用户名: 密码: 验证码:
甘蔗糖蜜羰氨反应制备香料的技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题探讨了以廉价的甘蔗糖蜜为原料,通过羰氨反应制备香料的工艺技术。研究了不同预处理工艺对糖蜜制备香料的影响,并采用气质色谱联用技术(GC/MS)分析香料成品的挥发性风味成分。在此基础上,进行了不同方法强化糖蜜制香的工艺研究。
     1.通过单因素和正交实验,确定甘蔗糖蜜预处理工艺条件如下:原糖蜜与蒸馏水按1:5稀释;采用磷酸辅助絮凝剂法进行絮凝澄清:添加0.025%磷酸,石灰水调节pH值至中性,加0.0005%聚丙烯酰胺,85℃恒温水浴中保温10min进行二次絮凝,离心,取上清液;硫酸法酸解糖蜜:酸解温度100℃、pH值2及酸解时间90min;再经电压30V,流速70L/hr的电渗析工艺脱盐。去除了糖蜜中大部分杂质,提高了糖蜜的纯度,并采用GC/MS分析预处理前后糖蜜成分的变化。
     2.采用硅胶柱层析法验证了以糖蜜为原料羰氨反应制备香料的可行性。探究了不同预处理工艺对糖蜜羰氨制香的影响,羰氨反应后,四种糖蜜反应体系RMS、FMS、CMS和DMS中pH值均有下降,吸光度、色值和金属还原力均有上升,其中FMS变化幅度最大。采用GC/MS分析羰氨产物RMP、FMP、CMP和DMP的挥发性物质成分,发现有醛酮类、醇酸类、氮杂环类(如吡嗪,呋喃等)、酚类和酯类以及烷烃类化合物,但各类化合物所占百分含量各不相同,RMP和CMP均以酚类化合物含量最高,FMP中酯类化合物含量最高,而DMP以醇酸类化合物含量最高。
     3.研究了超高静压、超声波、微波三种辅助方法对糖蜜羰氨制香的影响,三种方法羰氨制备的产物分别是PMP、UMP和MMP,经GC/MS分析,发现PMP和MMP中皆以吡嗪类化合物为主,而UMP中酯类化合物所占比例较大。同样反应条件下制备的UMP与GGP相比,GGP以吡嗪类化合物为主,占总风味产物的56.26%,酯类化合物次之;而UMP中吡嗪类等产物所占比例均衡,酯类化合物占比最大,可以采用廉价的糖蜜替代纯葡萄糖进行羰氨反应制备香料。
     4.采用响应面和嵴岭分析方法对超高静压辅助糖蜜羰氨制香的工艺进行优化,得出PMP最佳制备条件:反应压力400MPa,反应体系初始pH值11,糖氨比(糖蜜中还原糖与氨基酸摩尔比)1:1;该工艺条件经实验验证后,PMP实际的金属还原力在700nm下测定的吸光度:1.915±0.009,与预测值2.049基本一致。且优化条件下制备的PMP在饼干和肉酱中的应用效果良好,产品中带有糖蜜特有的风味。
In this paper, sugarcane molasses was taken as a raw material to produce flavor according to Maillard Reaction. The effect of pretreatment on the flavor making from molasses was comprehensively studied, and GC/MS was applied to analyse the volatile of flavor. In addition, the techniques of making flavor from molasses by different methods were put into the research.
     1. Single factor Experiment and Orthogonal Experiment were applied to study the pretreatment of molasses. The results were as followed: molasses was diluted in 6 times. H3PO4 and PAM co-flocculation was adopted to clarify molasses in this way: 0.025% H3PO4 was added, adjusting pH to 7 by lime, mixing 0.0005% PAM, floccing in 85℃water-bath for 10min, centrifuging, and save supernatant liquid. Then, acidolysis molasses into reducing sugar on the condition of pH 2 and 100℃water-bath for 90min. Finally, electroosmosis was used on 30V, 70L/hr to desalt molasses, then, the changes of molasses component after pretreatment were analysed by GC/MS.
     2. Silicagel column chromatography was adopted to verify the feasibility of making flavor from molasses, and the influence of pretreatment on flavor prepareation technology was investigated thoroughly. After Maillard reaction, pH of RMS, FMS, CMS and DMS were descended, while the absorbance, color, and reducing power were increased, especially in FMS. GC/MS was used to analyse the volatile of RMP, FMP, CMP and DMP. The results showed that they all contained Carbonyls, Alcohol, Nitrogen heterocyclic ring, phenols, esters and alkane, the biggest difference was the percentage of composition. Phenols were at most in RMP and CMP, and esters were maximum amount in FMP, while Alcohol compounds were the most part of DMP.
     3. The influence of Ultra-high Hydrostatic Pressure, Ultrasound Wave, and Microwave on flavor prepareation technology was researched. Under the condition of Ultra-high Hydrostatic Pressure and Microwave, pyrazine was the main component of PMP and MMP, while Ultrasound Wave promoted the generation of esters better, although there were also some pyrazines produced in UMP. Compared UMP with GGP preparing under the same condition, pyrazine was most in GGP, accounting for 56.26%, and esters took second place. In UMP, there were carbonyls and phenols, more than just pyrazine and ester, that’s mean, the cheap molasses could replace glucose to make flavor according Maillard.
     4. Finally, response surface experiment and SAS analysis software were employed to optimize the technology of making flavor from molasses under Ultra-high Hydrostatic Pressure. The optimum condition of producing PMP was as follows: reaction pressure was 400 MPa, pH of the initial system was 11 and Sugar: Amino acid in molasses was 1:1. The optimum condition was tested through experiment, which showed the reducing power of the Maillard products from molasses on 700nm was 1.915±0.009, which is in line with the predicted value of 2.049. PMP produced under the optimum condition was applied well in cookies and meat paste which were full of the special flavor from molasses.
引文
[1]陈其斌,周重吉.甘蔗制糖手册(第12版)[M].华南理工大学出版社, 1993. 304.
    [2]李雷斌,于继英.糖蜜与甜味剂在饲料生产中的应用[J].今日畜牧兽医, 2006(10): 46, 47.
    [3] NCCE甘蔗糖蜜交易操作手册[Z].
    [4]张捷,董爱军.糖蜜的资源化利用(上)[J].中国甜菜糖业, 2007(02): 38-40.
    [5]广东烨牧[Z]. http://www.gxyemu.com/gb/gxtangmi.asp.
    [6] Fadel J G, Peter E J, Arosemena A. Coposition and digestibility of beet pulp with and without molasses and dried using three methods[J]. Animal Feed Science and Technology, 2000, 85(12): 121-129.
    [7] Aksu T, Baytok E, Karsh M A, et al. Effects of formic acid, molasses and inoculant additives on corn silage composition, organic matter digestibility and microbial protein synthesis in sheep[J]. Small Ruminant Research, 2006, 61(1): 29-33.
    [8] Weinberg Z G, Chen Y, Weinberg P. Ensiling olive cake with and without molasses for ruminant feeding[J]. Bioresource technology, 2008, 99: 1526-1529.
    [9]李改英,高腾云,傅彤,等.不同糖蜜添加量对紫花苜蓿青贮品质和发酵进程的影响[J].华中农业大学学报, 2008(05): 625-628.
    [10]秦祖赠,刘自力.甘蔗糖蜜制取液体糖工艺的研究[J].食品研究与开发, 2006(02): 69-71.
    [11]张捷,董爱军.糖蜜的资源化利用(上)[J].中国甜菜糖业, 2007(02): 17-20.
    [12]秦菊霞,苏萍,黄谷亮等.甘蔗糖蜜用米根霉发酵产乳酸的研究[J].食品工业, 2008(05): 44-46.
    [13] Murphy J J. The effects of increasing the proportion of molasses in the diet of milking dairy cows on milk production and composition[J]. Animal Feed Science and Technology, 1999, 78: 189-198.
    [14]广东省制糖学会.国外甘蔗综合利用技术资料集[J]. 1999: 44-52.
    [15]宾永强.用离子排斥法回收废蜜糖分[J].中国甜菜糖业, 1999(04): 23-26.
    [16]谢宪章,陈夏,吴新敏.甘蔗糖蜜开发食用液糖的研究[J].甘蔗糖业, 1999(04): 41-45.
    [17]李丽.果胶酶处理糖蜜后生产红糖粉的研究[J].广西轻工业, 2005(05): 17-18.
    [18] Ren N, Li J, Li B. Biohydrogen production from molasses by anaerobic fermentation with a pilot-scale bioreactor system[J]. International Journal of Hydrogen Energy,2006, 31(15): 2147-2157.
    [19]翁庆北,纪黔生,赵维娜.固定化酵母发酵废糖蜜生产酒精[J].贵州师范大学学报(自然科学版), 2000(03): 49-51.
    [20]糖蜜发酵生产味精工艺介绍[J].黑龙江发酵, 1975(01): 19-24.
    [21]孙端生.糖蜜代替玉米浆生产味精试验[J].黑龙江发酵, 1975(03): 13-14.
    [22] Wee Y, Kim J, Yun J, et al. Utilization of sugar molasses for economical L(+)-lactic acid production by batch fermentation of Enterococcus faecalis[J]. Enzyme and Microbial Technology, 2004, 35(568-573).
    [23]关力,胡立杰,孟哲,等.废蜜制取乳酸新菌种[J].中国甜菜糖业, 2006(02): 34-37.
    [24]乐祖,金田.广西糖蜜应在本地生产高附加值的酵母产品[J].广西蔗糖, 2003(01): 31-34.
    [25]杨芳,陈宁,张克旭.甘蔗糖蜜发酵生产谷氨酸的研究[J].现代食品科技, 2006(03): 45-47.
    [26]吴莉莉.低浊度核糖核酸生产工艺技术[J].广西轻工业, 2000(02): 18-20.
    [27]郑国香,任南琪,孟哲,等.废蜜的化学组成与生物制氢[J].中国甜菜糖业, 2006(01): 1-4.
    [28]汤兴俊,卢林海,黄晓丹,等.甘蔗糖蜜生产焦糖色素的研究[J].广州食品工业科技, 2003(03): 1-3.
    [29]汤兴俊,卢林海,杨明智.利用甘蔗糖蜜生产焦糖色素的研究[J].中国酿造, 2003(05): 11-13.
    [30]李国基,耿予欢,于淑娟.利用糖蜜生产焦糖色素的研究[J].甘蔗糖业, 2000(05): 38-41.
    [31] Schreier P, Winterhalter P. Process in flavor precursor studies[M]. Weston, USA: Allured Publishing , 1993.
    [32] Hodge J E. Chemistry of browning reaction in model systems[J]. Agriculture Food Chemistry, 1953: 928-943.
    [33] Billaud C, Adrian J. Louis-camille Maillard,1878-1936[J]. Food Review International, 2003, 19(4): 345-374.
    [34] Jennifer M A. Application of the Maillard reaction in the food industry[J]. Food Chemistry, 1998, 62(4): 431-439.
    [35] Mauron J. The Maillard reaction in food chemical, physiological and technology aspects[M]. Eriksson C. Chalmers University, Sweden, 1981. 5-35.
    [36]隋伟.热反应虾味香精的制备[D].江南大学, 2006.
    [37]龚巧玲,张建友,刘书来,等.食品中的美拉德反应及其影响[J].食品工业科技, 2009(02): 330-334.
    [38] Petra M, Thomas H, Peter S. Comparison of key odorants generated by thermal treatment of commercial and self-prepared yeast extracts: influence of the amino acid composition on the odorant formation[J]. Journal of agricultural and food chemistry , 1997, 45: 1338-1344.
    [39] Ou Y C, Thomas G, Hong C T. Volatile compounds gernerated from the maillard reaction of pro-gly, gly-pro, and a mixture of glycine and praline with glucose[J]. Journal of agricultural and food chemistry , 1992, 40: 1878-1880.
    [40]吴跃. Maillard反应型可可香料制备研究[D].江南大学, 2007.
    [41]刘立国.美拉德反应产物研究进展[J].维普数据库.
    [42]天也庆之.肉制品加工工艺[M].北京:中国轻工业出版社, 1992.
    [43] Boekel M A J S. Formation of flavor compounds in the Maillard reaction[J]. Biotechnology Advances, 2006, 24: 230-233.
    [44] Brands C M J, Wdzicha B L, Boekel M A J S. Quantification of melanoidin concentration in sugar-casein systems[J]. Jouranl of Agricultural and Food Chemistry, 2002, 50: 1178-1183.
    [45] Ho C T. The Maillard reaction consequences for the chemical and life science[J]. Wiley, 1996: 27-53.
    [46] Weenen H. Reactive intermediates and carbohydrate fragmentation in Maillard chemistry[J]. Food Chemistry, 1998, 62: 393-401.
    [47] Martins S I F S, Boekel A A J S. Kinetics of the glucose-glycine Maillard reaction pathways: influences of pH and reactant initial concentrations[J]. 92, 2005: 437-448.
    [48] Yaylayan V A. Classification of the Maillard reaction: a conceptual approach[J]. Trends in Food Science and Technology, 1997, 8(13-18).
    [49]彭奇均.对以美拉德反应形成的肉类香精在气相色谱分析中不同富集方法比较[J].无锡轻工业学院学报, 1991(01): 13-22.
    [50]钱建亚,刘靖.美拉德反应产物的抗突变作用[J].食品科学, 1997(08): 11-13.
    [51]茅林春,陈忠明,李卫芬,等.牛奶加热过程中初始美拉德反应的程度[J].浙江农业大学学报, 1997(04): 81-85.
    [52]胡见曙.食品风味化学中的美拉德反应[J].无锡轻工业学院学报, 1989, 8(2):85-90.
    [53]郑文华,许旭.美拉德反应的研究进展[J].化学进展, 2005(01): 122-129.
    [54] Gu F L, Kim J M, Shabbar A, et al. Structure and antioxidant activity of high molecular weight Maillard reaction products from casein–glucose[J]. Food Chemistry, 2010, 120(2): 505-511.
    [55] Yu A N, Zhang A D. The effect of pH on the formation of aroma compounds produced by heating a model system containing L-ascorbic acid with L-threonine/L-serine[J]. Food Chemistry, 2010, 119(1): 214-219.
    [56] Meynier A, Donald S M. The effect of pH on the formation of volatile compounds in meat-related model systems[J]. Food Chemistry, 1995, 52: 361-366.
    [57] Cremer D R, Eichner K. The reaction kinetics for the formation of Strecker aldehydes in low moisture model systems and in plant powders[J]. Food Chemistry, 2000, 71: 37-43.
    [58] Osada Y, Shibamoto T. Antioxidative activity of volatile extracts from Maillard model systems [J]. Food Chemistry, 2006, 98(522-528).
    [59] Caillard R, Remondetto G E, Subirade M. Rheological investigation of soy protein hydrogels induced by Maillard-type reaction[J]. Food Hydrocolloids, 2010, 24(1): 81-87.
    [60] JoséA R H, Cristina D A, Francisco J M. Assessing the Maillard reaction development during the toasting process of common flours employed by the cereal products industry[J]. Food Chemistry, 2009, 114(1): 93-99.
    [61] Silvia B M, Patricio R S, María D P B. The effect of MgCl2 on the kinetics of the Maillard reaction in both aqueous and dehydrated systems[J]. Food Chemistry, 2010, 118(1): 103-108.
    [62] Kwak E J, Lim S I. The effect of sugar, amino acid, metal ion, and NaCl on model Maillard reaction under pH control[J]. Amino Acids, 2004, 27(1): 85-90.
    [63] Danute T R, Milda K, Adams A, et al. The interaction of metal ions with Maillard reaction products in a lactose–glycine model system[J]. Food Research International, 2009, 42(3): 331-336.
    [64] Begum M S A, Saha S, Nethaji M, et al. Synthesis, crystal structures and protease activity of amino acid Schiff base iron(III) complexes[J]. Indian Journal of Chemistry Section A-Inorganic Bio- Inorganic, 2009, 48(4): 473-479.
    [65] Bian H D, Huang F P, Yang X, et al. Synthesis, crystal structures and magneticproperties of two new nickel(II) complexes with alpha-amino acid Schiff base[J]. Journal of Coordination Chemistry, 2008, 61(5): 802-809.
    [66] Neelakantan M A, Raj F R, Spillai M. pectroscopy, electrochemistry and biocidal activity of amino acid Schiff base metal complexes[J]. Journal of The Indian Chemical Society, 2008, 85(1): 100-104.
    [67] Nursten H E. Recent developments in studies of the Maillard reaction[J]. Food Chemistry, 1980, 6: 263-277.
    [68]艾萍,张伟民.论述利用美拉德反应来制备牛肉香味料[J].中国调味品, 2002, 7: 32-35.
    [69]宋焕禄,廖国洪.鸡肉酶解物/酵母抽提取物-Maillard反应产生肉香味化合物的研究[J].食品科学, 2001(10): 83-85.
    [70]张彩菊,张慜.利用美拉德反应制备鱼味香料[J].无锡轻工大学学报, 2004(05): 11-15.
    [71]曾庆梅,潘见,谢慧明,等.超高压灭活枯草芽孢杆菌(AS1.140)的参数优化[J].农业工程学报, 2005(04): 158-162.
    [72] Jao C L, Huang J S, Ko W C. A kinetic study on inactivation of tilapiamyosin Ca-A T Pase induced by high hydrostatic pressure[J]. Food Chemistry, 2007, 101(1): 65-69.
    [73] Buckow R, Heinz V, Knorr D. High pressure phase transition kinetics of maize starch[J]. Journal of Food Engineering, 2007, 81(2): 469-475.
    [74] Considine T, Patel H A, Anema S G. Interactions of milk proteins during heat and high pressure treatments: a review[J]. Innovative Food Science and Emerging Technologies, 2007, 8(1): 1-23.
    [75] Hill V M, Isaacs N S, Ledward D A, et al. Effect of High Hydrostatic Pressure on the Volatile Components of a Glucose-Lysine Model System[J]. Journal of Agricultural and Food Chemistry, 1999, 47: 3675-3681.
    [76] Huang T C, Fu H Y, Ho C T. Mechanistic Studies of Tetramethylpyrazine Formation under Weak Acidic Conditions and High Hydrostatic Pressure[J]. Journal of Agricultural and Food Chmistry, 1996, 44: 240-246.
    [77] Moreno F J, Molina E, Olano A, et al. High-Pressure effects on Maillard reaction between glucose and lysine[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 394-400.
    [78]王静,韩涛,李丽萍.超声波的生物效应及其在食品工业中的应用[J].北京农学院学报, 2006(01): 67-75.
    [79]冯若,李化茂.声化学及其应用[M].合肥:安徽科学技术出版社, 1992. 23-25.
    [80] Mason T, Riera E, Vercet A, et al. Application of Ultrasound[J]. Emerging Technologies for food processing, 2005, 13: 323-351.
    [81]王章存,康艳玲.微波技术在粮油食品中应用[J].粮食与油脂, 2006(09): 16-17.
    [82] Oliveira M E C, Franca A S. Microwave heating of foodstuffs[J]. Food Engineer, 2002, 53: 347-359.
    [83] Maskan M. Kinetics of colour change of kiwifruits during hot air and mircrowave drying[J]. Food Engineer, 2001, 48(169-175).
    [84] Schieberle P, Bareth A, Fischer R, et al. Application of the Camola approach (carbohydrate modul labeling) to clanify the formation of potent aroma and taste compounds in Maillard type reactions[M]. Abstract of papers of the American Chemical Society, 2002. 224.
    [85]吴肖.牛肉风味热反应体系的建立及稳定性研究[D].华南理工大学, 2007.
    [86]潭秀芳,李晓瑾,刘力.气质联用技术分析新疆阿魏的挥发油成分[J].新疆医科大学学报, 2003, 26(3): 283.
    [87]仇厚援,王志勇,贺利民.气质联用法分析对虾头酶解液与木薯淀粉糖浆美拉德反应物[J].食品科学, 2003(04): 121-123.
    [88] Coleman W M, Chung H L. Pyrolysis GC-MS analysis of Amadori compounds derived from selected amino acidswith glucose and rhamnose[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63: 349-366.
    [89] Fernandes J O, Ferreira M A. Gas chromatographic-mass spectrometric determination of 4-(5)-methylimidazole in ammonia caramel colour using ion-pair extraction and derivatization with isobutylchloroformate[J]. Journal of Chromatography, 1997, 786: 299-308.
    [90]陈山,王弘,卢家炯.甘蔗制糖业副产物的综合利用[J].食品与发酵工业, 2005(01): 104-108.
    [91]田广文,陈德育,李学俊,等.猪苓多糖苯酚-硫酸法测定条件的优选[J].中国农学通报, 2007(07): 75-78.
    [92] Carlerb F, Zerban W. Determination of total reducing sugars and of dextrose and levulose in cane molasses[J]. Analytical Edition, 1938, 10(5): 246-250.
    [93] Browne. Handbook of Sugar Analysis[M]. 1912. 415.
    [94]陈其斌,周重吉.甘蔗制糖手册(12版)[M].广州:华南理工大学出版社, 1993.680-683
    [95]俞俊棠.生物工艺学(上册)[M].上海:华东化工学院出版社, 1991. 335-357
    [96] Ljubinko L, Julianna G, Mirjana D. Optimization of pH value and aluminium sulphate quantity in the chemical treatment of molasses[J]. European Food Research Technology, 2005, 220: 70-73.
    [97]董亮,赵长新,俞志敏,等.硅胶柱层析分离苦豆子系列生物碱[J].农药, 2006(04): 256-258.
    [98]王钦德,杨坚.食品试验设计与统计分析[M].北京:中国农业大学出版社, 2007. 360.
    [99] Chen C P, Meade P. Cane Sugar handbook: a manual for cane sugar manufactures and their chemists (11th)[M]. New York: Wiley, 1985. 428-439.
    [100] Herbert S W. Notes on the analysis of molasses[J]. The Journal of Industrial and Engineering chemistry, 1918, 3: 198-202.
    [101] Zhang Y, Zhang Y. Formation and reduction of Acrylamide in Madillard reaction: A review based on the current state of knowledge[J]. Food Science and Nutrition, 2007, 47: 521-542.
    [102]张良健,岳丕昌.甜菜废糖蜜综合利用的新途径[J].新疆农业科学, 1995(04): 159-160.
    [103]董亮,赵长新,俞志敏,等.硅胶柱层析分离苦豆子系列生物碱[J].农药, 2006(04): 256-258.
    [104] Y. C. Chung, Chen S J, Hsu C K, et al. Studies on the antioxidative activity of Graptopetalum paraguayense E Walther[J]. Food Chemistry, 2005, 91(3): 419-424.
    [105] Shipar M A. Computational studies on glyceraldehydes and glycine Maillard reaction-Ⅲ[J]. Journal of Molecular Structure: THEOCHEM, 2004, 712: 39-47.
    [106] Meynier A, Donald S M. he effect of pH on the formation of volatile compounds in meat-related model systems [J]. Food Chemistry, 1995, 52: 361-366.
    [107]周正红,贾宗剑,李静,等. Maillard反应产物及其在烟草中的增香研究[J].暨南大学学报(自然科学与医学版), 1999(03): 110-116.
    [108] Lertittikul W, Benjakul S, Tanaka M. Characteristics and antioxidative activity of Maillard reaction products from a porcine plasma protein-glucose model system as influenced by pH[J]. Food Chemistry, 2007, 100: 669-677.
    [109] Benjakul S, Lertittikul W, Bauer F, et al. Antioxidant activity of Maillard reaction products from a porcine plasma protein–sugar model system[J]. Food Chemistry,2005, 93: 189-196.
    [110] Ten G C, Chen H U. Antixidant activity of various tea extracts in relation to their antimutagenicity[J]. Journal of Agriculture Food Chemisty, 1995, 43(1): 27-32.
    [111] Lingert H, Hall G. Formation of antioxidative Maillard reaction produts during food processing ,Amino2carbonyl reactions in food and biological systems[M]. Tokyo: Elsevier, 1986. 273-279.
    [112] Duh P D. Antiodant activity of Budrock Arctium lappa Linn: its scavenging effect on free radical and active ovengy[J]. JAOCS, 1998, 75: 455-461.
    [113] Gordon M F. The mechanism of antioxidant action in vitro. in Food antioxidants[M]. London,UK: Elsevier Applied Science, 1990. 1-18.
    [114]吴松.两种氨基酸的梅拉德反应中低分子致香成分的研究[J].贵州工业大学学报(自然科学版), 2001(06): 7-10.
    [115]王延平,马志玲.美拉德反应产物研究进展[J].食品科学, 1999, 1: 15.
    [116]吴松,秦军. Maillard反应的机理研究[J].贵州工业大学学报(自然科学版), 2005(04): 17-20.
    [117] Coffey J S, Nursten H E. A liquid chromatographic method for the estimation of Class III caramel added to foods[J]. Food Chemistry, 1997, 58(3): 259-267.
    [118] Shibamoto T, Bernard R A. Effect of time, temperature and reactant ratio on pyrazine formation in model systems[J]. Journal of Agricultural and Food Chemistry, 1976, 24: 847-851.
    [119] Koehler P E, Odell G V. Factors affecting the formation of pyrazine compounds in sugar-amine reactions[J]. Journal of Agricultural and Food Chemistry, 1970, 18: 895-898.
    [120] Hwang H T, Hartman T G, Rosen R T, et al. Formation of pyrazines from the Maillard reaction of glucose and lysine-R-amine-N[J]. Journal of Agricultural and Food Chmistry, 1994, 42: 1000-1004.
    [121] Gao S, Oh D H, Broadbent J R, et al. Aromatic amino acid catabolism by lactococci[J]. Le Lait, 1997, 77: 371-381.
    [122] Yvon M, Thirouin S, Rijnen L, et al. An aminotransferase from Lactococcus lactis initiates conversion of amino acids to cheese flavor compounds[J]. Applied and Environmental Microbiology, 1997, 63: 414-419.
    [123]王家强,杨生平,杨伟祖.微波加速Maillardr反应实验[J].烟草科技, 1995(01):18-19.
    [124]袁春伟. Maillard反应中吡嗪形成的研究[J].东南大学学报, 1990(04): 138-141.
    [125] Zhang Y G, Ho C T. Formation of meatlike aroma compounds from thermal reaction os inosine monophoosphate with cysteine and glutahione[J]. Journal of Agricultural and Food Technology, 1991, 39: 1145-1148.
    [126]国家标准化管理委员会编.中国强制性国家标准汇编食品卷1(第三版)[M].北京:中国标准出版社, 2003.
    [127] Boekel V M A J. Kinetic aspects of the Maillard reaction:a critical review[J]. Nahrung/Food, 2001, 45(3): 150-159.
    [128] Jousse F T, Jongen W, Agterof S, et al. Simplified kinetic scheme of flavor formation by the Maillard reaction[J]. Journal of Food Science, 2002, 67(6): 2534-2542.
    [129] Box G E P, Hunter W G. Statistics for experiments:an introduction to design, data analysis and model building[M]. New York: Wiley, 1990.
    [130] Ajandouz E H, Desseaux V, Tazi S, et al. Effects of temperature and pH on the kinetics of caramelisation, protein cross-linking and Maillard reactions in aqueous model systems[J]. Food Chemistry, 2008, 107(3): 1244-1252.
    [131]黄燕,吴平. SAS统计分析及应用[M].机械工业出版社, 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700