用户名: 密码: 验证码:
基于小波变换和多重分形分析的表面肌电信号分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面肌电信号是从人体骨骼肌表面通过电极记录下来的神经肌肉活动时发放的生物电信号,它反映了神经、肌肉的功能状态。表面肌电信号在临床医学、运动医学、人机工效学、康复医学、神经生理学、电生理学等领域被广泛应用。本文针对假肢控制和肌肉疲劳评价问题,利用小波变换和非线性动力学方法对表面肌电信号进行了深入的分析和研究,所做的主要工作及创新之处如下:
     为了尽可能地提高假肢控制时表面肌电信号分类的准确识别率,我们尝试利用局部判别基方法来对表面肌电信号进行分类,该方法的主要思想是根据可分性度量找出具有最大可分性的部分小波包系数作为特征矢量。但考虑到不同人的不同动作的表面肌电信号的能量大小是有差异的,因此本文提出了基于可分性度量和小波包相对能量的最佳小波包方法,并将该方法应用到表面肌电信号的分类问题当中,实验证明该算法比固定尺度的小波包基方法有着更好的效果。在该方法中我们所使用的可分性度量都只是一些简单的距离度量函数,它们并不能给出模式分类问题中的最佳特征。因此,我们对上述方法进行了改进,提出了DB指标(Davies-Bouldin index)和小波包相对能量相结合的最佳小波包方法,并将该方法应用到了表面肌电信号的分类问题当中。和其它现有的方法相比较,该方法在分类准确率上取得了明显的改进。
     为了减少假肢控制时对动作进行分类识别的运算时间,本文提出了一种基于离散谐波小波包变换的表面肌电信号分类方法。首先对信号进行离散谐波小波包分解,然后计算信号在各个频带的相对能量并将其作为表面肌电信号的特征。接着,我们采用基于遗传算法和神经网络分类器的特征选择方法对特征空间进行降维处理从而获得了具有最大可分离性的特征。最后,用BP(back propagation)神经网络和获得的具有最大可分离性的特征来评价被提出方法的分类效果。实验结果表明,离散谐波小波包变换方法获得了比时域方法更高的分类准确率,另一方面,和离散一般小波包变换方法相比,该方法节省了更多的计算时间。因此,离散谐波小波包变换方法为肌电假肢系统准确、实时控制提供了新的可行方法。
     肌肉疲劳特性的研究在康复医学、运动医学、人机工效学等领域具有重要作用。本文从多重分形的角度来分析了肌肉疲劳过程中的表面肌电信号。目前,我们已经发现在肌肉的静态疲劳的过程当中,表面肌电信号具有多重分形特性,并且肌电信号奇异谱的面积随着肌肉的疲劳有明显地上升趋势。因此,我们可以把奇异谱面积作为静态收缩时肌肉疲劳的评价指标。实验结果表明,当肌肉处于静态收缩期间时,和传统的肌肉疲劳评价指标中值频率相比,我们提出的肌电信号奇异谱面积显示出了更高的变化斜率,故用奇异谱面积做肌肉疲劳评价指标的灵敏度就要更高,这为量化静态肌肉疲劳提供了一个更为可靠的方法。在肌肉做动态收缩时,表面肌电信号仍然具有多重分形特性,同时我们发现随着肌肉的疲劳,肌电信号的奇异谱面积也在增加,因此奇异谱面积也可以作为动态收缩时肌肉疲劳的评价指标。但是和静态收缩相比,动态收缩时奇异谱面积随时间变化的斜率要小很多。我们推测肌肉静态收缩和动态收缩之间的这种差异可能是由于收缩肌肉内的血液流动所引起的。
Surface electromyographic (SEMG) signals can be monitored noninvasively by using electrodes on the skin surface. They are the summation of all motor unit action potentials (MUAP) within the pick-up area of the electrodes, so they provide information of the neuromuscular activities of the examined muscle. In addition, these signals have been widely applied to clinical diagnosis, sports medicine, ergonomics, rehabilitation medicine, neurophysiology and electrophysiology. Aimed at control system for powered prostheses and muscle fatigue assessment, this dissertation deeply investigated SEMG signals using wavelet transform and nonlinear dynamic method. The main and creative work is as follows:
     In order to improve the classification accuracy of SEMG signals in control system for powered prostheses, we tried to use local discriminant bases method to classify SEMG signals and the main idea of this method is to employ wavelet packet decomposition coefficients with maximum class separability as the feature vectors. However, considering that the energy of the SEMG signals varies with different subjects and different movements, this dissertation presented the optimal wavelet packet method based on discriminant measures and relative energy representation of wavelet packet and applied this method to SEMG signals classification. Experimental results showed that this approach achieved higher accuracy than fixed scale wavelet packet method. In this method, the discriminant measures which we used are only some simple distance measure function and they can not give the optimal features for pattern recognition problems. So we improved the above method and presented the optimal wavelet packet method based on Davies-Bouldin (DB) index and relative energy representation of wavelet packet, which was then applied to SEMG signals classification. Compared with other existing methods, this one had significant improvement in classification accuracy.
     In order to reduce the computation time of classifying SEMG signals in control system for powered prostheses, this dissertation proposed an efficient method to SEMG signals classification based on the discrete harmonic wavelet packet transform (DHWPT). Firstly, the relative energy of the signal in each frequency band calculated after the signal had been decomposed by the DHWPT was used as features of a SEMG signal. Then, the feature selection method based on the genetic algorithm and the neural network classifier were employed to provide the best discriminating features of different categories of movement. In the end, a neural network classifier used these selected features to validate the classification performance of the presented method. Compared with other methods of SEMG signals classification, the DHWPT method possessed higher classification accuracy than the time domain method and saved more computational time than the discrete ordinary wavelet packet transform method. So the DHWPT method was an efficient approach to classifying SEMG signals.
     The systematic study of muscle fatigue assessment can provide sight into the physiology of the muscle under investigation as well as the mechanisms of fatigue. This dissertation used multifractal method to analyze SEMG signals in the course of muscle fatigue. At present, we have found that the SEMG signals characterized multifractality during static contractions and the area of the multifractal spectrum of the SEMG signals significantly increased during muscle fatigue. Therefore the area could be used as an indicator of assessing muscle fatigue during static contractions. Compared with the MDF which was the most popular indicator for assessing muscle fatigue, the spectrum area presented here showed higher sensitivity. So the singularity spectrum area was considered to be a more effective indicator than the MDF while estimating muscle fatigue during static contractions. During dynamic contractions, the SEMG signals still characterized multifractality. At the same time, we found that the area of the multifractal spectrum of the SEMG signals also increased during muscle fatigue. Hence the area could also be used as an indicator of assessing muscle fatigue during dynamic contractions. However, the slope of the singularity spectrum area during dynamic contractions is smaller than that during static contractions. We thought that the difference between static contractions and dynamic contractions is caused by the blood flow in the contracting muscle.
引文
[1] 杨福生, 高上凯, 生物医学信号处理, 北京, 高等教育出版社, 1989, 607-640
    [2] 何庆华, 吴宝明, 彭承琳, 表面肌电信号的分析与应用, 国外医学生物医学工程分册, 2000, 23(5), 299-303
    [3] Chan, A.D.C., Englehart, K.B., Continuous myoelectric control for powered prostheses using hidden Markov models, IEEE Transactions on Biomedical Engineering, 2005, 52(1), 121-124
    [4] Englehart, K., Hudgins, B., Parker, P.A., etc., Classification of the myoelectric signal using time-frequency based representations, Medical Engineering & Physics, 1999, 21, 431-438
    [5] Hu, X., Wang, Z., Ren, X., Classification of surface EMG signal using relative wavelet packet energy, Computer Methods and Programs in Biomedicine, 2005, 79(3), 189-195
    [6] Hudgins, B., Parker, P., Scott, R.N., A new strategy for multifunction myoelectric control, IEEE Transactions on Biomedical Engineering, 1993, 40(1), 82-94
    [7] Frigo, C., Ferrarin, M., Frasson, W., etc., EMG signals detection and processing for on-line control of functional electrical stimulation, Journal of Electromyography and Kinesiology, 2000, 10(5), 351-360
    [8] Georgakis, A., Stergioulas, L.K., Giakas, G., Fatigue analysis of the surface EMG signal in isometric constant force contractions using the averaged instantaneous frequency, IEEE Transactions on Biomedical Engineering, 2003, 50(2), 262-265
    [9] Misener, D.L., Morin, E.L., An EMG to force model for the human elbow derived from surface EMG parameters, Proceedings of the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1995, 2, 1205-1206
    [10] Pham, K.D., Morin, E.L., Dynamic surface EMG/force relation in human elbow flexion, Proceedings of the 17th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 1995, 2, 1203-1204
    [11] Abel, E.W., Zacharia, P.C., Forster, A., etc., Neural network analysis of the EMG interference pattern, Medical Engineering & Physics, 1996, 18(1), 12-17
    [12] 曹玉珍, 陈成, 胡勇, 基于独立成份分析的肌电信号消噪方法研究, 信号处理, 2003, 19(4), 369-372
    [13] 张晓文, 上肢假肢控制模式的信息源研究, 生物医学工程学杂志, 2002, 19(4), 692-696
    [14] 尹云, 朱林剑, 包海涛, 智能假手的研究现状与发展趋势, 中国康复医学杂志, 2004, 19(1), 52-53
    [15] 黄文杏, 疲劳相关术语的概念及沿革的文献研究, [学位论文], 北京, 北京中医药大学, 2005
    [16] 张翠珍, 慢性疲劳综合征发病因素、证候规律及疲劳特征的研究, [学位论文], 北京, 北京中医药大学, 2002
    [17] 张蓉, 慢性疲劳综合征流行病学及症状、证候特征的研究, [学位论文], 北京, 北京中医药大学, 2003
    [18] 王国祥, 不同负荷强度运动时表面肌电图中位频率与血乳酸浓度变化的关系, 体育学刊, 2004, 11(1), 45-48
    [19] 王笃明, 王健, 葛列众, 肌肉疲劳的 sEMG 时频分析技术及其在工效学中的应用, 航天医学与医学工程, 2003, 16(5), 387-390
    [20] 王笃明, 王健, 葛列众, 静态负荷诱发肌肉疲劳时表面肌电信号变化与主观疲劳感之间的关系, 航天医学与医学工程, 2004, 17(3), 201-204
    [21] 郝秀春, 朱林剑, 对假手技术的展望, 现代康复, 2001, 5(3), 47-51
    [22] Zardoshti-Kermani, M., Wheeler, B.C., Badie, K., etc., EMG feature evaluation for movement control of upper extremity prostheses, IEEE Transactions on Rehabilitation Engineering, 1995, 3(4), 324-333
    [23] Boostani, R., Moradi, M.H., Evaluation of the forearm EMG signal features for the control of a prosthetic hand, Physiological Measurement, 2003, 24(2), 309-319
    [24] Kang, W.J., Cheng, C.K., Lai, J.S., etc., A comparative analysis of various EMG pattern recognition methods, Medical Engineering & Physics, 1996, 18(5), 390-395
    [25] Kang, W.J., Shiu, J.R., Cheng, C.K., etc., The application of cepstral coefficients and maximum likelihood method in EMG pattern recognition, IEEE Transactions on Biomedical Engineering, 1995, 42(8), 777-785
    [26] Knox, R., Brooks, D.H., Classification of multifunction surface EMG using advanced AR model representations, Proceedings of the 20th Annual Northeast Bioengineering Conference, 1994, 1, 96-98
    [27] Cai, L., Wang, Z., Zhang, H., Classifying EMG signals using T-F representation and SVD, Proceedings of the First Joint BMES/EMBS Conference, 1999, 1, 575
    [28] Jang, G.C., Cheng, C.K., Lai, J.S., etc., Using time-frequency analysis technique in the classification of surface EMG signals, Proceeding of the 16th Annual International Conference of the IEEE Engineering in Medicine and Biology, 1994, 16, 1242-1243
    [29] Englehart, K., Hudgin, B., Parker, P.A., A wavelet-based continuous classification scheme for multifunction myoelectric control, Biomedical Engineering, IEEE Transactions on, 2001, 48(3), 302-311
    [30] Englehart, K., Hudgin, B., Chan, A.D.C., Continuous multifunction myoelectric control using pattern recognition, Technology and Disability, 2003, 15(2), 95-103
    [31] Englehart, K., Hudgins, B., A robust, real-time control scheme for multifunction myoelectric control, Biomedical Engineering, IEEE Transactions on, 2003, 50(7), 848-854
    [32] Nazarpour, K., Sharafat, A.R., Firoozabadi, S.M., A Novel Feature Extraction Scheme for Myoelectric Signals Classification Using Higher Order Statistics, Proceedings of the 2nd International IEEE EMBS Conference on Neural Engineering, 2005, 293-296
    [33] Peleg, D., Braiman, E., Yom Tov, E., etc., Classification of finger activation for use in a robotic prosthesis arm, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2002, 10(4), 290-293
    [34] Yen, G.G., Lin, K.C., Wavelet packet feature extraction for vibration monitoring, IEEE Transactions on Industrial Electronics, 2000, 47(3), 650-667
    [35] Jain, A., Zongker, D., Feature selection: evaluation, application, and small sample performance, IEEE Transactions on Pattern Analysis and Machine Intelligence,1997, 19(2), 153-158
    [36] Raymer, M.L., Punch, W.F., Goodman, E.D., etc., Dimensionality reduction using genetic algorithms, IEEE Transactions on Evolutionary Computation, 2000, 4(2), 164-171
    [37] Osowski, S., Linh, T.H., ECG beat recognition using fuzzy hybrid neural network, Biomedical Engineering, IEEE Transactions on, 2001, 48(11), 1265-1271
    [38] Li, C., Huang, J.-Y., Chen, C.-M., Soft computing approach to feature extraction, Fuzzy Sets and Systems, 2004, 147(1), 119-140
    [39] Engin, M., ECG beat classification using neuro-fuzzy network, Pattern Recognition Letters, 2004, 25(15), 1715-1722
    [40] Chan, F.H.Y., Yang, Y.S., Lam, F.K., etc., Fuzzy EMG classification for prosthesis control, IEEE Transactions on Rehabilitation Engineering, 2000, 8(3), 305-311
    [41] Micera, S., Sabatini, A.M., Dario, P., On automatic identification of upper-limb movements using small-sized training sets of EMG signals, Medical Engineering and Physics, 2000, 22(8), 527-533
    [42] Micera, S., Sabatini, A.M., Dario, P., etc., A hybrid approach to EMG pattern analysis for classification of arm movements using statistical and fuzzy techniques, Medical Engineering & Physics, 1999, 21(5), 303-311
    [43] Park, S.-H., Lee, S.-P., EMG pattern recognition based on artificial intelligence techniques, IEEE Transactions on Rehabilitation Engineering, 1998, 6(4), 400-405
    [44] 伯杰, R.A., 实用运动生理学, 北京, 人民卫生出版社, 1985, 1-37
    [45] 牟永阁, 基于时频和时间尺度分析的表面肌电信号研究及应用, [学位论文], 重庆, 重庆大学, 2004
    [46] Bonato, P., Recent advancements in the analysis of dynamic EMG data, IEEE Engineering in Medicine and Biology Magazine, 2001, 20(6), 29-32
    [47] MacIsaac, D., Parker, P.A., Scott, R.N., The short-time Fourier transform and muscle fatigue assessment in dynamic contractions, Journal of Electromyography and Kinesiology, 2001, 11(6), 439-449
    [48] Masuda, K., Masuda, T., Sadoyama, T., etc., Changes in surface EMG parameters during static and dynamic fatiguing contractions, 1999, 9, 39-46
    [49] Farina, D., Pozzo, M., Merlo, E., etc., Assessment of average muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions, IEEE Transactions on Biomedical Engineering, 2004, 51(8), 1383-1393
    [50] Merletti, R., Lo Conte, L.R., Surface EMG signal processing during isometric contractions, Journal of Electromyography and Kinesiology, 1997, 7(4), 241-250
    [51] Inbar, G.F., Allin, J., Paiss, O., etc., Monitoring suface EMG spectral changes by the zero crossing rate, Medical and Biological Engineering and Computing, 1986, 24(1), 10-18
    [52] Karlsson, S., Yu, J., Akay, M., Enhancement of spectral analysis of myoelectric signals during static contractions using wavelet methods, IEEE Transactions on Biomedical Engineering, 1999, 46(6), 670-684
    [53] Merletti, R., Gulisashvili, A., Lo Conte, L.R., Estimation of shape characteristics of surface muscle signal spectra from time domain data, IEEE Transactions on Biomedical Engineering, 1995, 42(8), 769-776
    [54] Lowery, M.M., Vaughan, C.L., Nolan, P.J., etc., Spectral compression of theelectromyographic signal due to decreasing muscle fiber conduction velocity, IEEE Transactions on Rehabilitation Engineering, 2000, 8(3), 353-361
    [55] Farina, D., Merletti, R., Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions, Journal of Electromyography and Kinesiology, 2000, 10(5), 337-349
    [56] Deangelis, G.C., Gilmore, L.D., De Luca, C.J., Standardized evaluation of techniques for measuring the spectral compression of the myoelectric signal, Biomedical Engineering, IEEE Transactions on, 1990, 37(9), 844-849
    [57] Lariviere, C., Arsenault, B., Gravel, D., etc., Effect of step and ramp static contractions on the median frequency of electromyograms of back muscles in humans, European Journal of Applied Physiology, 2001, 85(6), 552-559
    [58] Xie, H., Wang, Z., Mean frequency derived via Hilbert-Huang transform with application to fatigue EMG signal analysis, Computer Methods and Programs in Biomedicine, 2006, 82(2), 114-120
    [59] Sparto, P.J., Parnianpour, M., Barria, E.A., etc., Wavelet and short-time Fourier transform analysis of electromyography for detection of back muscle fatigue, IEEE Transactions on Rehabilitation Engineering, 2000, 8(3), 433-436
    [60] Kim, J.Y., Jung, M.C., Haight, J.M., The sensitivity of autoregressive model coefficient in quantification of trunk muscle fatigue during a sustained isometric contraction, International Journal of Industrial Ergonomics, 2005, 35(4), 321-330
    [61] Webber Jr, C.L., Schmidt, M.A., Walsh, J.M., Influence of isometric loading on biceps EMG dynamics as assessed by linear and nonlinear tools, Journal of Applied Physiology, 1995, 78(3), 814-822
    [62] Webber Jr, C.L., Zbilut, J.P., Dynamical assessment of physiological systems and states using recurrence plot strategies, Journal of Applied Physiology, 1994, 76(2), 965-973
    [63] Filligoi, G., Felici, F., Detection of hidden rhythms in surface EMG signals with a non-linear time-series tool, Medical Engineering and Physics, 1999, 21(6-7), 439-448
    [64] Knaflitz, M., Bonato, P., Time-frequency methods applied to muscle fatigue assessment during dynamic contractions, Journal of Electromyography and Kinesiology, 1999, 9(5), 337-350
    [65] 皮喜田, 陈峰, 彭承琳, 利用表面肌电信号评价肌肉疲劳的方法, 生物医学工程学杂志, 2006, 23(1), 225-229
    [66] Karlsson, S., Yu, J., Akay, M., Time-frequency analysis of myoelectric signals during dynamic contractions: A comparative study, IEEE Transactions on Biomedical Engineering, 2000, 47(2), 228-238
    [67] Bonato, P., Gagliati, G., Knaflitz, M., Analysis of myoelectric signals recorded during dynamic contractions, Engineering in Medicine and Biology Magazine, IEEE, 1996, 15(6), 102-111
    [68] Bonato, P., Roy, S.H., Knaflitz, M., etc., Localized muscle fatigue in back muscles: static vs. dynamic contractions, Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology society, 1997, 3, 1263-1266
    [69] Bonato, P., Roy, S.H., Knaflitz, M., etc., Time-frequency parameters of the surface myoelectric signal for assessing muscle fatigue during cyclic dynamic contractions, Biomedical Engineering, IEEE Transactions on, 2001, 48(7), 745-753
    [70] Conforto, S., D'Alessio, T., Real time monitoring of muscular fatigue from dynamic surface myoelectric signals using a complex covariance approach, Medical Engineering and Physics, 1999, 21(4), 225-234
    [71] MacIsaac, D.T., Parker, P.A., Englehart, K.B., etc., Fatigue estimation with a multivariable myoelectric mapping function, IEEE Transactions on Biomedical Engineering, 2006, 53(4), 694-700
    [72] 严振国, 正常人体解剖学, 上海, 上海科学技术出版社, 1995, 50-88
    [73] 朱钦, 人体解剖学, 北京, 人民卫生出版社, 1994, 62-95
    [74] 刘磊, 岳文浩, 神经肌电图原理, 北京, 科学技术出版社, 1983, 114-132
    [75] 汤晓芙, 临床肌电图学 北京, 北京医科大学、中国协和医科大学联合出版社, 1995, 81-142
    [76] Gandevia, S.C., Spinal and supraspinal factors in human muscle fatigue, Physiological Reviews, 2001, 81(4), 1725-1789
    [77] Kent-Braun, J.A., Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort, European Journal of Applied Physiology and Occupational Physiology, 1999, 80(1), 57-63
    [78] Hagg, G.M., Interpretation of EMG spectral alterations and alteraton indexes at sustained contraction, Journal of Applied Physiology, 1992, 73(4), 1211-1217
    [79] 雷敏, 王志中, 一种用于实时提取动作信号的新方法, 中国医疗器械杂志, 2000, 24(4), 200-202
    [80] 崔锦泰, 小波分析导论, 西安, 西安交通大学出版社, 1997, 1-36
    [81] 杨福生, 小波变换的工程分析与应用, 北京, 科学出版社, 1999, 1-27
    [82] Mallat, S.G., Theory for multiresolution signal decomposition: the wavelet representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989, 11(7), 674-693
    [83] Vetterli, M., Herley, C., Wavelets and filter banks: Theory and design, IEEE Transactions on Signal Processing, 1992, 40(9), 2207-2232
    [84] Quinquis, A., A Few Practical Applications of Wavelet Packets, Digital Signal Processing: A Review Journal, 1998, 8(1), 49-60
    [85] 胡广书, 现代信号处理教程, 北京, 清华大学出版社, 2004, 239-320
    [86] Coifman, R.R., Wickerhauser, M.V., Entropy-based algorithms for best basis selection, IEEE Transactions on Information Theory, 1992, 38(2), 713-718
    [87] Saito, N., Coifman, R.R., Local discriminant bases, Wavelet Applications in Signal and Image Processing II, 1994, 2303, 2-14
    [88] Arivazhagan, S., Ganesan, L., Texture classification using wavelet transform, Pattern Recognition Letters, 2003, 24(9-10), 1513-1521
    [89] Li, S., Shawe-Taylor, J., Comparison and fusion of multiresolution features for texture classification, Pattern Recognition Letters, 2005, 26(5), 633-638
    [90] Li, D., Pedrycz, W., Pizzi, N.J., Fuzzy Wavelet Packet Based Feature Extraction Method and Its Application to Biomedical Signal Classification, IEEE Transactions on Biomedical Engineering, 2005, 52(6), 1132-1139
    [91] Yan, R., Gao, R.X., An efficient approach to machine health diagnosis based on harmonic wavelet packet transform, Robotics and Computer Integrated Manufacturing, 2005, 21, 291-301
    [92] Mallat, S., A Wavelet Tour of Signal Processing, Beijing, China Machine Press, 2002, 244-257
    [93] Sa, J.P.M.d., Pattern Recognition Concepts, Methods and Applications, New York, Springer, 2002, 140-222
    [94] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification, New York, John Wiley & Sons, Inc., 2001, 67-284
    [95] Zhang, P., Verma, B., Kumar, K., Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection, Pattern Recognition Letters, 2005, 26(7), 909-919
    [96] Schizas, C.N., Pattichis, C.S., Learning systems in biosignal analysis, Biosystems, 1997, 41(2), 105-125
    [97] McCormick, A.C., Nandi, A.K., Real-time classification of rotating shaft loading conditions using artificial neural networks, Neural Networks, IEEE Transactions on, 1997, 8(3), 748-757
    [98] Strauss, D.J., Steidl, G., Delb, W., Feature extraction by shape-adapted local discriminant bases, Signal Processing, 2003, 83(2), 359-376
    [99] Saito, N., Coifman, R.R., Geshwind, F.B., etc., Discriminant feature extraction using empirical probability density estimation and a local basis library, Pattern Recognition, 2002, 35(12), 2841-2852
    [100] Antonini, G., Orlandi, A., Wavelet packet-based EMI signal processing and source identification, IEEE Transactions on Electromagnetic Compatibility, 2001, 43(2), 140-148
    [101] Yildiz, O.T., Alpaydin, E., Ordering and finding the best of K > 2 supervised learning algorithms, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(3), 392-402
    [102] Castillo-Valdivieso, P.A., Merelo, J.J., Prieto, A., etc., Statistical analysis of the parameters of a neuro-genetic algorithm, IEEE Transactions on Neural Networks, 2002, 13(6), 1374-1394
    [103] Lee, K.M., Herrman, T.J., Lingenfelser, J., etc., Classification and prediction of maize hardness-associated properties using multivariate statistical analyses, Journal of Cereal Science, 2005, 41(1), 85-93
    [104] Pietersma, D., Lacroix, R., Lefebvre, D., etc., Performance analysis for machine-learning experiments using small data sets, Computers and Electronics in Agriculture, 2003, 38(1), 1-17
    [105] Chancey, V.C., Flowers, G.T., Howard, C.L., A Harmonic Wavelets Approach for Extracting Transient Patterns From Measured Rotor Vibration Data, Journal of Engineering for Gas Turbines and Power, 2003, 125(1), 81-89
    [106] Liu, B., Adaptive harmonic wavelet transform with applications in vibration analysis, Journal of Sound and Vibration, 2003, 262(1), 45-64
    [107] Bates, R.A., Chappell, M.J., Godfrey, K.R., etc., Comparison of methods for harmonic wavelet analysis of heart rate variability, IEE Proceedings Science, Measurement & Technology, 1998, 145(6), 291-300
    [108] Newland, D.E., Harmonic wavelets in vibrations and acoustics, Philosophical Transactions of the Royal Society of London A, 1999, 357, 2607 - 2625
    [109] Yan, R., Gao, R.X., Generalized harmonic wavelet as an adaptive filter formachine health diagnosis, Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2005, 5765, 786-793
    [110] Yan, R., Gao, R.X., Harmonic wavelet packet transform for on-line system health diagnosis, Smart Structures and Materials 2004: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems, 2004, 5391, 512-522
    [111] Brill, F.Z., Brown, D.E., Martin, W.N., Fast generic selection of features for neural network classifiers, IEEE Transactions on Neural Networks, 1992, 3(2), 324-328
    [112] Garrett, D., Peterson, D.A., Anderson, C.W., etc., Comparison of linear, nonlinear, and feature selection methods for EEG signal classification, IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2003, 11(2), 141-144
    [113] Oh, I.S., Lee, J.S., Moon, B.R., Hybrid genetic algorithms for feature selection, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(11), 1424-1437
    [114] Subasi, A., Ercelebi, E., Classification of EEG signals using neural network and logistic regression, Computer Methods and Programs in Biomedicine., 2005, 78(2), 87-99
    [115] Joo, S., Yang, Y.S., Moon, W.K., etc., Computer-aided diagnosis of solid breast nodules: use of an artificial neural network based on multiple sonographic features, IEEE Transactions on Medical Imaging, 2004, 23(10), 1292-1300
    [116] Namboodiri, A.M., Jain, A.K., Online handwritten script recognition, Pattern Analysis and Machine Intelligence, IEEE Transactions on, 2004, 26(1), 124-130
    [117] Goulermas, J.Y., Findlow, A.H., Nester, C.J., etc., Automated Design of Robust Discriminant Analysis Classifier for Foot Pressure Lesions Using Kinematic Data, Biomedical Engineering, IEEE Transactions on, 2005, 52(9), 1549-1562
    [118] Kwak, K.-C., Pedrycz, W., Face recognition using fuzzy Integral and wavelet decomposition method, Systems, Man and Cybernetics, Part B, IEEE Transactions on, 2004, 34(4), 1666-1675
    [119] Aminzadeh, F., Barhen, J., Glover, C.W., etc., Reservoir parameter estimation using a hybrid neural network, Computers and Geosciences, 2000, 26(8), 869-875
    [120] Zhang, R., McAllister, G., Scotney, B., etc., Combining wavelet analysis and Bayesian networks for the classification of auditory brainstem response, IEEE Transactions on Information Technology in Biomedicine, 2006, 10(3), 458-467
    [121] 吕金虎, 陆君安, 陈士华, 混沌时间序列分析及其应用, 武汉, 武汉大学出版社, 2002, 1-71
    [122] Mandelbrot, B.B., The fractal Geometry of Nature, San Francisco, Freeman, 1982, 1-100
    [123] 肯尼思, 法尔科内, 分形几何-数学基础及其应用, 沈阳, 东北大学出版社, 2001, 65-138
    [124] 尼克尔斯, 马丁, 华莱士, 神经生物学-从神经元到脑, 北京, 科学出版社, 2003,
    [125] 董连科, 分形理论及其应用, 辽宁省沈阳市, 辽宁科学技术出版社, 1991, 1-85
    [126] Eke, A., Herman, P., Kocsis, L., etc., Fractal characterization of complexity in temporal physiological signals, Physiological Measurement, 2002, 23(1), 1-38
    [127] 李后强, 汪富泉, 分形理论及其在分子科学中的应用, 北京, 科学出版社,1997, 1-80
    [128] Grassberger, P., Procaccia, I., Characterization of Strange Attractors, Physical Review Letters, 1983, 50(5), 346-349
    [129] Halsey, T.C., Jensen, M.H., Kadanoff, L.P., etc., Fractal measures and their singularities: The characterization of strange sets, Physical Review A, 1986, 33(2), 1141-1151
    [130] Chhabra, A.B., Meneveau, C., Jensen, R.V., etc., Direct determination of the f(alpha) singularity spectrum and its application to fully developed turbulence, Physical Review A, 1989, 40(9), 5284-5294
    [131] Muzy, J.F., Bacry, E., Arneodo, A., Wavelets and multifractal formalism for singular signals: Application to turbulence data, Physical Review Letters, 1991, 67(25), 3515-3518
    [132] Telesca, L., Lapenna, V., Macchiato, M., Mono- and multi-fractal investigation of scaling properties in temporal patterns of seismic sequences, Chaos, Solitons and Fractals, 2004, 19(1), 1-15
    [133] Arneodo, A., D'Aubenton-Carafa, Y., Bacry, E., etc., Wavelet based fractal analysis of DNA sequences, Physica D: Nonlinear Phenomena, 1996, 96(1-4), 291-320
    [134] Arneodo, A., Bacry, E., Muzy, J.F., The thermodynamics of fractal revisited with wavelets, Physica A, 1995, 213(1), 232-275
    [135] Lyra, M.L., Tsallis, C., Nonextensivity and Multifractality in Low-Dimensional Dissipative Systems, Physical Review Letters, 1998, 80(1), 53-56
    [136] Yamaguti, M., Prado, C.P.C., A direct calculation of the spectrum of singularities f(alpha) of multifractals, Physics Letters A, 1995, 206(5-6), 318-322
    [137] Wang, J., Ning, X., Chen, Y., Modulation of heart disease information to the 12-lead ECG multifractal distribution, Physica A, 2003, 325(3-4), 485-491
    [138] Chhabra, A., Jensen, R.V., Direct determination of the f(alpha) singularity spectrum, Physical Review Letters, 1989, 62(12), 1327-1330
    [139] Jensen, M.H., Kadanoff, L.P., Procaccia, I., Scaling structure and thermodynamics of strange sets, Physical Review A, 1987, 36(3), 1409-1420
    [140] Chhabra, A.B., Jensen, R.V., Sreenivasan, K.R., Extraction of underlying multiplicative processes from multifractals via the thermodynamic formalism, Physical Review A (General Physics), 1989, 40(8), 4593-4611
    [141] Chhabra, A.B., Sreenivasan, K.R., Negative dimensions: Theory, computation, and experiment, Physical Review A (Atomic, Molecular, and Optical Physics), 1991, 43(2), 1114-1117
    [142] Cuevas, E., f(alpha) multifractal spectrum at strong and weak disorder, Physical Review B, 2003, 68(2), 024206
    [143] Wang, J., Ning, X., Chen, Y., Multifractal analysis of electronic cardiogram taken from healthy and unhealthy adult subjects, Physica A, 2003, 323, 561-568
    [144] Wang, J., Ning, X., Ma, Q., etc., Multiscale multifractality analysis of a 12-lead electrocardiogram, Physical Review E, 2005, 71(6), 062902
    [145] Wang, Y., Zhu, Y.-S., Thakor, N.V., etc., A short-time multifractal approach for arrhythmia detection based on fuzzy neural network, Biomedical Engineering, IEEE Transactions on, 2001, 48(9), 989-995

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700