用户名: 密码: 验证码:
滇西兰坪盆地金满—连城脉状铜矿床成因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印度-亚洲大陆碰撞形成的青藏高原为研究大陆碰撞造山与成矿提供了天然的理想场所。兰坪盆地位于青藏高原东缘,夹持于澜沧江缝合线与金沙江-哀牢山缝合线之间,在盆地西部沿澜沧江缝合带发育一套热液脉型Cu矿床,其形成于碰撞造山带强烈变形的前陆盆地内,系后生矿床,矿床的分布受逆冲推覆构造系统的控制,矿体产状严格受陡倾的断裂控制,呈脉状产出。对于这套脉状Cu矿床而言,其形成机理、与碰撞造山作用的耦合关系、不同矿床之间的时空分布特征、成矿流体的运移和驱动机制、流体中金属组分和元素的来源以及金属的沉淀机制等问题,既无法用世界上已知的成矿理论加以解释,也没有被过去的工作深入阐明。鉴于此,本次工作选择这套脉状Cu矿床中目前规模最大的金满、连城矿床为研究对象,通过对其矿床地质特征的详细研究,并结合流体包裹体和同位素地球化学研究结果来揭示他们的发育特点,初步建立矿床成因模型。
     金满、连城矿床位于澜沧江断裂带东侧,矿区内主要的构造型式为金满-连城复式倒转背斜,背斜轴向NNE,出露的地层主要为中侏罗统花开佐组和上侏罗统坝注路组,赋矿围岩为中侏罗统花开佐组石英砂岩、粉砂岩、泥岩等碎屑岩和绢云母板岩、钙质板岩等弱变质岩,矿体产状受陡倾的断裂控制,呈脉状产出,典型矿石的矿物组合为石英+碳酸盐+含Cu硫化物、碳酸盐+含Cu硫化物和纯硫化物脉,矿石结构主要为半自形-他形粒状结构和交代结构,矿石构造则以脉状、浸染状和块状构造为主。对连城矿床采用辉钼矿Re-Os定年,结果显示矿床形成年龄为48-49Ma,处于青藏高原碰撞造山主碰撞期(65-41Ma)。流体包裹体研究结果显示,金满、连城矿床的成矿流体为一套富CO2、中-低温(170-350℃)、低盐度(<10-15 wt% NaCleq.)的流体系统。通过对主成矿期石英-碳酸盐-硫化物脉中的石英H-O同位素、方解石C-O-Sr同位素和硫化物矿物的S、Pb同位素组成进行测试,结果显示,流体中的δ18O水值和δD值分别为3.7-10.3‰和-111--89‰,表明流体来源于变质水和/或岩浆水,因盆地内无成矿期岩浆活动,据此可判断流体为变质水来源,C-O-Sr同位素组成分别为δ13CPDB值介于-7--4‰之间,δ18OPDB值变化于-18.0--13.0‰之间,87Sr/86Sr比值变化范围为0.709-0.714,反映变质碳酸盐岩和海相碳酸盐岩是热液方解石中碳的两个主要来源,δ34S值为-11--2‰,206Pb/204Pb、207Pb/204Pb和208Pb/204Pb分别变化于18.137-18.724、15.517-15.677、38.213-38.983之间,说明成矿流体中的S和金属组分来源于盆地基底变质岩系(深部地壳)和围岩地层(浅部地壳)的混合。
     综合金满、连城矿床地质特征、流体包裹体和同位素地球化学研究结果,我们认为金满-连城脉状Cu矿床是一种与变质流体活动有关的矿床,其形成源于印-亚大陆碰撞挤压所触发的澜沧江缝合带再活动,再活动引起盆地基底岩石发生变质作用并形成变质流体,流体运移和上升过程中萃取深部变质岩和浅部地层中的成矿元素,当浅表岩石在褶皱-逆冲作用下形成开放空间时,流体快速上升就位成矿。
The Tibetan Plateau is an ideal area for understanding metallogenesis of continent-continent collision because it yields many mineral deposits with clear tectonic setting. Lanping basin is located in the east of the Tibetan Plateau, clamping between Lancang River suture and Jinshajiang-Ailaoshan suture. Along the Lancang River development a hydrothermal vein-type Cu deposits in the western basin. All of the deposits were formed in the intense deformation foreland basin of the collision belt, which were epigenetic deposits. The distribution of these deposits were controlled by the thrust-nappe structure system, and orebody occurrence strictly controlled by the steep dip of the fault. To the vein-type deposits, which formation mechanism and relationship with collision orogenesis are poorly understood. Meantime, how distribution of different mineral deposits in spatial and temporal? How is its transport and drive of the ore-forming fluid? Where were metal components and other elements in fluid from? How precipitation of metal component, and so on, these questions neither be explained by the known mineralization theory nor be futher clarified by the work of the past. So, this study aims to investigate their developed characteristics and establish the preliminary genetic models.
     Jinman and Liancheng copper deposits located at the eastern of the Lancang River suture, which major structural patterns was the double reverse anticline of the Jinman-Liancheng, and the anticline axial was NNE. The exposed stratus mainly are middle Jurassic Huakaizuo formation (J2h) and upper Jurassic Bazhulu formation (J3b). Among both of them, quartz sandstone, siltstone, mudstone and other clastic rocks, and sericite slate, calcareous slate and other weak metamorphic rocks of the Jurassic Huakaizuo formations are main host rocks for ores.Ores mainly consisted of quartz, carbonate minerals, and Cu-bearing sulfides. Main ore structure are subhedral-xenomorphic granular texture and replacement texture, vein-type, disseminated, and block structure. Molybdenite Re-Os dating showed that the Liancheng deposit formed at 48-49Ma. Fluid inclusion studies show that the ore-forming fluids of the Jinman and Liancheng ore deposits is a rich in CO2 with middle-low temperature (170-350℃) and low salinity (<10-15 wt% NaCl) fluid system. The results of isotope geochemistry show that the value ofδ18OH2O and 8D were 3.7%o to 10.3%o and-111‰to-89%o, which demonstrated the fluids come from metamorphic water and/or magmatic water. However, because it was no mineralization magmatic activity of the Lanping basin, so the ore-forming fluid was source of metamorphic fluid. The carbon-oxygen-strontium isotopic composition of calcite display that the value ofδ13CPDB were between-7‰and-4%o,δ18OPDB were between-18.0%o and-13.0%o, and the value of 87Sr/86Sr were changes between 0.709 and 0.714, all of these datas reflected that metamorphic carbonate and marine carbonate were the main source of carbon in hydrothermal calcite. The value ofδ34S were between-11‰and-2%o,206Pb/204Pb were changes between 18.137 and 18.724, 207Pb/204Pb were changes between 15-517 and 15.677,208Pb/204Pb were changes between 38.213 and 38.983, show that the sulfur and metal components of the ore-forming fluids drived from the basement metamorphic rocks and host rocks.
     According to the results of the geologic features with fluid inclusions and isotope geochemistry, we think that the metamorphic fluid which was formed by the Lancang River suture reactive again formed the Jinman and Liancheng ore deposits. In the process of the metamorphic fluid rised up and migration, it extracted metal and other components from deep metamorphic rocks and shallow stratus. When the superficial stratus formed faults in the fold-thrust events, the ore-forming fluid rapid rise up in place. If the suddenly changed in surrounding environmental pressure such as from static rock pressure to hydrostatic pressure, the ore-forming fluid taken place boiling and CO2-immiscibility, thus results metal sulfides precipitation.
引文
[1]Anderson G M. Precipitation of Mississippi Valley-type ores. Econ.Geol., 1975,70:937-942
    [2]Anderson G M and Cermignani C. Mineralogical thermodynamic constraints on the metasomatic origin of the York River nepheline gneisses, Bancroft, Ontario. Canadian Mineralogist,1991,29:965-980
    [3]Barton P B. Possible role of organic matter in the precipitation of the Mississippi Valley ores. Econ Geol Monographs,1967,3:371-377
    [4]Basuki N I and Spooner. A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Pb-Zn deposits:Identifying thresholds for metal transport. Exploration and Mining Geology,2002,11:1-17
    [5]Baumgartner R, Fontbote L, Vennemann T. Mineral Zoning and Geochemistry of Epithermal Polymetallic Zn-Pb-Ag-Cu-Bi Mineralizati-on at Cerro de Pasco, Peru. Economic Geology,2008,103(3):493-537
    [6]Beales F W. Precipitation mechanisms for Mississippi Valley-type ore deposits. Economic Geology,1975,70:943-948
    [7]Beaudoin G, Sangster D F. A descriptive model for silver-lead-zinc veins in clastic metasedimentary terranes. Economic Geology,1992,87(4):1005-1021
    [8]Bendezu R, Page L, Spikings R et al. New 40Ar/39Ar alunite ages from the Colquijirca district, Peru:evidence of a long period of magmatic SO2 degassing during formation of epithermal Au-Ag and Cordilleran polymetallic ores. Mineralium Deposita,2008,43(7):777-789
    [9]Bjorlykke A and Sangster D F. An overview of sandstone lead deposits and their relation to red-bed copper and carbonated hosted lead-zinc deposits. Econ. Geol., 1981,76:179-213
    [10]Bortolotti V and Principi G Tethyan ophiolites and Pangea break up. Island Arc,2005,14(4):442-470
    [11]Camprubi A, Gonzalez-Partida E, Torres-Tafolla E. Fluid inclusion and stable isotope study of the Cobre-Babilonia polymetallic epithermal vein system, Taxco district, Guerrero, Mexico. Journal of Geochemical Exploration,2006,89(1-3): 33-38
    [12]Chen Y J, Pirajno F, Sui Y. Isotope geochemistry of the Tieluping silver-lead deposit, Henan, China:A case study of orogenic silver-dominated deposits and related tectonic setting. Mineralium Deposita,2004,39(5):560-575
    [13]Chung S L, Lo C H, Lee T Y et al. Dischronous uplift of the Tibetan Plateau starting from 40 Ma ago. Nature,1998,349:769-773.
    [14]Clayton R N, O'Neil J R, Mayeda T K. Oxygen isotope exchange between quartz and water. Geophys. Res.,1972,77:3057-3067
    [15]Collins P L F. Gas-hydrates in CO2-bearing fluid inclusions and the use of freezing data estimation of salinity. Ecnomic Geology,1979,74:1435-1444.
    [16]Cooke D R, Hollings P and Walshe J L. Giant Porphyry Deposits: Characteristics, distribution, and tectonic controls. Econ. Geol.,2005,100:801-818
    [17]Dejonghe L, Darras B, Hughes G et al. Isotopic and fluid-inclusion constraints on the formation of polymetallic vein deposits in the central Argentinian Patagonia. Mineralium Deposita,2002,37(2):158-172
    [18]Einaudi M T and Burt D M. Terminology, classification and composition of skarn deposits. Econ.Geol.,1982,77:745-754
    [19]Faure G Principle of Isotope Geology. Wiley and Sons,92p,1986
    [20]Fernando O.Marques. Thrust initiation and propagation during shorting of a 2-layer model lithosphere. Journal of Structural Geology,2008,30:29-38
    [21]Goldfarb RJ, Baker T, Dube B et al. Distribution, character and genesis of gold deposits in metamorphic terranes. In:Economic geology 100th Anniversary volume. Society of Economic Geologists, Littleton, Colorado, USA.407-450,2005
    [22]Gu X X, Zhang Y M, Dong S Y et al. Basin fluid mineralization during multistage evolution of the Lanping sedimentary basin, Southwestern China. Acta Geologica Sinica,2007,81(6):984-995
    [23]Hall D L, Sterner S M, Bodnar R J. Freezing point depression of NaCl-KCl-H2O solutions. Econ. Geol.,1988,83:197-202
    [24]He L Q, Song Y C, Chen K X et al. Thrust-controlled, sediment-hosted, Himalaya Zn-Pb-Cu-Ag deposits in the Lanping foreland foldbelt,eastern margin of Tibetan Plateau. Ore Geology Reviews,2009,36:106-132.
    [25]Herzarkhani A, Williams J A, Gammons C. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineralium Deposita,1999,34 (8):770-783
    [26]Hou Z Q, Ma H W, Khin Z et al. The Himalayan Yulong porphyry copper belt:product of large-scale strike-slip faulting in eastern Tibet. Econ. Geol.,2003,98: 125-145.
    [27]Hou Z Q, Zeng P S, Gao Y F et al. The Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone:constraints from Re-Os dating of molybdenite. Mineralium Deposita,2006,41:33-45.
    [28]Huston D L, Stevens B, Southgate P N et al. Australian Zn-Pb-Ag ore-forming systems:A review and analysis. Econ. Geol.,2006,101:1117-1157
    [29]Jackson S A. Precipitation of lead-zinc ores in carbonate reservoirs as illustrated by Pine Point ore field, Canada. TIMM B,1966,75:278-285
    [30]Jian P, Liu D Y and Sun X M. SHRIMP dating of the Permo-Carboniferous Jinshajiang ophiolite, southwestern China:Geochronological constraints for the evolution of Paleo-Tethys. Journal of Asian Earth Sciences,2008,32(5-6):371-384
    [31]Jochen Hoefs. Stable Isotope Geochemistry(Sixth Edition). Springer-Verlag Berlin Heidelberg, ISBN:978-3-540-70703-5,2009
    [32]Kerrich R, Goldfarb R, Groves D et al. The geodynamics of world-class gold deposits:Characteristics, space-time distributions, and origins:Reviews in Economic Geology,2000,13:501-551
    [33]Large D E. The evaluation of sedimentary basins for massive sulfide mineralization. In:Friedrich, G H and Herzig, P M, eds. Base metal sulfide deposits. The Netherlands:Springer-verlag,1988,2-11.
    [34]Leach D L and Rowan E L. Genetic link between Ouachita fold belt tectonism and the Mississippi Valley-type deposits of the Ozarks. Geology,1986,14: 931-935
    [35]Leach D L, Sangster D F, Kelley K D et al. Sediment-hosted lead-zinc deposits:A global perspective. Econ. Geol.,2005,100th Anniversary Volume: 561-607
    [36]Meinert LD. Skarns and skarn deposits. Geoscience Canada,1992,19: 145-162
    [37]Metcalfe I. Gondwanaland dispersion, Asian accretion and evolution of eastern Tethys. Australian Journal of Earth Sciences,1996,43(6):605-623
    [38]Metcalfe I. The Bentong-Raub Suture Zone. Journal of Asian Earth Sciences, 2000,18(6):691-712
    [39]Metcalfe I. Permian tectonic framework and palaeogeography of SE Asia. Journal of Asian Earth Sciences,2002,20(6):551-566
    [40]Misra K C. Understanding Mineral Deposits. Kluwer Academic Publishers, London,2000
    [41]Nelson C E. Hydrothermal eruption mechanism and hot spring gold deposits. Econ.Geol,1985,80:1639-1663
    [42]Ohmoto H. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol.,1972,67:551-578
    [43]Ohmoto, H and Rye R O. Isotopes of sulfur and carbon. In:Barnes HL ed. Geochemistry of hydrothermal ore deposits. New York:Wiley-Inter science,509-567, 1979
    [44]Sangster D F. Mississippi Valley-type and Sedex lead-zinc deposits:A comparative examination. Institution of Mining and Metallurgy Transactions, Section B, Applied Earth Sciences,1990,99:21-42
    [45]Sillitoe R H. A plate tectonic model for the origin of porphyry copper deposits. Econ. Geol,1972,67:184-197
    [46]Slobodnik M, Jacher-liwczynska K, Taylor M C et al. Plumbotectonic aspects of polymetallic vein mineralization in Paleozoic sediments and Proterozoic basement of Moravia (Czech Republic). International Journal of Earth Sciences,2008, 97(1):1-18
    [47]Sone M and Metcalfe I. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience,2008,340(2-3):166-179
    [48]Spurlin M S, Yin A, Horton B K et al. Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. GSA Bulletin,2005,117:1293-1317
    [49]Sverjensky D A. Genesis of Mississippi Valley—type lead—zinc deposits. Annual Review of Earth and Planetary Sciences,1986,14:177-179
    [50]Taylor B E. Magmatic volatiles:Isotope variation of C, H and S reviews in mineralogy. In:Stable isotopes in high temperature geological process[C]. Mineralogical Society of America,1986,16:185-226
    [51]Wang E, Buechfiel B C. Interpretation of Cenozoic tectonics in the right-lateral accommodation zone between the Ailaoshan shear zone and the eastern Himalayan syntaxis. Int.Geol.Rev.,1997,39:191-219
    [52]Wang J H, Yin A., Harrison T M et al. A tectonic model for Cenozoic igneous activities in the eastern Indo-Asian collision zone. Earth and Planetary Science Letters,2001,188:123-133
    [53]Wang X F, Metcalfe I, Jian P, et al. The Jinshajiang—Ailaoshan Suture Zone, China:tectonostratigraphy, age and evolution. Journal of Asian Earth Sciences,2000, 18(6):675-690.
    [54]Xue C J, Zeng R, Liu S W et al. Geologic, fluid inclusion and isotopic characteristics of the Jinding Zn-Pb deposit, western Yunnan, South China:A review. Ore Geology Reviews,2007,31:337-359
    [55]Zartman R E, Doe B R. Plumbotectonics-the model. Tectonophys.,1981,75: 135-162
    [56]毕先梅,莫宣学.成岩-极低级变质-低级变质作用及有关矿产.地学前缘,2004,11(1):287-294.
    [57]陈骏,王鹤年.地球化学.北京:科学出版社,116-117,2004
    [58]陈开旭.云南兰坪前陆盆地北部Cu, Ag多金属矿集区形成机制(博士论文).北京:中国地质大学,2006
    [59]陈式房,刘仪来,包育秀等.德钦-下关铅锌矿带矿床类型、成矿规律研究.云南地质,1991,10(2):119-144
    [60]陈衍景.陆内碰撞体制的流体作用模式及与成矿的关系:理论推导和东秦岭金矿床的研究.地学前缘,1996,3(4):282-289
    [61]陈衍景,隋颖慧,Franco PIRAJNO. CMF模式的排他性依据和造山型银矿实例:东秦岭铁炉坪银矿同位素地球化学.岩石学报,2003,19(3):551-568
    [62]从柏林,吴根耀,张旗等.中国滇西古特提斯构造带岩石大地构造演化. 中国科学B辑,1993,23(11):1201-1207
    [63]杜安道,何红蓼,殷宁万等.辉钼矿的铼-锇同位素地质年龄测定方法研究.地质学报,1994,68(4):339-347
    [64]杜安道,赵敦敏,王淑贤等.Carius管溶样和负离子热表面电离质谱准确测定辉钼矿铼-锇同位素地质年龄.岩矿测试,2001,20(4):247-252
    [65]范承钧.滇西区域地质特征.云南地质,1982,1(4):323-336
    [66]范承钧,张翼飞.云南西部地质构造格局.云南地质,1993,12(2):139-148
    [67]范蔚茗.滇西兰坪-思茅地洼盆地及其邻区岩浆岩.大地构造与成矿学,1992,16(1):83-84.
    [68]付修根.兰坪陆相盆地演化与金属矿床的形成.地球科学与环境学报,2005,27(2):26-32
    [69]龚文君,谭凯旋.兰坪白秧坪铜银多金属矿床流体地球化学特征及成矿机制.大地构造与成矿学,2000,24(2):175-181
    [70]管烨,王安建,李朋武等.云南兰坪-思茅盆地中轴构造带的特征及其研究意义.中国地质,2006,33(4):832-841
    [71]何龙清,陈开旭,余凤鸣等.云南兰坪盆地推覆构造及其控矿作用.地质与勘探,2004,40(4):7-12
    [72]何龙清,陈开旭,魏军奇等.云南白秧坪地区东矿带矿床地球化学特征及成因初析.矿床地质,2005,24(1):61-70
    [73]何龙清,季玮,陈开旭等.滇西兰坪盆地白秧坪地区东矿带推覆构造的控矿作用.地质力学学报,2007,13(2):110-118
    [74]何明勤,刘家军,李朝阳等.兰坪盆地铅锌铜大型矿集区的流体成矿作用机制—以白秧坪铜钴多金属地区为例.北京:地质出版社,2004
    [75]何明勤,刘家军,李朝阳等.云南兰坪白秧坪铜钴多金属矿集区矿石中石英的40Ar/39Ar年龄.地质科学,2006,41(4):688-693
    [76]侯增谦,曲晓明,黄卫等.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带.中国地质,2001,28(10):27-30
    [77]侯增谦,莫宣学,杨志明等.青藏高原碰撞造山带成矿作用:构造背景、时空分布和主要类型.中国地质,2006a,33(2):340-351
    [78]侯增谦,潘桂棠,王安建等.青藏高原碰撞造山带:Ⅱ.晚碰撞转换成 矿作用.矿床地质,2006b,25(5):521-543
    [79]侯增谦,宋玉财,李政等.青臧高原碰撞造山带Pb-Zn-Ag矿床新类型:成矿基本特征与构造控矿模型.矿床地质,2008,27:123-144
    [80]黄汲清,陈国铭,陈炳蔚.特提斯-喜马拉雅构造域初步分析.地质学报,1984,1(1):1-17
    [81]季宏兵,李朝阳.滇西金满铜矿床成矿流体地球化学特征及来源.矿物学报,1998,18(1):28-37
    [82]李峰,甫为民,庄凤良.兰坪盆地西缘铜矿床流体包裹体研究及找矿意义.昆明工学院学报,1993,18(2):1-10
    [83]李峰.兰坪-思茅盆地铜矿成区域控矿因素,有色金属矿产与勘查.1994,3(6):321-326
    [84]李峰,黄敦义,甫为民.兰坪-思茅盆地红层铜矿成矿规律,大地构造与成矿学.1995,19(4):322-335
    [85]李峰,甫为民.滇西红层铜矿地质.云南大学出版社,16-30,2000
    [86]李光勋.兰坪盆地某些逆冲推覆构造研究.云南地质,1994,13(2):203-215
    [87]李小明.滇西金满铜矿床成矿年龄测定.现代地质,2001a,15(4):405-408
    [88]李小明,龚文君,谭凯旋等.兰坪盆地小格拉铜矿床地质特征及成矿时代初探.华东地质学院学报,2001b,4(11):17-19
    [89]李兴振,刘文均,王义昭.西南三江地区特提斯构造演化与成矿.北京:地质出版社,1999
    [90]廖宗廷,陈跃昆.兰坪—思茅盆地原型的性质及演化.同济大学学报(自然科学版),2005,33(11):1527-1531
    [91]刘家军,李朝阳,张乾等.滇西金满铜矿床中木质结构及其成因意义.中国科学(D辑),2001,31(2):89-96
    [92]刘家军,李志明,刘玉平等.滇西金满脉状铜矿床成矿年龄讨论.现代地质,2003,17(1):34-39
    [93]刘建明,赵善人,沈洁等.成矿流体活动的同位素定年方法评述.地球物理学进展,1998,13(3):46-45
    [94]刘俊来,宋志杰,曹淑云等.印度-欧亚侧向碰撞带构造-岩浆演化的动 力学背景与过程——以藏东三江地区构造演化为例.岩石学报,2006,22(4):775-786
    [95]卢焕章,范宏瑞,倪培等.流体包裹体.北京:科学出版社,2004
    [96]罗君烈,杨友华,赵准等.滇西特提斯的演化及主要金属矿床成矿作用.北京:地质出版社,1994
    [97]莫宣学,赵志丹,邓晋福等.印度—亚洲大陆主碰撞过程与火山作用响应.地学前缘,2003,10:135-148
    [98]牟传龙,王剑,余谦等.兰坪中新生代沉积盆地演化.矿物岩石,1999,19(3):30-36
    [99]潘桂棠,陈智粱,李兴振等.东特提斯地质构造形成演化.北京:地质出版社,1997
    [100]潘桂棠,李定谋,李兴振等.西南“三江”地区贵金属、有色金属成矿规律和成矿模式—当代矿产资源勘查评价的理论与方法.北京:地震出版社,545-548,1999
    [101]潘桂棠,徐强,侯增谦等.西南“三江”多岛弧造山过程成矿系统与资源评价.北京:地质出版社,2003
    [102]彭建堂,胡瑞忠.湘中锡矿山超大型锑矿床的碳、氧同位素体系.地质论评,2001,7(2):299-320
    [103]祁进平,陈衍景,倪培等.河南冷水北沟铅锌银矿床流体包裹体研究及矿床成因.岩石学报,2007,23(9):2119-2130
    [104]屈文俊,杜安道.电感耦合等离子体质谱测定辉钼矿中Re、Os含量时的质量分馏效应的校正.质谱学报,2004,25(增刊),181-182
    [105]阙梅英,程敦模,张立生等.兰坪-思茅盆地铜矿床.北京:地质出版社,1998
    [106]邵兆刚,孟宪刚,冯向阳等.云南白秧坪-华昌山矿带构造特征及其控矿作用.地质力学学报,2003,9(3):246-253
    [107]沈上越,魏启荣,程蕙兰等.“三江”哀牢山带蛇绿岩特征研究.岩石矿物学杂志,1998,17(1):1-8
    [108]陶晓风,朱利东.刘登忠等滇西兰坪盆地的形成及演化.成都理工学院学报,2002,29(5):521-525
    [109]滕彦国,刘家铎,张成江等.兰坪盆地深源流体成矿的地质-地球化学 信息.地质找矿论丛,2000,15(4):314-319
    [110]田洪亮.兰坪白秧坪铜银多金属矿床地质特征.云南地质,1997,16(1):105-108
    [111]田洪亮.兰坪三山多金属矿床地质特征.云南地质,1998,17(2):199-206
    [112]王光辉,宋玉财,侯增谦等.兰坪盆地连城脉状铜矿床辉钼矿Re-Os定年及其地质意义.矿床地质,2009,28(4):413-424
    [113]王建,李建平,王江海.滇西大理-剑川地区钾玄质岩浆作用:后碰撞走滑拉伸环境岛弧型岩浆作用的地球化学研究.岩石学报,2003,19:61-69
    [114]王江海,颜文,常向阳等.陆相热水沉积作用.北京:地质出版社,121p,1998
    [115]王彦斌,陈文,曾普胜.滇西北兰坪盆地金满脉状铜矿床绢云母40Ar/39Ar年龄对成矿时代的约束.地质通报,2005,24(2):181-184
    [116]魏启荣,沈上越.“三江”地区哀牢山西侧三类弧火山岩特征.地质科技情报,1997,16(2):13-18
    [117]吴根耀.滇西北地区第三纪的逆冲-推覆构造.大地构造与成矿学,1994,18(4):331-338
    [118]肖荣阁,陈卉泉,帅开业等.云南兰坪金满中生代沉积岩中的铜矿成矿作用.现代地质,1994,8(4):490-496
    [119]徐启东,李建威.云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带——流体包裹体和稳定同位素证据.矿床地质,2003,22(4):365-376
    [120]徐启东,周炼.云南兰坪北部铜多金属矿化区成矿流体流动与矿化分带-矿石铅同位素和特征元素组成依据.矿床地质,2004,23(4):452-461
    [121]徐晓春,黄震,谢巧勤等.云南金满、水泄铜多金属矿床的Ar-Ar同位素年代学及其地质意义.高校地质学报,2004,10(2):157-164
    [122]徐晓春,谢巧勤,陆三明等.滇西兰坪盆地西缘铜矿床矿物流体包裹体研究.矿物学报,2005,25(2):170-176
    [123]薛春纪,陈毓川,杨建民等.金顶铅锌矿床地质-地球化学,矿床地质.2002,21(3):270-277
    [124]薛春纪,陈毓川,王登红等.滇西北金顶和白秧坪矿床:地质和He, Ne, Xe同位素组成及成矿时代.中国科学D辑,2003,33(4):315-322
    [125]杨伟光.云南兰坪白秧坪铜银多金属矿集区成矿作用的地质—地球化学条件和成矿机制[博士学位论文].中国地质大学(北京),2000
    [126]杨学明,杨晓勇,陈双喜(译).岩石地球化学.北京:科技出版社,180-188,2000
    [127]姚军明,赵太平,魏庆国等.河南王坪西沟铅锌矿床流体包裹体特征和矿床成因类型.岩石学报,2008,24(9):2113-2123
    [128]颜文,李朝阳.一种新类型铜矿床的地球化学特征及其热水沉积成因.地球化学,1997,26(1):54-63
    [129]叶锦华,芮宗瑶,孙延绵等.我国铜资源形势分析与铜矿资源勘查评价宏观部署建议.见:地质工作战略问题研究—中国地质矿产经济学会青年分会2005年年会学术论文集,2005
    [130]尹汉辉,范蔚茗,林舸.云南兰坪-思茅地洼盆地演化的深部因素及幔壳复合成矿作用.大地构造与成矿学,1990,14(2):113-124
    [131]余谦,牟传龙,王剑.云南兰坪盆地三叠纪沉积相与古地理演化.沉积与特提斯地质,2000,20(2):33-42
    [132]云南省地质局.云南省区域地质志.北京:地质出版社,106-278,1990
    [133]张洪瑞,侯增谦,宋玉财等.斑岩铜矿床在东特提斯成矿域中的时空分布特征.地质学报,2009,83(12):1818-1837
    [134]张立生.脉状黝铜矿型铜矿床的稳定同位素组成及其成因意义.沉积与特提斯地质,2000,20(2):74-82
    [135]张玉泉,谢应雯.哀牢山-金沙江富碱侵入岩年代学和Nd, Sr同位素特征.中国科学(D辑),1997,27(4):289-293
    [136]赵海滨.滇西兰坪盆地中北部铜多金属矿床成矿地质特征及地质条件[博士学位论文].中国地质大学(北京),2006
    [137]郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究.地学前缘,2000,47(1):34-41
    [138]朱创业,夏文杰.兰坪-思茅中生代盆地性质及构造演化.成都理工学院学报,1997,23-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700