用户名: 密码: 验证码:
钢结构损伤累积至断裂及损伤负向激励的长期效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在许多钢结构损伤累积至破坏的工程问题中,各种载荷的随机性和结构材料缺陷是客观存在的。本文从数学方法论角度出发,采用多学科交叉的研究方法,在广泛综合固体力学、流体力学、数学、物理、材料学、传热学等领域的知识和进展的基础上,利用微分方程相似变换理论、函数分析理论、积分方程理论、广义函数理论、随机过程和随机振动和优化设计等,从理论分析、数学模化和数值模拟等多方面对常规与非常规边界条件下的钢结构互联损伤、损伤过程能量相互传递、损伤域扩展、能量遗失和损伤累积至失效问题的解析求解、解的性态及相应的比较行为进行了深入系统研究,目的在于进一步揭示钢结构损伤、破坏、可靠性和服役期限等问题内在的本质联系,并为适当解决一些实际钢结构工程问题给出理论基础和方法依据。
     大跨度、高层钢结构(钢桥)是一个国家经济的组成部分之一,它们的巨大投资及在国民经济中的重要作用,并且紧系人民生命和财产的安全,使得大跨度钢结构(桥梁)的安全性、耐久性和正常使用功能也越来越受到重视。
     本文的研究工作为钢结构损伤累积至断裂及损伤负向激励的长期效应的建立给出了部分实用、有效的解决方案,为钢结构安全设防系统的进一步发展应用给出一些理论成果。
     首先,为分析钢结构损伤累积至断裂的演变过程,从含初始缺陷钢结构的敏感性出发,给出了基于钢结构动态损伤响应分析的断裂数值模拟理论框架,指出该问题的实质是求解钢结构在工作应力低于屈服应力的情况下发生断裂对应于初始缺陷对疲劳寿命增加的百分数。设定初始缺陷为敏感激励参数,并给出疲劳寿命、强度退化以及二者间的数学计算模式。应用确定安全期限的缺陷敏感性理论,运用强度退化方法计算并比较不同初始缺陷情况下钢结构抗断裂韧性和疲劳寿命数值之间的偏差,表明了方法的可行性和有效性。这些结论可为钢结构安全设防提供适当指导和参考。
     其次,焊接钢桥结构持续损伤至破坏的过程可以从两方面加以分析:一方面要考虑此过程中能量的耗散;另一方面要考虑此过程中焊接部位损伤负向激励。基于格里菲斯能量准则思想,给出了结合动态能量相互传递与遗失理论(TETL)和损伤负向激励机制(MDPE)并考虑焊接钢桥结构剩余寿命的综合评估方法。将给出的综合评估标准拟合到钢桥结构中,耦合了损伤负向激励机制与焊接结构参数之间的一些关系。从而有机地促进了能量相互传递与遗失理论和损伤负向激励两个方向的整体结合。在说明方法的有效性时,给出悬臂梁和X形框墩二者的焊接连接的简单算例,并与基于S-N曲线的CD法和检测评估方法进行了分析比较,为钢桥结构安全寿命给出了一种较为朴实、简单的预测方法。
     此外,互联损伤网络存在能量消耗的过程,能量传递优化是利用损伤累积过程的时差,能适当调整损伤累积的开始和结束时间段,以达到减少峰期的耗散量,增加低谷期的耗散量,使各局部能量相互传递趋于均衡。在互联损伤传递网络的实际问题中,对于损伤量有两个方面的要求:一是每个途上的损伤量不能超过该途的最大通过能力;二是途点的传递量认为为零。损伤稳定时间域是一类统计特性不随时间推移而变的时间域。将这类时间域拟合到工程技术中,并介绍损伤稳定时间域的一些理论及其简单应用,包括损伤稳定时间域及其相关函数、各态历经性、谱密度、时间域谱分解、能量系统中的损伤稳定时间域等。
     同时,客观地评价持续损伤至结构的破坏行为是确保实现钢结构安全设防的因素之一。对于工程中钢结构的疲劳(累积)损伤给出了一些新思维:如钢结构能量的传递和释放过程、损伤稳定时间域推理、钢结构Runge-Kutta裂纹扩展、互联损伤传递网络、钢结构耐久性和综合评估并考虑钢结构服役期限的建模预测方法。基于钢结构损伤的各种关系和Irwin—Orowan的能量准则,并给出了模型参数的度量及计算方法。表述了互联多维损伤和耗能之间同步变化与协调发展的内在微薄规律。之后,给出了一些理论和工程中的例子,并做出计算分析。数值分析的结果对钢桥结构的安全设防会有适当的实践指导意义。
     最后,交通载荷、风载荷、地震、海浪载荷等作用下钢结构破坏机理的研究,将有助于钢结构建造物安全设防能力水平及服役期限的提高。同时,材料缺陷、损伤、破坏、断裂、残余应力、能量准则、优化规划和可靠性评估相互之间的交叉研究将会促进钢结构建筑物向经济型、安全型、适用型发展,为钢结构工程的应用展开广阔的前景。
In many structure-engineering accidents, each kind of loading and the structural material flaw is the objective existence. This paper embarks from the mathematics methodology, and makes use of the multi-subjects overlapping research technique. On the base of widespread synthesis of the domain about solid mechanics, hydromechanics, mathematics, physics, material science, heat transfer science, using the theory of differential equation of similarity transformation, function analysis, integral equation, generalized function, stochastic process, stochastic vibration and optimized design. Based on the theory of the mathematics simulation and the value simulation, the paper concerned with the conventional and the non-conventional boundary condition about the steel structures of inter-damage, the damage process of energy inter-transmission, the expansion of damage domain, the energy dissipation and the destruction, which is the problems of the analytical solutions, the solution condition and the behavior of corresponding comparison under the system of research in every way. The goal is thoroughly revealing the problems of intrinsic essence about the steel structures damage, the destruction, the reliability, the service deadline and so on, and provided the method basis and the rationale for the solution of actual project.
     The great span, the high level steel structure (steel bridge) is one of ingredient in national economy, their huge investment, the vital role in national economy, which links security to the people life and the property. The great span of steel structures have some characteristics in the security, the durability and the normal using function, which become more and more to be valued.
     The researches is steel structures damage accumulated to fracture and the long-term effect of damage passive encouragement, which establish a series of practical, effective solution for the steel structures engineering, and provided the rich theory for further development and application of the system of security defense.
     First, the numerical simulation method that is based on the dynamic damage responses of initially flawed steel structures is proposed. It is pointed out that the critical step is to solve the fractures of steel structures with working stress lower than yield stress. In order to analyze the developing process from damaging to fracturing of steel structure, the sensitivity of the initially flawed structures used to predict the damage accumulation is presented. The initial crack is regarded as the sensitivity parameters, and the mathematical models are provided for the fatigue damage of steel structures. Numerical examples are presented to demonstrate the feasibility and effectiveness of the proposed method for the fracture toughness and fatigue life of steel structures with different initial flaws. The conclusions can offer guidelines for the security design of steel structures.
     Second, for the behavior of structure fracture, the dissipation of energy and the damage of passive encourage should be taken into consideration in the course of dynamic damage. The paper presents a comprehensive assessment method which combines the theory of energy transmission and loss (TETL) and the mechanism of the damage of passive encouragement (MDPE). The comprehensive assessment standard has been applied to the case of steel bridge, which defined the relation between the mechanism of the damage of passive encourage and welded structure parameters. These tremendously improve the combination of TETL and MDPE. The results are compared with the method of CD and target reliability, numerical simulation about steel bridge demonstrates that method the paper presented is reasonable and effective. There are certain application prospects in the security design of the steel bridge.
     Besides, the network of damage exists in the process of energy dissipation. The optimizes of energy delivery can be make use of the time difference in the process of damage accumulation mainly, adjusts the damage accumulation about the beginning of loss and end of time section, to reaching the amounts of consumption and cutting down peak-hour, the delivery increases the amounts of dissipation that lowers the point of expectation, making every part of energy tends to balance.
     In actual problem of interconnection damage, it can be seen, damage amounts have obvious two requests. One is that the damage amounts on every way cannot exceed the maximal of the capacity. Two is that the amounts of delivery in the process are zero. The time region of damage stable is a kind of time region that not following time to develop. This kind of time region is comparatively common in the engineering. Article introduce that the time region of damage stable about a few concepts and project applies, include time region and their relevance function, every state of time, spectral density, spectral decomposition, the time region of damage stable in the energy system and so on.
     Meanwhile, the behavior of structure fracture because of dynamic damage, which need appraise correctly, is the key to realizing the security defense of steel structures. The paper concerned with the damage of steel structures in engineering application and put forward some new thought, such as, energy transmission and its dissipation, the speculation of time region of damage stable, Runge-Kutta crack development, the network of damage transmission, durability and life assessment, and considered the model of comprehensive assessment for the service deadline of steel structures. Based on the damage of constitutive relations and the energy criterion of Irwin—Orowan, expounded the inherent laws of multi-dimensional damage and energy dissipation between the synchronized change and the coordination development, and set the method of the model of parameters. The case of comparative computation demonstrates that the precision and numerical efficiency that the paper given is parallel to the traditional assessment, which offers some value applications in the multi-security defenses of steel structures.
     At last, the researches of the mechanism of steel structural destroys under the function of the traffic loading, wind loading, earthquake loading, waves loading is an enhancement for the ability of security defense and service deadline of the building. At the same time, the mutually studies among the material flaw, the damage, the destruction, the fracture, the residual stress, the energy criterion, the optimized plan and the reliability appraises, which will promote structural building to the development of the economy, safety and suitability, launches the broaden prospect for the steel structures of project applications.
引文
[1] 陈绍蕃.钢结构[M].北京:中国建筑工业出版社,2004.
    [2] 夏志斌,姚谏.钢结构—原理与设计[M].北京:中国建筑工业出版社,2004.
    [3] 陈富生,邱国桦,范重.高层建筑钢结构设计[M].北京:中国建筑工业出版社,2000.
    [4] 杨卫.基于延性撕裂过程的缺陷评定方法[J].力学学报,1987,19(6):516—523.
    [5] 叶梅新,黄琼.钢结构事故研究[J].长沙铁道学院学报,2002,20(4):6—10.
    [6] 尹德钰.国内网架结构事故分析及措施[J].特种结构,1990,5(4):49—54.
    [7] 江见鲸,龚晓南,王元清,崔京浩.建筑工程事故分析与处理[M].北京:中国建筑工业出版社,1998.
    [8] 雷宏刚.钢结构事故分析与处理[M].北京:中国建材工业出版社,2003.
    [9] 卜良桃,高伟.工程事故分析与对策[M].长沙:中南大学出版社,2005.
    [10] 全国一级建造师执业资格考试用书编写委员会.建设工程项目管理[M].北京:中国建筑工业出版社,2004.
    [11] 全国一级建造师执业资格考试用书编写委员会.房屋建筑工程管理与务实[M].北京:中国建筑工业出版社,2004.
    [12] 全国一级建造师执业资格考试用书编写委员会.建设工程经济[M].北京:中国建筑工业出版社,2004.
    [13] 杨广里.断裂力学及应用[M].北京:中国铁道出版社,1990.
    [14] 李灏.断裂理论与实验研究[M].武汉:湖北人民出版社,1980.
    [15] 尹双增.断裂·损伤理论及应用[M].北京:清华大学出版社,1992.
    [16] 王铎.断裂力学[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [17] Kachanov L M. On the time to failure during creep[J]. Izv. AN SSSR, OTN, 1958, 8:26-31.
    [18] Kachanov L M. Introduction to continuum damage mechanics[M]. Dordrecht: Martinus Nijhoff Publishers, 1986.
    [19] 袁懋昶.断裂力学理论及其工程应用[M].重庆:重庆大学出版社,1989.
    [20] 余寿文,冯西桥.损伤力学[M].北京:清华大学出版社,1997.
    [21] Lemaitre J. 损伤力学教程[M].北京:科学出版社,1996.
    [22] Lemaitre J, Chaboche J L, 余天庆,吴玉树译.固体材料力学[M].北京:国防工业出版社,1997.
    [23] 楼志文.损伤力学基础[M].西安:西安交通大学出版社,1991.
    [24] 李兆霞.损伤力学及其应用[M].北京:科学出版社,2002.
    [25] 吴鸿遥.损伤力学[M].北京:国防工业出版社,1990.
    [26] 王军.损伤理论及其应用[M].北京:科学出版社,1997.
    [27] 余天庆,钱济成.损伤理论及其应用[M].北京:国防工业出版社,1993.
    [28] [美]L.M.卡恰诺夫著,杜善义,王殿富译.连续介质损伤力学引论[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [29] 张行,赵军.金属构件应用疲劳损伤力学[M].北京:国防工业出版社,1998.
    [30] 杨光松.损伤力学与复合材料损伤[M].北京:国防工业出版社,1995.
    [31] Ramesh Talreja. 多幅载荷下的疲劳可靠性[C].重庆:断裂力学(5)论文集,1981,110—118.
    [32] Fatigue data collection of steel constructions[R]. The Science and Technology Report of Metallurgy Ministry Institute of Building Research, 1978, 18. (in Chinese)
    [33] 王栓柱.金属疲劳[M].福州:福建科学技术出版社,1986.
    [34] 曾春华,邹十践.疲劳分析方法及应用[M].北京:国防工业出版社,1991.
    [35] 任伟新,韩建刚,孙增寿.小波分析在土木工程中的应用[M].北京:中国铁道出版社,2006.
    [36] 应力强度因子手册.中国航空研究院主编[M].北京:科学出版社,1981.
    [37] 王雷.多轴随机载荷下疲劳寿命预测方法的研究[D].沈阳:东北大学博士论文,2002.
    [38] 沈成康.断裂力学[M].上海:同济大学出版社,1996.
    [39] Lemaitre J. A continuous damage mechanics model for ductile fracture[J]. Journal of Engineering Materials and Technology, 1985, 107 (1): 83-89.
    [40] Knott J F. Fundamentals of fracture mechanics[M]. Butterworth, London, 1973.
    [41] Atzori B, Lazzarin D, Meneghetti G. Fracture mechanics and notch sensitivity[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(3): 257-267.
    [42] Salawu O S. Detection of structural damage through changes in frequency: a review[J]. Engineering Structures, 1997, 19(9):718-723.
    [43] Hitoshi Furuta, Jianhong He and Eiichi Watanabe, A fuzzy expert system for damage assessment using genetic algorithms and neural networks[J]. Journal of Computing in Civil Engineering, 1996,(11):37-45.
    [44] Doebling S W, Hemex F M, Peterson L D, et al. Improved damage location accuracy using strain energy-based on mode selection criteria[J]. AIAA Journal, 1997,35(4): 693-699.
    [45] Hemez F M, Farhart C, An energy based optimum sensor placement criteria and its application to structural damage detection [A]. Proceedings 12th international modal anal conference[C]. Honolulu: Society of Experimental Mechanic, 1994, 1569-1575.
    [46] Kato M. And Shimada S. Vibration of PC bridge during failure process[J]. Journal of Structural Engineering, ASCE, 1986, 112(7): 1692-1703.
    [47] Shang D G, Yao W X, Wang D J. A new approach to the determination of fatigue crack initiation size[J]. International Journal of Fatigue, 1998, 20(9): 683-687.
    [48] Yang W, Wei Y G. Progressive damage along link bands in fibre-reinforced composite blocks under compression[J]. International Journal of Damage Mechanics, 1992,1:80-101.
    [49] Yang W, Shih CF. Fracture along an interlayer[J]. International Journal of Solids and Structures, 1994, 31:985-1002.
    [50] 郭田福,杨卫.平面应变脆性损伤裂纹场分析[J].固体力学学报,1995,16(2):132—139.
    [51] 杨卫.固体破坏理论的若干问题[J].上海力学,1998,19(4):289—296.
    [52] 周储伟,杨卫,方岱宁.金属基复合材料的强度与损伤分析[J].固体力学学报,2000,21(2):161—165.
    [53] Yang W, Boehler J P. On description of anisotropic damage in composite laminates[J]. Acta Mechanics Sinica, 1991, 7:335-343.
    [54] 杨卫,孙庆平,黄克智.固体的宏细观本构理论与断裂[J].自然科学进展,1993,3 (6):515—524.
    [55] 杨卫,黄克智,余寿文.材料强韧化的宏细观断裂力学理论[J].力学与实践,1991,13(6):1—9.
    [56] 杨卫.细观力学和细观损伤力学[J].力学进展,1992,22 (1):1—9.
    [57] 杨卫.宏微观断裂力学[M].北京:国防工业出版社,1995.
    [58] Yang W. On spatial characterization of damage evolution in a tensile bar[J]. Journal of the Mechanics and Physics of Solids, 1990, 38:725-740.
    [59] 赵永祥.低周疲劳短裂纹行为和可靠性分析[D].成都:西南交通大学博士论文精品文库,2006.
    [60] 谢和平.岩石、混凝土损伤力学[M].北京:中国矿业大学出版社,1990.
    [61] 谢和平.大理岩微观断裂的分形模型研究[J].科学通报,1989,34 (5):365—370.
    [62] Xie Heping, Chen Zhida. Fractal geometry and fracture of rock[J]. Acta Mechanica Sinica, 1998,4 (3): 255-264.
    [63] 谢和平.岩石材料损伤的局部拉破坏[J].岩石力学与工程学报,1988,7 (2):147—154.
    [64] Xie Heping. Fractal kinematics of crack propagation in geomaterials[J]. Journal of China University of Mining&Technology, 1995, 5 (1): 1-8.
    [65] Xie Heping. A fractal model and energy dissipation for en echelon fractures[J]. Journal of China University of Mining&Technology, 1994,4 (2):12-19.
    [66] 徐志斌,谢和平.断裂尺度的分形分布与其损伤演化的关系[J].地质力学学报,2004,10(3):268~274.
    [67] 徐志斌,谢和平.断裂构造的分形分布与其损伤演化的关系[J].武汉理工大学学报,2004,26(10):28—34.
    [68] 谢和平,黄约军.分形裂纹扩展对材料疲劳行为的影响[J].机械强度,1996,18 (1):1—5.
    [69] 谢和平,彭瑞东,鞠杨.变形破坏过程中的能量耗散分析[J].岩石力学与工程学报,2004,23(21):3565—3570.
    [70] 郑宏,俞茂宏.钢构件考虑损伤的有限元分析[J].甘肃工业大学学报,2003,29 (1):104—108.
    [71] 郑宏,俞茂宏,顾强.结构钢损伤本构关系的研究[J].计算力学学报,2001,18 (4):469—472.
    [72] 蔡小平,杭听南.钢结构的损伤安全分析[J].工业建筑,2005,35 (supplement):412—415.
    [73] 郑宏,顾强.高层钢结构梁构件考虑损伤的弹塑性稳定分析[J].钢结构,2001,16 (52): 32—34.
    [74] 郑宏,顾强.钢板件考虑损伤的循环弹塑性大变形分析[J].土木工程学报,2001,34(5):35—39.
    [75] 陈惟珍,G.Albrecht. 应用断裂力学方法计算老钢桥剩余寿命[J].华东公路,2000,5(4):43—46.
    [76] 陈惟珍,G.Albrecht, D. Kosteas. 钢桥焊接构件疲劳寿命预测[J].同济大学学报,2001,29(1):45—49.
    [77] 董宝,沈祖炎.空间钢结构考虑损伤累积效应的恢复力模型及试验验证[J].上海力学,1999,20(4):341—347.
    [78] 董宝.高层钢框架结构在多维地震作用下考虑损伤累积效应的弹塑性反应分析[D].上海:同济大学,1997.
    [79] 董宝,沈祖炎,孙飞飞.考虑损伤累积影响的钢柱空间滞回过程的仿真[J].同济大学学报,1999,27(1):11—15.
    [80] 陈荣毅.高层钢结构巨型结构体系的地震反应损伤累积研究[D].上海:同济大学,2000.
    [81] Shen Zuyan, Dong Bao. An experiment—based cumulative damage mechanics model of steel under cyclic loading[J]. Advances in Structural Engineering, 1997, 1(1): 39-46.
    [82] Shen Zuyan, Dong Bao, Cao Wenxian. A hysteresis model for plane steel members with damage cumulation effects[J]. Journal of Constructional Steel Research, 1998, 48(2/3): 79-87.
    [83] 童乐为,沈祖炎,陈忠延.城市道路桥梁的疲劳荷载谱[J].土木工程学报,1997,30(5):20—27.
    [84] 陈以一,沈祖炎.灾难性荷载作用下钢结构承载力损伤的数值模拟[J].同济大学学报,1996,24(5):487—491.
    [85] 沈祖炎,沈苏.高层钢结构考虑损伤累积及裂纹效应的抗震分析[J].同济大学学报,2002,30(4):393—398.
    [86] 陈以一,蒋兆栋,沈祖炎.建筑钢结构的断裂研究评述与损伤控制设计[J].同济大学学报,1999,27(5):587—591.
    [87] 沈祖炎,董宝,曹文衔.结构损伤累积分析的研究现状和存在的问题[J].同济大学学报,1997,25(2):135—140.
    [88] 余德浩,汤华中.微分方程数值解法[M].北京:科学出版社,2003.
    [89] 杨晓华,姚卫星,段成美.确定性疲劳累积损伤理论进展[J].中国工程科学,2003,5(4):82—87.
    [90] 姚卫星,杨晓华,疲劳裂纹随机扩展模型进展[J].力学与实践,1995,17 (3):1—7.
    [91] P Livieri, R Tovo. Fatigue limit evaluation of notches, small cracks and defects: an engineering approach[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(11): 1037-1049.
    [92] P Colombi, A Bassetti, A Nussbaumer. Analysis of cracked steel members reinforced by pre-stress composite patch[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(1): 59-66.
    [93] 铁摩辛柯,古地尔.弹性理论[M].北京:人民教育出版社,1964.
    [94] 徐芝纶.弹性力学 (下册)[M].北京:人民教育出版社,1982.
    [95] 王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982.
    [96] 谢贻权,林钟祥,丁皓江.弹性力学[M].杭州:浙江大学出版社,1988.
    [97] A G Atkins, Z Chen, B Cotterell. Prediction of the energy dissipation rate in ductile crack propagation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(1): 67-77.
    [98] Sih G C. Energy-density concept in fracture mechanics[J]. Engineering Fracture Mechanics,1973, 5: 1037-1040.
    [99] 津鹫久一郎 (日) 著.老亮,郝松林译.弹性和塑性力学中的变分法[M].北京:科学出版社,1984.
    [100] 丁皓江,何福保,谢贻权,徐兴.弹性和塑性力学中的有限单元法[M].北京:机械工业出版社,1992.
    [101] 李灏.损伤力学基础[M].济南:山东科学技术出版社,1992.
    [102] Kachanov L M. Introduction to continuum damage mechanics[M]. Dordrecht: Martinus Nijhoff Publishers, 1986.
    [103] Chaboche J. Continuum damage mechanics—A tool to describe phenomena before crack initiation[J]. Nuclear Engineering and Design, 1981,64:233-247.
    [104] Chaboche J. Anisotropic creep damage in the framework of continuum damage mechanics[J]. Nuclear Engineering and Design, 1984,79:309-319.
    [105] Chaboche J. Continuum damage mechanics:partⅠ—general concepts[J]. Journal of Applied Mechanics, 1988, 55:59-64.
    [106] 蒋仁言.威布尔模型族[M].北京:科学出版社,1998.
    [107] 邓建,古德生,李夕兵.确定可靠性分析Weibull分布参数的概率加权矩法[J].计算力学学报,2004,21(5):609—613.
    [108] 赵国藩.工程结构可靠性理论与应用[M].大连:大连理工大学出版社,1996.
    [109] 陈夏新,戴福忠.常用铁路桥梁疲劳可靠度研究[C].西安:《工程结构可靠性》全国第四届学术交流会议论文集,1995:234—238.
    [110] Miner A M. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945,12:159-164.
    [111] Rytter A. Vibration based inspection of civil engineering structures[J]. Aalborg: Aalborg University Department of Building Technology and Structural Engineering, 1993.
    [112] 陈淮,曾庆元.特大钢桁梁桥振动分析[J].长沙铁道学院学报,1990,8 (4):84—91.
    [113] 袁发荣,伍尚礼.残余应力测试与计算[M].长沙:湖南大学出版社,1987.
    [114] 李庆芳.断裂力学及其工程应用[M].哈尔滨:哈尔滨工程大学出版社,1998.
    [115] 姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [116] 梁文懂,肖时钧.传递现象基础[M].北京:冶金工业出版社,2006.
    [117] 王涛,朴香兰,朱慎林.高等传递过程原理[M].北京:化学工业出版社,2005.
    [118] 付宝连.弹性力学中的能量原理及其应用[M].北京:科学出版社,2004.
    [119] 童小燕,王德俊,徐灏.疲劳损伤过程的热能耗散分析[J].金属学报,1992,28(4):163—169.
    [120] 叶笃毅,王德俊,童小燕等.一种基于材料韧性耗散分析的疲劳损伤定量新方法[J].实验力学,1999,14(1):80—88.
    [121] 姜绍飞.基于神经网络的结构优化与损伤检测[M].北京:科学出版社,2002.
    [122] 曹志远.土木工程分析的施工力学方法[J].工程力学增刊,1996,A01:71—77.
    [123] 汪树玉,杨德铨,刘国华,张科锋.优化原理、方法与工程应用[M].杭州:浙江大学出版社,1991.
    [124] 胡宁,王祥,姚振汉等.利用模态实验数据进行结构损伤识别[J].工程力学,增刊,1998, A01:246—250.
    [125] 赵淇.基于模态测试数据诊断结构损伤[J].上海大学学报,1998,4(3):237—241.
    [126] 王光远.结构优化设计[M].北京:高等教育出版社,1987.
    [127] 周筑宝.最小耗能原理及其应用[M].北京:科学出版社,2004.
    [128] M Brunet, F Morestin, H Waiter. Damage identification for anisotropic sheet-medals using a nonlocal damage model[J]. International Journal of Damage Mechanics, 2004, 13(1): 35-57.
    [129] 胡海昌.弹性力学的变分原理及其应用[M].北京:科学出版社,1981.
    [130] 胡伍生.神经网络理论及其工程应用[M].北京:测绘出版社,2006.
    [131] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1998.
    [132] M Olsson, M Ristinmaa. Damage evolution in elasto-plastic material—material response due to different concepts[J]. International Journal of Damage Mechanics, 2003, 12(2): 115-139.
    [133] Z Mroz, A Sweryn, A Tomczyk. Fatigue crack growth prediction accounting for the damage zone[J]. Fatigue & Fracture of Engineering Materials & Structures, 2005, 28(1,2): 61-71.
    [134] 别列尼亚E.и.,颜景田译.金属结构[M].哈尔滨:哈尔滨工业大学出版社,1988.
    [135] 钢结构简明设计手册[S].北京:中国建筑工业出版社,1995.
    [136] 小西一郎编,戴振藩译.钢桥(第10分册)[M].北京:人民铁道出版社,1981.
    [137] 汤奇恒,王自强.损伤材料裂纹尖端附近的应力场[J].计算力学学报,1987,19(4):333—341.
    [138] J Lin, Y Lin, T A Dean. A review on damage mechanisms, models and calibration methods under various deformation conditions[J]. International Journal of Damage Mechanics, 2005, 14(4): 299-319.
    [139] 高玉臣,朱葳等.含微裂纹材料的损伤理论[J].力学学报,1987,19(6):541—549.
    [140] K Sadananda, A K Vasudevan. Multiple mechanisms controlling fatigue crack growth[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(9): 835-845.
    [141] 幸坤涛,张家启,岳清瑞.钢结构吊车梁疲劳可靠性分析与评估[J].工程力学,2004,21(1):77—80.
    [142] 王柏生.结构损伤检测与识别技术[M].杭州:浙江大学出版社,2000.
    [143] 应惠清.土木工程施工[M].北京:高等教育出版社,2000.
    [144] Tanaka S, Ichikawa M, Akita S. A Probabilistic investigation of fatigue life and cumulative cycle ratio[J]. Engineering Fracture Mechanics,1984,20(3):501-513.
    [145] 鹫津久一郎.弹性和塑性力学中的变分法[M].北京:科学出版社,1984.
    [146] 杨桂通,树学锋.塑性力学[M].北京:中国建材工业出版社,2000.
    [147] 钱昆润,张星等.建筑施工组织设计[M].南京:东南大学出版社,2000.
    [148] 韩同银,刘庆凡.建设项目施工组织与管理[M].北京:中国铁道出版社,2000.
    [149] 王国周,瞿履谦.钢结构原理与设计[M].北京:清华大学出版社,2003.
    [150] 李继华.建筑结构概率极限状态设计[M].北京:中国建筑工业出版社,1990.
    [151] 傅祥炯.结构疲劳与断裂[M].西安:西北工业大学出版社,1995.
    [152] 甘幼琛,谢世浩.随机振动的基本理论与应用[M].长沙:湖南科学技术出版社,1982.
    [153] 严薇.土木工程项目管理与施工组织设计[M].北京:人民交通出版社,1999.
    [154] 刘次华.随机过程及其应用[M].北京:高等教育出版社,2004.
    [155] Y Kondo, C Sakae, M Kubota, T Kudou. The effect of material hardness and mean stress on the fatigue limit of steels containing small defects[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(8): 675-682.
    [156] Johnson E A, Lain H K, Katafygiotis L, et al. A lienchmark problem for structural health monitoring and damage detection[C]. Proceedings of the 14th ASCE Engineering Mechanics Conference. Texas, 2000.
    [157] 戴诗亮.随机振动实验技术[M].北京:清华大学出版社,1984.
    [158] 刘效尧,蔡健,刘晖.桥梁损伤诊断[M].北京:人民交通出版社,2002.
    [159] 邓淼,严普强.桥梁结构损伤的振动模态检测[J].振动、测试与诊断,1999,19(3):157—163.
    [160] 苏三庆,于家星,王庆霖.钢屋架下弦平台梁疲劳与断裂分析[J].工业建筑,1998,28(2):36—39.
    [161] 任玉珊,李少甫.桥梁钢疲劳断裂性能比较研究和统计分析[J].钢结构,2003,18(66):29—32.
    [162] 陈绍蕃.钢结构设计原理[M].北京:科学出版社,1998.
    [163] 中华人民共和国国家标准.建筑结构荷载规范(GB5000—2001)[S].北京:中国建筑工业出版社,2002.
    [164] 中华人民共和国国家标准.钢结构工程施工质量规范(GB50205—2001)[S].北京:中国计划出版社,2001.
    [165] 唐万民,刘小渝,王晓民.钢结构对接焊焊缝横向残余应力分布研究[J].重庆交通学院学报,2004,23(6):40—42.
    [166] 房德馨,孙丰华.金属的残余应力与振动处理技术[M].大连:大连理工大学出版社,1989.
    [167] 潘黎明,史家均.桥梁安全性与耐久性综合评估研究[J].上海市政工程,1997,4(4):1—7.
    [168] 李永清,冯忠居.用层次分析法评价桥梁的安全性[J].西安公路交通大学学报,2001,21(3):52—56
    [169] Aktan A E, Tsikos C J, Catbas F N, et al. Challenge and opportunities in bridge health monitoring[C]. Proceedings of the 2nd International Workshop on Structural Health Monitoring, Standford: Standford University, 1999:461-473.
    [170] Wahab M M A, Roceck G D, Peeters B. Parameterization of damage in reinforced concrete structures using modal updating[J]. Journal of Sound and Vibration, 1999,228(4):717-730.
    [171] Kim H M, Bartkowics T J. An experimental study for damage detection using a hexagonal truss[J]. Computer and Structure. 2001, 79:173-182.
    [172] Ramesh Talreja. Fatigue reliable assessment under random loading[C]. Chongqing: Proceedings of Fracture Mechanics(5), 1981. (in Chinese)
    [173] L Susmel, D Taylor. Tow methods for predicting the multiaxial fatigue limits of sharp notches[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(9): 821-833.
    [174] M Backstrom, G Marquis. Interaction equations for multiaxial fatigue assessment of welded structures[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(11): 991-1001.
    [175] S Loren. Fatigue limit estimated using finite lives[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(9): 757-766.
    [176] M S Ramos, M V Pereira, F A Darwish, S H Motta, M A Carneiro. Effect of single and multiple overloading on the residual fatigue life of a structural steel[J]. Fatigue & Fracture of Engineering Materials & Structures, 2003, 26(2): 115-121.
    [177] A Otsuka, Y Fujii, K Maeda. A new testing method to obtain mode Ⅱ fatigue crack growth characteristics of hard materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2004, 27(3): 203-212.
    [178] 任延鸿.冲击载荷下疲劳损伤力学及锻锤基础的疲劳损伤分析[D].杭州:浙江大学博士论文,2006.
    [179] 中华人民共和国国家标准.钢结构设计规范(GB50017—2003)[S].北京:中国计划出版社,2003.
    [180] J F Knott. Fundamentals of fracture mechanics[M]. Butterworth, London, 1973.
    [181] Feng Y S. A method for computing structural system reliability with high accuracy[J]. Computers & Structures,1989,33 (1) :1-5.
    [182] Narke H G, Tomlinson G R, Yao J T E Safety evaluation of structure using system identification approaches[J]. Structure Safety & Reliability, Rotterdam.. Bulkema, 1994:829-833.
    [183] S.铁摩辛柯等,胡人礼译.工程中的振动问题[M].北京:人民铁道出版社,1978.
    [184] 范天佑.断裂理论基础[M].北京:科学出版社,2003.
    [185] J Wang. Low cycle fatigue and cycle dependent creep with continuum mechanics[J]. International Journal of Damage Mechanics, 1992,1 (2) :237-244.
    [186] 邓颂九,李启恩.传递过程原理[M].广州:华南理工大学出版社,1998.
    [187] Provan J W.概率断裂力学和可靠性[M].北京:航空工业出版社,1989.
    [188] 章祥荪.概率论和随机过程[M].北京:世界图书出版公司北京公司,1997.
    [189] 谢征勋,罗章.工程事故分析与工程安全[M].北京:北京大学出版社,2006.
    [190] 罗福午.建筑工程质量缺陷事故分析及处理[M].武汉:武汉工业大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700