]廖善友,黔西南锑矿床成因探讨[J],贵州科学,1998,16(4)276-279
    [93]陈进利,吴勇生,有色冶金废渣综合利用现状及发展趋势[J],中国资源综合利用,2008,26(10):22-25
    [94]张登和,冶炼废渣开发利用前景探讨[J],江苏地质,2000,24(1):55-58
    [95]陶遵华,关晓东,汪靖等,有色金属工业资源综合利用态势分析[J],矿冶,2001,10(2):82-89
    [96]GB/T 6682—92分析实验室用水规格和试验方法(ISO3696:1987)[Z],北京:中国标准出版社,1992
    [97]Filella M, Belzile N, Chen Y W. Antimony in the environment:a review focused on natural waters I.Occurrence[J], Earth-Science Review,2002,57:125-176
    [98]Al, T.A, Blowes, D.W., Jambor, J.L., and Scott, J.D. The geochemistry of mine-waste pore-water affected by the combined disposal of natrojarosite and base metal sulfide tailings at kidd creek, Timmins, Ontario[J]. Canadian Geotechnical Journal,1994,31(4):502-512
    [99]李景阳,梁风,朱立军等,两种典型碳酸盐岩红土风化剖面的物理化学特征[J],中国岩溶,2005,24(1):28-34
    [100]李景阳,王朝富,樊廷章,试论碳酸盐岩风化壳与喀斯特成土作用[J],中国岩溶,1991,10(1):29-38
    [101]李景阳,朱立军,陈筠,贵州碳酸盐岩风化壳稀土元素分布特征[J],中国岩溶,1998,17(1):15-23.
    [102]关广岳,王恩德,李力等,中国金矿床表生地球化学[M](第一版),沈阳:东北大学出版社,1994:1-231.
    [103]陈福,朱笑青,表生地球化学实验研究[J],地质地球化学,1986,11(11):53-57.
    [104]Pinheiro J P, Mota A M, van Leeuween Herman P. On lability of chemically heterogeneous systems complexes between trace metals and humic matter[D]. Colloids and Surfaces, A: Physicochemical and Engineering Aspects,1999,151:181-187
    [105]Nuria Mendez, Donald J. Baird. Effects of cadmium on sediment processing on members of the Capitella species-complex[J].Environmental Pollution,2002,120:299-305
    [106]Lin Z, Roger B, Herbert Jr. Heavy metal retention in secondary precipitates from a mine rock dump and underlying soil, Dalarna, Sweden[J]. Environmental Geology,1997,33(1):1-12
    [107]Shaw S C, Gorat L A, Jambor J L, et al. Mineralogical study of base metal tailings with various sulfide contents, oxidized in laboratory columns and field hypsometers[J]. Environmental Geology,1998,33(2/3):209-217
    [108]Lin Z. Mineralogical and chemical characterization of wastes from sulfuric acid industry in Falun, Sweden [J], Environmental Geology,1997,30(3/4):152-162
    [109]Walder I F, Chavez W X. Mineralogical and geochemical behavior of mill tailing material produced from lead-zinc skarn mineralization, Hanover, Grand County, NewMexico, USA[J]. Environment Geology,1995,26:1-18
    [110]Sherlock E J, Lawrence R W, Poulin P. On the neutralization of acid rock drainage by carbonate and silicate minerals[J].Environment Geology,1995,25:43-54
    [111]Blowes D W, Reardon E J, Lambor J L, et al. The formation and potential importance of cemented layers in inactive sulfide mine tailings[J]. Geochim Cosmochim Acta.,1991,55:965-978
    [112]Nesbitt H W, Muir I J. X-ray photoelement spectroscopic study of a pristine pyrite surface reacted with water vapor and air[J].Geochim Cosmochim Acta,1995,59:1773-1786
    [113]Astrom M. Mobility of Al, Co, Cr, Cu, Fe, Mn, Ni, and V in sulfide-bearing fine-grained sediments exposed atmospheric 02:an experimental study [J]. Environmental Geology,1998, 36(3-4):219-226
    [114]Rimstidt J D, Newcomb W D. Measurement and analysis of rate data:The rata of reaction of ferric iron with pyrite[J]. Geochim Cosmochim Acta.,1993,57:1919-1934
    [115]戴自希,世界金属矿山尾矿开发利用的现状和前景[J],地质调查动态,2005,(16):1-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700