用户名: 密码: 验证码:
临南洼陷沙河街组油气充注对储层成岩演化及次生孔隙发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以临南洼陷为研究区,分析该区沙河街组储层主要的成岩作用包括压实作用、胶结作用、溶蚀作用、交代作用及几种粘土矿物的转化等。经过对本区大量薄片资料分析发现该区沙河街组储层中次生孔隙占主要地位,其主要原因是长石、碳酸盐矿物等的溶蚀。根据本区的具体情况并结合孔隙演化过程及前人的成果对该区的成岩作用阶段进行了划分。
     分析了石英、长石、碳酸盐矿物和粘土矿物成岩演化的地球化学过程,并通过研究发现油气注入可能引起储层成岩作用环境的变化。通过对不同含油级别下各种成岩作用演化过程的研究,认为油气充注对储层成岩作用演化在三个方面影响:对储层压实作用的缓冲;抑制石英和伊利石的胶结作用;改造深部溶蚀作用。
     根据大量盐水包裹体的均一温度并结合本区的构造发展史,认为该区内油气的充注期次与其构造位置有关,洼陷中心部位油气充注主要有两期即东营期和馆陶期到明化镇期,边缘油气藏只经历一期充注即馆陶期到明化镇期,不同构造位置的油气藏的主要成藏期均为中新世馆陶期至上新世明化镇期。根据冰点温度计算得流体的盐度,经分析发现随含油级别增加盐度略有下降,进一步证实油气充注对成岩作用的影响。
     通过定量研究区内含油饱和度与孔隙度的关系,得出以下结论:(1)次生孔隙度与含油级别之间,当含油级别低于或等于油浸时,次生孔隙度随含油级别增加而增加;从油浸到富含油级别时次生孔隙度略有降低。(2)总孔隙度与含油级别大体呈正相关,总孔隙度随着含油级别的增加而增加。
Linnan Subsag is chose to be the research area in the paper. It is analyzed that the main diagenesis of Es reservoirs concludes compaction, cementation, dissolution, metasomatism and conversion of several clay minerals. Based on analysis of numbers of thin section, it is indicated that the secondary pore is dominant in Es reservoirs of this area. The main cause of secondary pore is dissolution of feldspar and carbonate minerals. The diagenesis stages are diparted according to the specific situation of this area and pore-evolution process and the previous results.
     Geochemical progress of diagenesis evolution of quartz, feldspar, carbonate minerals and clay minerals is analyzed. It is indicated that the diagenesis environment may be changed as the hydrocarbon filling. According to the research of diagenesis evolution under different oil bearing grade, it is-suggested that hydrocarbon emplacement affects the diagenesis evolution in three areas:cushion the compaction of reservoirs, inhibition of quartz and illite cementation, transformation deep dissolution.
     Based on the homogenization temperature of a large number of saline inclusions and structural history, it is considered that charging time related to the structural position:in the center of the subsag there are two periods which is Dongying and Guantao-Minghuazhen Period, and at the edge of the subsag there is only Guantao-Minghuazhen Period. The latter is the main period in both structural positions. The fluid salinity can be calculated using the ice point temperature, which fall a little as the oil bearing grade increases, and this further confirmed the influence of hydrocarbon emplacement to diagenesis.
     Quantitative research between oil saturation and porosity gets the conclusion that:(1) between secondary porosity and oil bearing grade, the secondary porosity increases when the oil bearing grade increasing as oil bearing grade under or equal to immersion, little decreases when oil bearing grade reach oil-rich. (2) The total porosity is generally positive correlated with oil bearing grade, which increases as the oil bearing grade increased.
引文
1.胡海燕,鲁章程.岩化作用对储层孔隙的影响及其机理探讨[J],断块油气田,2004,11(5):9-11
    2.朱筱敏.济阳拗陷古近系碎屑岩储层特征和评价[M].北京:科学出版社,2008,126-144,176-190
    3.张金亮,常象春.石油地质学[M].北京:石油工业出版社,2004,84-86
    4.张枝焕,王铁冠,常象春.油、水、干层的地球化学识别[J],地质论评,2001,47(5):516-518
    5.胡海燕.油气充注对成岩作用的影响[J],海相油气地,2004,9(1-2):85-89
    6.蔡进功,张枝焕,朱筱敏等.东营凹陷烃类充注与储集层化学成岩作用[J],石油勘探与开发,2003,30(3):79-83
    7.许小琼,张学平.惠民凹陷江家店地区沙三下亚段储集层评价[J],录井工程,2005,16(3):60-63,68
    8刘林玉,陈刚,柳益群等.碎屑岩储集层溶蚀型次生孔隙发育的影响因素分析[J],沉积学报,1998,16(2):97-99
    9.张小莉,查明,杨懿.惠民凹陷沙河街组三段岩性油藏储层孔隙结构特征及油气意义[J],石油与天然气地质,2007,28(2):287-288 290-291
    10.李家强.临南洼陷深层碎屑岩次生孔隙特征及其地质意义[J],断块油气田,2008,15(6):1-4
    11.张莉,朱筱敏,钟大康等.惠民凹陷古近系碎屑岩次生孔隙纵向分布规律[J],地球科学(中国地质大学学报),2007,32(2):253-258
    12.胡海燕,鲁章程.岩化作用对储层孔隙的影响及其机理讨论[J],断块油气田,2004,11(5):9-11
    13.朱志强,曾溅辉.临南洼陷流体包裹体特征与成藏时间研究[J],西南石油大学学报(自然科学版),2008,30(04):31
    14.张枝焕,常象春,曾溅辉.水—岩相互作用研究及其在石油地质中的应用[J],地质科技情报,1998,17(3):67-73
    15.吕修祥,胡素云.塔里木盆地油气藏形成与分布[M].北京:石油工业出版社,1997,89-97
    16.黄志龙,姜振学.吐哈盆地油气藏形成机制[M]北京:石油工业出版社,2000,105-113
    17.赵靖舟.油气水界面追溯法与塔里木盆地海相油气成藏期分析[J],石油勘探与开发,2001,28(4):53-56
    18.赵为孟.鄂尔多斯盆地油气形成与运移时间和运移方向的确定与勘探方向[J].石油实验地质,1996,18(4):341-344
    19.赵林,夏新字,洪峰.鄂尔多斯盆地中部气田上古生界气藏成藏机理[J],天然气工业,2000,20(2):17-20
    20.周兴熙.塔里木盆地天然气形成条件及分布规律[M].北京:石油工业出版社,1998,45-48
    21.王飞宇,张水昌.利用自生伊利石K-Ar定年分析烃类进入储层的时间[J],地质论评,1997,43(5):540-546
    22.王廷栋.生物标志物在凝析气藏天然气运移和气源对比中应用[J],石油学报,1990,11(1):25-30
    23.金奎励.有机岩石学研究(以塔里木盆地为例)[M].北京:地震出版社,1997,67-71
    24.王飞宇,金之钧,吕修祥等.含油气盆地成藏期分析理论和新方法[J],地球科学进展,2002,17(5):754-762
    25.刘德汉.包裹体研究—盆地流体追踪的有力工具[J],地学前缘,1995,2(3-4):149-154
    26.张铭杰,唐俊红,张同伟等.流体包裹体在油气地质地球化学中的应用[J].地质论评,2004,50(4):397-406
    27.王铁冠,张枝焕译.油藏地球化学[M].北京:石油工业出版,1997,107-109
    28.袁东山,张枝焕,朱雷等.油气聚集对石英矿物成岩演化的影响[J],岩石学报,2007,23(9):2315-2320
    29.倪培,王一刚.人工合成烃类包裹体的试验研究[J],岩石学报,2007,23(9):2033-2038
    30.宋海涛,冯斌,代莉等.长堤地区油气成藏期次研究[J],江汉石油学院学报,2004,26,增刊:3-5
    31.张枝焕,胡文暄,曾溅辉等.东营凹陷下第三系流体—岩石相互作用研究[J],沉积学报,2000,18(4):560-565
    32.葛云锦,陈勇,周瑶琪.不同成岩条件下油气充注对碳酸盐岩成岩作用的影响[J],中国石油大学学报(自然科学版),2009,33(1):18-23
    33.邢卫新,费永涛,杨永毅等.含油气盆地成藏期分析方法及进展[J],石油地质与工程,2006,20(6):12-16
    34.常象春.临南洼陷沙三段岩性油气藏形成机理与分布规律[D].山东科技大学,2007:11-14
    35.李会军,吴泰然,吴波等.中国优质碎屑岩深层储层控制因素综述[J],地质科技情报,2004,23(4):78-79
    36.肖军,王华,袁立川等.深埋藏砂岩储层中异常孔隙的保存机制探讨[J],地质科技情报,2007,26(5):49-50
    37.蔡春芳,顾家裕,蔡洪美等.塔中地区志留系烃类侵位对成岩作用的影响[J],沉积学报,2001,19(1):60-63.
    38.张枝焕,王铁冠,朱雷.油层合理开采边界的地球化学预测[J],中国海上油气,2002,16(1):33-35.
    39.路凤香,桑隆康.岩石学[M].北京:地质出版社,2002,196-198
    40.杨威,杨栓荣.流体包裹体在塔中40油田成藏期次研究中的应用[J],新疆石油地质,2002,23(4):78
    41.单秀琴,谢增业,曾云.油气成藏研究中的有关包裹体问题:讨论与实例分析[J],矿物岩石地球化学通报,2009,28(1):75-79
    42.罗静兰,刘小洪,林潼等.成岩作用与油气侵位对鄂尔多斯盆地延长组砂岩储层物性的影响[J],地质学报,2006,80(5):664-672
    43.钟大康,朱筱敏,张枝焕等.东营凹陷古近系砂岩储集层物性控制因素评价[J],石油勘探与开发,2003,30(3):95-98
    44.钟大康,朱筱敏,蔡进功.沾化凹陷下第三系砂岩次生孔隙纵向分布规律[J].石油与天然气地质,2003,24(3):286-289
    45.袁东山,张枝焕.油气充注对晚期碳酸盐矿物胶结作用的影响[J].石油天然气学报(江汉石油学院学报),2005,27(2):298-300
    46.李艳霞,刘洪军,袁东山等.石油充注对储层成岩矿物演化的影响[J].石油与天然气地质,2003,24(3):274-279
    47.李丕龙等.陆相断陷盆地隐蔽油气藏形成:以济阳坳陷为例[M].北京:石油工业出版社,2004,85-92
    48.姜在兴.砂体层序地层及沉积学研究:以山东惠民凹陷为例[M].北京:地质出版社,2000,153-164
    49.高先志,陈发景.应用流体包裹体研究油气成藏期次-以柴达木盆地南八仙油田第三系储层为例[J].地学前缘,2000,7(4):547-553
    50.张文淮.流体包裹体地质学[M].武汉:中国地质大学出版社,1993.3-5,123-128
    51.高岗,黄志龙.油气成藏期研究进展[J].天然气地球科学.2007,18(5):661-665
    52.沈昆.流体包裹体热力学[M].北京:地质出版社,1999,46-55
    53. Burruss RC, Cerone KR, Harris PM. Fluid inclusion petrography and tectonic-burial history of the Al Ali No.2 well:evidence for the timing of diagenesis and oil migration, northern Oman Foredeep [J], Geology,1983,11:567-570
    54. Hazeline RS, Samson IM, Cornford C. Dating diagenesis in a petroleum basin, a new fluid inclusion method [J], Nature,1984,307:284-287
    55. Elmore RD, Eengel M, Crawford L, et al. Evidence for relationship between hydrocarbon and authigenic magnetite [J], Nature,1987,325,428-430.
    56. Elmore RD, Leach MC. Paleomagnetism of the Rush springs sandstone, Cement, Oklahoma: implications for dating hydrocarbon migration, aeromagnetic exploration, and understanding remagnetization mechanism [J], Geology,1990,18:124-127.
    57. Jensenius J, Burruss RC. Hydrocarbon-water interactions during brine migration:evidence from hydrocarbon inclusions in calcite cements from Danish North Sea oilfields [J], Geochimicaet Cosmochimica Acta,1990,54:705-713.
    58. Fehn U, Peters EK, Tullai-Fitzpatrick S, etal.1291 and36Cl concentrations in waters of the eastern Clear Lake area, Califorinia:Residence times and source ages of hydrothermal fluids [J], Geochimicaet Cosmochimica Acta,1992,56:2069-2079.
    59. Moran JE, Fehn U, Hanor JS. Determination of source ages and migration patterns of brine from the U.S. Gulf Coast basin using 1291 [J], Geochimicaet Cosmochimica Acta,1995,59:5055-5069.
    60. Lisk M, George SC, Summons RE, etal. Mapping hydrocarbon chargehistories:Detailed characterization of the south Pepper oil field, Carnarvon basin[J], APPEA Journal,1996.445-463.
    61. Oxtoby NH, Mitchell AW, Gluyas JG. The filling and emptying of the Ula oil field:Fluid inclusion constraints. In:Cubbit JM, England WA, eds. The geochemistry of reservoirs[J], Geological Society Special Publication,1995,86:141-157
    62. Nedkvitne T, Karlsen DA, Bjurlykke K, etal. Relationship between reservoir diagenetic evolution and petroleum emplacement in Ula Field, North Sea[J], Marine and Petroleum Geology,1993,255-270.
    63. George SC, Krieger FW, Eadington PJ, etal. Geochemical comparison of oil-bearing fluid inclusions and produced oil from the Toro sandstone, Papua New Guinea[J], Organic Geochemistry,1997,26:155-173.
    64. Saigol GC, Bjφrlykke K, Larter SR. The effects of oil emplacement on diagenetic process—examples from Fulma reservoirs and stones, central North Sea[J], AAPG Bulletin,1992,76:1024-1033.
    65. Pan C, Yang J. Geochemical characteristics & implications of hydrocarbons in reservoir rocks of Junggar Basin[J], China. Chemical Geology,2000,167(3-4):321-335.
    66. Teinturier S, Pironon J.Experimental growth ofquartz in petroleum environment, part I:procedures and fluid trapping[J], Geochimica etCosmochimicaAc-ta,2004,68(11):2495-2507.
    67. Lynch F E. Mineral/water interaction, fluid flow and sandstone diadenesis:evidence from the rocks[J], AAPG Bulletin,1996,80(4):486-504
    68. Walderhang O.A fluid inclusion study of quartz cemented sandstones from offshore Mid-Norway possible evidence for continued quartz cementation during oil emplacement [J], Journal of Sedimentary Petrology,1990,60:203-210.
    69. Marchand A M E,Smalley P C,Haseldine R S et al. Note on the Importance of Hydrocarbon Fill for Reservoir Quality Prediction in Sandstones [J], AAPG Bulletin,2002,86(9):1561-1571.
    70. Abid G. Bhullar,Dag A. Karlsen,Kristian Backer-Owe,Reinert T. Seland,Khanh Le Tran.Dating reservoir filling——a case history from the North Sea [J], Marine and Petroleum Geology,1999,16:581-603
    71. Munz IA, Johansen H, Holm K,etal. The petroleum characteristics of the Froy field and the Rind discovery, Norwegian North Sea[J], Marine and Petroleum Geology,1999,16:633-651

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700