用户名: 密码: 验证码:
岩石断裂失稳破坏与冲击地压的分叉和混沌特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
不同应力状态下岩石材料的失稳断裂破坏一直是岩石力学与工程研究的重点。本文在对岩石进行平面应变、常规三轴和声发射实验及煤岩CT实验的基础上,采用非线性分叉理论、混沌理论对岩石在断裂失稳过程中的局部化分叉与混沌特征以及冲击地压的混沌特性进行了研究。本文的主要研究成果如下:
     1.根据许多岩石工程处于平面应变状态的实际情况,自行研制了岩石平面应变仪,进行了岩石平面应变实验,并将平面应变实验结果和常规三轴实验结果进行了比较。结果表明,不同应力状态下岩石的失稳断裂表现出不同的本构特性,简单地将常规三轴实验结果应用到处于平面应变状态的实际工程将导致很大的误差甚至得到错误的结论。
     2.为研究岩石材料弹性模量的应力敏感性,进行了不同围压和不同应力水平下岩石的加卸荷循环实验。实验结果分析表明,岩石材料的弹性模量表现出较强的压硬性特点,同时与塑性变形耦合,表现出强烈的非线性性质。
     3.处于平面应变和常规三轴条件下的岩石在中低围压(<40MPa)下均表现为剪切局部化破坏的特征。对破坏后试件剪切面倾角的测量结果显示,在常规三轴情况下,剪切面倾角有随围压增加而降低的趋势;而平面应变情况下试件倾角表现出相对的稳定性,不随围压的变化而变化。
     4.根据岩石的平面应变和常规三轴实验结果,建立了不同应力状态下岩石非关联弹塑性本构模型,应用变形分叉理论的声张量法推导了不同应力状态下的分叉条件。对不同应力条件下岩石分叉的计算结果和实验结果的分析表明,常规三轴条件下,岩石的分叉发生在材料的应变软化即峰值应力出现之后,而平面应变条件下,岩石的分叉发生在应变硬化区,即峰值应力出现之前。
     5.在煤岩CT实验的基础上,通过研究煤岩CT数在不同应力水平时的变化,建立了煤岩CT数演化的混沌模型。对该模型的分析表明,煤岩在断裂失稳过程具有混沌分叉的特点。
     6.在岩石声发射实验基础上,根据混沌理论的非线性时间序列分析方法,对岩石的声发射参数时间序列进行了相空间重构、关联维分析和最大Lyapunov指数的计算。结果表明,岩石声发射时间序列具有混沌特性,描述不同围压下岩石声发射参数演化的最小因子数大于16,说明岩石变形失稳断裂过程是一个极其复杂的非线性动力系统。
     7.在煤岩CT数混沌模型和声发射时间序列混沌分析的基础上,结合损伤力学和耗散结构理论初步提出了混沌损伤的概念,认为岩石变形失稳断裂过程是一个混沌损伤的过程。
     8.结合对煤矿冲击地压发生条件和影响因素的分析,引入单滑块单状态本构模型、双状态本构模型和双滑块模型对煤矿冲击地压的发生机理从非线性动力学的角度进行了研究,分析了不同模型的动力学演化行为,探讨了模型的适用条件。
Instability and failure of rocks during different loading conditions are always important concerns in rock mechanics and engineering. On the basis of an extensive experimental program of conventional triaxial compression, plain strain and CT tests, the formation and orientation of a localization band in the sandstone, the chaotic characteristics of rock fracturing, the CT evolution of the coal rock and rockbursts occurring at deep coal mines were studied using discontinuous bifurcation theories and chaos theories. The results could be summarized as follows:
     1. A new plain strain apparatus for testing mild rocks were designed and built and a series of plain strain tests on sandstone have been performed. The comparison of plain strain experimental results of sandstone to that under conventional triaxial compression shows that the constitutive responses of rocks differ greatly for various loading conditions. Questionable predictions may arise when data obtained from axi-symmetric tests are applied to two dimensional problems.
     2. The unloading-reloading cycles in triaxial tests at different confining pressures have been undertaken to investigate the stress-dependent elasticity of sandstone. The analysis of experimental results show that the elasticity of sandstone is not only stress sensitive but also coupled to the plasticity, manifesting strong nonlinearity.
     3. All sandstone specimens in our test program failed by a single plane called a shear band when subjected to confining pressures lower than 40MPa regardless of loading conditions. The measurements of shear band inclinations of failed specimens indicate that the orientations are decreasing with increasing confining pressures under conventional triaxial compression, while that of specimens subjected to plain strain conditions seem unaffected by varying confining pressures.
     4. The onset and orientation of a localization band formed in sandstone was studied theoretically within the framework of equilibrium bifurcation theory. Corresponding elastoplasitc constitutive models with nonlinear yield and potential functions were developed from plain strain and conventional triaxial compression experiments. The inclinations of shear bands and the bifurcation points were predicted using so-called acoustic tensor method. Comparison of computation results with experimental results indicates that the initiation of a shear band predicted by the three dimensional model occurs closely after the peak axial stress, while the two dimensional model predicts bifurcation will happen within the strain hardening region, i.e. prior to the peak stress.
     5. A model characterizing the CT evolution of coal rocks during uniaxial loading was developed on the basis of CT test on coal rock. Dynamical analysis of the model shows the model behaves chaotically, implying there possibly exists chaotic characteristics in the process of coal rock fracturing.
     6. The acoustic emission time series obtained from conventional triaxial testing on sandstone at different confining pressures was analyzed by use of nonlinear time series techniques including the phase space reconstruction, the correlation dimension analysis and the evaluation of the largest Lyapunov exponent. The analysis concludes that the acoustic emission time series is a chaotic one, and the smallest dimensions of the embedding spaces is 16, indicating the instability process of rocks could be a complex nonlinear dynamical system.
     7. On the basis of the previous analyses of CT evolution model for coal rock and acoustic emission time series of sandstone in connection with damage mechanics and dissipation structure theories, a new definition on damage of rocks is first presented, which is called chaotic damage, and it is thought that damages in rocks during loading may develop in a chaotic way.
     8. The single state variable model, two state variables model, corresponding to a single degree of freedom elastic system, and the two degrees of freedom elastic system are introduced to model the rockbursts occurring frequently at many deep coal mines based on the investigation into the conditions triggering rockbursts. The models’dynamical behaviors and their applicability are discussed in detail.
引文
[1] Wawersik W R, W F Brace. Post failure behavior of a granite and a diabase[J]. Rock Mech., 1917, 3: 61-85.
    [2] R I Borja, A Aydin. Computational modeling of deformation bands in granular media, I: Geological and mathematical framework[J]. Computer methods in Applied Mechanics and Engineering, 2004, 193: 2667-2698.
    [3] K A Issen, J W Rudnicki. Conditions for compaction bands in porous rocks[J]. Journal of Geophysical Research, 2000, 105: 21529-21536.
    [4] Hill R, Hutchinson J W. Bifurcation phenomena in the plane tension test[J]. Journal Mech. Phys solids, 1975, 23: 239-264.
    [5] Rudnicki J W, Rice J R. Conditions for the localization of deformation in pressure sensitive dilatant materials[J]. J Mech Phys solids, 1975, 23: 371-394.
    [6] 龚晓南. 土塑性力学[M]. 杭州:浙江大学出版社,1999.
    [7] Mogi K. Effect of the intermediate principal stress on rock failure[J]. J Geophys. Res. 1967, 72, 5117-5131.
    [8] Brown E T. Fracture of rock under uniform biaxial compression[A]. Advances in Rock Mechanics, Proc. 3rd Congr. ISRM, Denver, Colorado, 1974, 111-117.
    [9] Vardoulakis I. Shear band inclination and shear modulus of sand in biaxial tests[J]. Int. J. Num. Anal. Mech. Geomech., 1980, 4: 103-119.
    [10] 蔡美峰,何满潮,刘东燕. 岩石力学与工程[M]. 北京:科学出版社,2002.
    [11] 郑颖人,刘兴华. 近代非线性科学与岩石力学问题[J]. 岩土工程学报,1996,18(1):98-100.
    [12] 王思敬. 作为现代科学的岩石力学研究与实践[A]. 中国岩石力学与工程学会第五次学术大会论文集,上海:中国科学出版社,1998,17-21.
    [13] Lorenz E N. Deterministic nonperiodic flow[J]. J. Atoms Sci. 1963, 20.
    [14] Ruelle D, Takens K. On the nature of turbulence[J]. Math. Phys., 1971, 20: 167-192.
    [15] Li T Y, Yorke J A. Period three implies chaos[J]. Amer. Math. Monthly, 1975, 82.
    [16] Feigenbaum M J. Quantitative universality for a class of nonlinear transtormations[J]. J. Stat. Phys, 1978, 19(1).
    [17] Feigenbaum M J. The universal metric properties of nonlinear transformations[J]. J. Stat. Phys, 1979, 21(6).
    [18] Takens F. Detecting strange attractors in fluid turbulence[J]. Lecture Notes in Mathematics,1981, 366-381.
    [19] Pakard N H, Crutchfield J P, Farmer J D, Shaw R S. Geometry from a time series[J]. Phys Rev Lett, 1980,45(9): 712-716.
    [20] Grassberger P, Procaccia I. Measuring the strangeness of strange attractors[J]. Physica D, 1983, 9: 189-208.
    [21] Grassberger P. Generalized dimension of strange attractors[J]. Phs. Lett A, 1987, 97.
    [22] 郝柏林. 分叉、混沌、奇怪吸引子、湍流及其他[J]. 物理学进展,1983,3:54-59.
    [23] 郑伟谋,郝柏林. 实用符号动力学[J]. 物理学进展,1990,10:316-322.
    [24] 刘适达. 地球系统模拟和混沌时间序列[J]. 地球物理学报,1990,2:34-39.
    [25] 陈子林. 蕴震系统前兆混沌吸引子及分维[J]. 地震学报,1993,4:102-107.
    [26] Wolf A, Swift J B, Swinney H, Vastano J. Determining Lyapunov exponents from a time series[J]. Physica D, 1985, 16: 285-317.
    [27] Biot M A. Surface instability of rubber in compression[J]. Applied Sci. Res. A, 1963, 12: 168-182.
    [28] Biot M A. Surface instability in finite anisotropic elasticity under initial stress[J]. Pro. Royal Society, A, 1963, 273: 329-339.
    [29] 普里高津. 探索复杂性[M]. 成都:四川教育出版社,1986.
    [30] H 哈肯. 信息与自组织[M]. 成都:四川教育出版社,1988.
    [31] 凌复华. 突变理论及其应用[M]. 上海:上海交通大学出版社,1987.
    [32] Mandelbrot B B. The fractal geometry of nature[M]. San Francisco, 1983.
    [33] Hill R. A general theory of uniqueness and stability in elastic-plastic solids[J]. J. Mech. Phys. Solids, 1958, 6: 236-249.
    [34] Hill R. Some basic principal in the mechanics of solids without nature time[J]. J. Mech. Phys. Solids, 1959, 7: 209-225.
    [35] Hill R. Acceleration waves in solids[J]. J. Mech. Phy. Solids, 1962, 10.
    [36] Thomas T Y. Plastic flow and fracture in solids[J]. Academic Press, 1961, New York.
    [37] Vardoulakis I, J Sulem. Bifurcation analysis in geomechanics[M]. Blackie Academic & Professional, Glasgow, 1995.
    [38] Rice J R. Plasticity and soil mechanics[A]. Proc. Symp. Role. Plasticity in Soil Mechanics, Ed, Palmer, A. C, 1973.
    [39] Rice J R, Rudnicki J W. A note on some features of the theory of localization of deformation[J]. Int. J. Solids Structure, 1980, 16: 597-605.
    [40] Vardoulakis I. Bifurcation analysis of the triaxial test on sand and samples[J]. Acta Mechanica, 1979, 32: 35-54.
    [41] Vardoulakis I. Constitutive Properties of dry sand observable in the triaxial test[J]. Acta Mechanica, 1981, 38: 219-239.
    [42] Vardoulakis I. Rigid granular plasticity model and bifurcation in the triaxial test[J]. Acta Mechanica, 1983, 49: 57-79.
    [43] Muhlhaus, Vardoulakis I. The thickness of shear bands in granular materials[J]. Geotechnique, 1987, 37: 271-283.
    [44] Vardoulakis I. Sear banding and liquefaction in granular materials n the basis of Cosserat continuum theory[J]. Ingenieur Archiv, 1989, 59(2): 106-113.
    [45] Bazant. Softening instability: Part I-Localization into a planar band[J]. J. App. Mech., ASME, 1988, 55: 517-522.
    [46] Valanis K C. Banding and stability in plastic materials[J]. Acta Mechanica, 1989, 79: 113-141.
    [47] Vermeer P A. A simple shear band analysis using compliance[A]. IUTAM Conf. On deformation and failure of granular materials, 1982, 493-499.
    [48] Nova K. An engineering approach to shear band formation[A]. Fifth Int. Conf. On Num. Mech. In Geomech., 1985, 179-196.
    [49] Vardoulakis I, Graf B. Calibration of constitutive models for granular materials using data from biaxial experiments[J]. Geotechnique, 1985, 35(3): 299-317.
    [50] Vardoulakis I, Graf B et al. Shear band formation in fine-grained sand[A]. Proc. Fifth Int. Conf Numer. Mech. Geomech.. Nagoya, 1985, 517-521, Rotterdam: Balkema.
    [51] Molenkamp F. Comparison of frictional material models with respect to shear band initiation[J]. Geotechnique, 1985, 35(2): 179-196.
    [52] 张永强,俞茂宏. 弹塑性材料的平面应力非连续分岔[J]. 力学学报,2001,33(5):706-713.
    [53] 杨 强,陈 新,周维垣. 岩土材料弹塑性损伤模型及变形局部化分析[J]. 岩石力学与工程学报,2004,23(21):3577-3583.
    [54] 黄茂松,钱建固. 平面应变条件下饱和土体分叉后的力学性状[J]. 工程力学,2005,22(1):48-53.
    [55] 李蓓,赵锡宏,董建国. 上海粘性土剪切带倾角的实验研究[J]. 岩土力学,2002,23(4): 423-427.
    [56] 陈钢,潘一山. 单轴压缩下岩石应变局部化的应变梯度塑性解[J]. 岩土力学,2004,25(5):694-697.
    [57] 王学滨,杨 梅,潘一山. 基于梯度塑性理论的单向拉伸低碳钢试样颈缩分析[J]. 塑性工程学报, 2002, 9(3): 55-57.
    [58] 王学滨,潘一山. 基于梯度塑性理论的岩样单轴压缩扩容分析[J]. 岩石力学与工程学报,2004,23(5):721-724.
    [59] 潘一山,徐秉业,王明洋. 岩石塑性应变梯度与Ⅱ类岩石变形行为研究[J]. 岩土工程学报,1999,21(4):471-474.
    [60] 陈钢,潘一山. 微结构的应变梯度塑性理论及在岩体中的应用[J]. 辽宁工程技术大学学报,2001,20(4):517-518.
    [61] 王学滨,潘一山,于海军. 考虑塑性应变率梯度的单轴压缩岩样轴向响应[J]. 岩土力学,2003,24(6):943-946.
    [62] 宋义敏,董 平,潘一山. 煤体变形局部化的梯度塑性理论研究[J]. 华北航天工业学院学报,2001,11(4):6-8.
    [63] 徐松林,吴 文. 岩土材料局部化变形分岔分析[J]. 岩石力学与工程学报,2004,23(20):3430-3438.
    [64] 徐松林,吴 文,李廷 等. 三轴压缩大理岩局部化变形的实验研究及其分岔行为[J]. 岩土工程学报,2001,23(3):296-301.
    [65] 尹光志,鲜学福,王宏图. 岩石在平面应变条件下剪切带的分叉分析. 煤炭学报. 1999,24(4):364-367.
    [66] Pvovest J H, Hughes T J R. Finite element solution of elastic plastic boundary value problems[J]. J. of App. Mech., 1984, 48: 69-74.
    [67] De Borst R. Bifurcation in finite element models with a non-associated flow law[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1988, 12: 99-166.
    [68] 许泽善,张志超,吴子修. 不排水条件下完全饱和土剪切带之形成的模拟分析[J]. 中国土木水利工程学刊(中国台湾),1994,6(1):21-28.
    [69] 王学滨,潘一山,盛 谦 等. 平面应变岩样局部化变形场数值模拟研究[J]. 岩石力学与工程学报,2003,22(4):521-524.
    [70] 王学滨,潘一山,丁秀丽等. 孔隙流体对岩体变形局部化的影响及数值模拟研究[J]. 地质力学学报,2001,7(2):139-143.
    [71] 王学滨,潘一山,马谨. 3D-FLAC 在岩石变形局部化数值模拟中的应用[J]. 辽宁工程技术大学学报,2001,20(4):522-523.
    [72] 王学滨,潘一山,盛 谦. 动力应变局部化传播及尺寸效应数值模拟[J]. 计算力学学报,2002,19(4):500-503.
    [73] 王学滨,潘一山,杨 梅. 井眼变形局部化剪切带数值模拟研究[J]. 钻采工艺,2002,25(2):17-19.
    [74] Han, Drescher. Shear bands in biaxial tests on dry coarse sand[J]. Soils and Foundations, 1993, 33(1): 118-132.
    [75] Han C, Vardoulakis I. Plane strain compression expression on water-saturated fine-grainedsand[J]. Geotechnique, 1991, 41(1): 49-78.
    [76] Desrues J, Chambon R. Shear band analysis and shear moduli calibration[J]. Int. J. Solids struct., 2002, 39: 3757-3776.
    [77] Desrues J, Viggianin G. Strain localization in sand: an overview of the experimental results obtained in Grenoble using Stereophotogrammetry[J]. Int. J. Numer. Anal. Mech. In Geomech., 2004, 28: 279-321.
    [78] Besuelle P, Desrues J, Raynaud S. Experimental characterization of the localization phenomenon inside a Vosgos sandstone in a triaxial cell[J]. Int. J. Rock Mech. & Mining Sci., 2000, 37: 1223-1237.
    [79] Bied A EI, Sulem J, Martineau F. Microstructure of shear zones in Fontainebleau sandstone[J]. Int. J. Rock Mech. & Min. Sci., 2002, 39: 917-932.
    [80] Sulem J, Ouffroukh H. Shear banding in drained and undrained triaxial tests on a saturated sandstone: porosity and permeability evolution[J]. Int. J. Rock Mech. & Min. Sci., 2006, 43: 292-310.
    [81] 董聪,何庆芝 微裂纹演化过程中分岔与混沌现象的描述及若干问题探讨[J].力学进展,1994,24(1):106~116.
    [82] 夏蒙棼,韩闻生,柯孚久等 统计细观损伤力学和损伤演化诱致突变(Ⅰ )[J].力学进展,1995,25(1):1~40.
    [83] 夏蒙棼,韩闻生,柯孚久等 统计细观损伤力学和损伤演化诱致突变(Ⅱ )[J].力学进展,1995,25(2):145~173.
    [84] 李国强,邓文均. 水泥混凝土微裂纹演化的混沌分析[J]. 重庆交通学院学报,1996,(1):22-26
    [85] 金龙,王锡朝. 岩石材料渐变破裂的重正化群方法研究[J]. 石家庄铁道学院学报, 2001, (4): 47-50
    [86] 刘传孝. 砂岩强度 MTS 试验及阶段特征的混沌动力学研究[J]. 岩土力学,2004,25(12):1910-1914.
    [87] 尹光志,鲜学福,许 江,王宏图. 岩石细观断裂过程的分叉与混沌特征. 重庆大学学报,2000,23(2):56-59.
    [88] 尹光志,代高飞,万玲,张东明,魏作安. 岩石微裂纹演化的分叉混沌与自组织特征. 岩石力学与工程学报,2002,21(5):635-639.
    [89] 尹光志,黄 滚,代高飞,孙国文. 基于 CT 数的煤岩单轴压缩破坏的分叉与混沌分析. 岩土力学,2006,27(9):1465-1470.
    [90] 尹光志,张东明,王 浩. 岩石损伤断裂的沙堆元胞自动机模拟. 岩土力学,2005,26(6):986-989+1005.
    [91] 王 浩,张东明,尹光志. 重正化模型及其在岩石失稳破坏中的应用. 重庆大学学报,2005, 28(2):124-127.
    [92] 唐春安. 岩石破裂过程中的灾变[M]. 北京:煤岩工业出版社,1993.
    [93] 谢和平. 岩石混凝土损伤力学[M]. 徐州:中国矿业大学出版社,1990,141-166.
    [94] Xie Heping, Chen Zhida. Fractal geometry and fracture of rock[J]. Acta Mechanica Sinica, 1988, 4(3): 255-264.
    [95] 谢和平,陈至达. 断口定量分析的分形几何方法[J]. 工程力学,1989,6(4):1-8.
    [96] Xie Heping. Studies on fractal models of the microfracture of marble[J]. Chinese Science Bullentin, 1989, 34(15): 1292-1296.
    [97] 谢和平. 岩土介质的分形孔隙和分形粒子[J]. 力学进展,1993,23(2):145-164.
    [98] 谢和平. 分形力学研究进展[J]. 力学与实践,1996,18(2):10-18.
    [99] 秦四清等. 岩石声发射在空间上的分形分布研究[J]. 应用声学,1992,11(4):101-107.
    [100] 藤山邦久. 声发射技术的应用[M]. 冯夏庭译. 北京:冶金工业出版社,1996.
    [101] T Hirata et al. Fractal structure of spatial distribution earthquake-The two point correlation function[J]. Geophys. J. R. Astron. Soc., 1980, 62: 303-320.
    [102] 纪洪广,蔡美峰. 混凝土材料断裂过程中声发射空间自组织演化特征及其在结构失稳预报中的应用[J]. 土木工程学报, 2001, 34(5): 15-19.
    [103] 王恩元,何学秋,刘贞堂. 煤岩破裂声发射实验研究及 RS 统计分析[J]. 煤炭学报,1999,24(3):270-273.
    [104] Feng Xiating, Seto M. Fractal structure of the distribution of microfracturing in rocks[J]. Geophysical Journal International, 1999, 136: 275-285.
    [105] 王泳嘉 冯夏庭. 化学环境侵蚀下的岩石破裂特性——第二部分:时间分形分析[J]. 岩石力学与工程学报, 2000, 19(5): 551-556.
    [106] 冯夏庭, 赖户政宏. 化学环境侵蚀下的岩石破裂特性——第一部分:试验研究[J]. 岩石力学与工程学报, 2000, 19(4): 403-407.
    [107] 高 峰,李建军,李肖音等. 岩石声发射特征的分形分析[J]. 武汉理工大学学报,2005,27(7):67-69.
    [108] 刘志祥,李夕兵. 岩体声发射混沌动力学[J]. 中南大学学报,2004,35(4):671-675.
    [109] 李夕兵,刘志祥. 岩体声发射混沌与智能辨识研究[J]. 岩石力学与工程学报, 2005, 24(8): 1296-1300.
    [110] 谭云亮等. 矿山压力混沌现象的预测研究[J]. 矿山压力与顶板管理,1997,3(4):107-115.
    [111] 谭云亮等. 顶板运动的自组织演化研究[J]. 岩石力学与工程学报,1997, 16(3): 258-265.
    [112] 康 玲,王 乘. 混凝土坝裂缝混沌特性的初步研究[J]. 水电能源科学, 2001, 18(1): 19-21.采研究所,1996.23~38
    [113] 齐庆新. 层状煤岩体结构破坏的冲击矿压理论与实践研究(博士学位论文)[D]. 煤炭科学研究总院北京开采研究所,1996,23~38.
    [114] 安志雄. 区域性冲击地压预测装置.煤矿安全, 1994 6:48~50.
    [115] 周维垣. 高等岩石力学[M]. 北京:水利电力出版社,1990.
    [116] 赵本均. 冲击地压及其防治[M]. 北京:煤炭工业出版社,1986.
    [117] 佩图霍夫. H. M.等著. 段克信译. 冲击地压和突出的力学计算方法[M]. 北京:煤炭工业出版社,1994.
    [118] 布霍依诺. G.著. 李玉生译. 矿山压力和冲击地压[M]. 北京:煤炭工业出版社,1985.
    [119] 李玉生. 冲击地压机理及其初步应用[J]. 中国矿业学院院报,1985,3:37-43.
    [120] 李玉生. 冲击地压机理探讨[J]. 煤炭学报,1984,9(3):1-10.
    [121] 章梦涛. 冲击地压失稳理论与数值模拟计算[J]. 岩石力学与工程学报,1987,6(3): 197-204.
    [122] Salamon M D G, Wagner H. Role of stability pillars in the alleviation of rockburst hazard in deep mines[A]. Proc. 4th Int. Rock Mech., Montreal, 1979, 2: 561-566.
    [123] Zubelewica O C, Mroz Z. Numerical simulation of rockburst processes treated as problems of dynamoic instability[J]. Rock Mech. Rock Eng., 1983, 16: 253-274.
    [124] Lippmann H. Mechanics of ‘bumps’ in coal mines: A discussion of violent deformations in the sides of roadways in coal seams[J]. Appl. Mech. Rev., 1987, 40(8): 1033-1043.
    [125] 梁冰,章梦涛. 采区冲击地压的数值预测[J]. 矿山压力与顶板管理,1995,2:12-15.
    [126] 王来贵,潘一山. 矿井不连续面冲击地压发生过程分析[J]. 中国矿业,1996,5(3):61-65.
    [127] 齐庆新,史元伟,刘天泉. 冲击地压粘滑失稳机理的实验研究[J]. 煤炭学报,1997,22(2):143-148.
    [128] 郑 捷. 研究地震和岩石破裂现象的非线性科学方法[J]. 地球物理学进展,1992,7(1):20-35.
    [129] Brown S R, Scholz C H. Broad band width study of the topography of natural rock surface[J]. J. Geophys. Res., 1985, 90: 12575-12582.
    [130] Scholz C H, Aviles C A. The fractal geometry of faults and faulting, in earthquake source mechanics[A]. Geophys, Monogr. Ser., 1986, 37, edited by S Das, J Boatwright and C H Scholz, AGU, Washington, D. C., 1986, 147-155.
    [131] Avile C A, Scholz C H. Fractal analysis applied to characteristic segments of the San Andreas fault[J]. J. Geophys. Res., 1987, 92: 331-334.
    [132] Okubo P G, Aki K. Fractal geometry in the San Ardrese fault system[J]. J. Geophys. Res., 1987, 92: 345-355.
    [133] 马谨,马胜利,雷兴林. 鲜水河断裂断层几何与地震活动性[A]. “第二届构造物理学术讨论会文集”,马谨,王绳祖主编,地震出版社,1990,58-67.
    [134] 尹光志,李贺,鲜学福,冯涛. 煤岩体失稳的突变理论模型. 重庆大学学报,1994,17(1):23-28.
    [135] 尹光志,王登科,黄滚. 突变理论在开采沉陷中应用. 矿山压力与顶板管理,2005(4):94-96.
    [136] 徐曾和,徐小荷. 坚硬顶板下煤柱岩爆的尖点突变理论模型[J]. 煤炭学报,1995,20(5): 23-28.
    [137] 潘岳,耿厚才. 折断式顶板大面积冒落尖点突变模型[C]. 现代采矿技术国际学术会议讨论会论文集,1988.
    [138] 周辉,翟德元,王泳嘉. 薄隔水层井筒底板突水的突变模型[J]. 中国安全科学学报,1999,9(3):44-49+58.
    [139] 秦四清等. 顺层斜坡失稳的突变理论分析[J]. 中国地质灾害与防治学报,1993,4(1): 23-26.
    [140] 黄润秋等. 突变理论在工程地质中的应用[J]. 工程地质学报,创刊号,1993.
    [141] 宋维源等. 冲击地压的非线性动力模型及预报问题[J]. 辽宁工程技术大学学报,1999,5:500-503.
    [142] 宋维源,潘一山,苏荣华,王洪英. 冲击地压的混沌学模型及预测预报[J]. 煤炭学报,2001,26(1):26-30.
    [143] 朱清安,史 蒙. 冲击地压的混沌特性及动力模型研究[J]. 辽宁工程技术大学学报,2001,20(1):40-42.
    [144] 李 洪,戴仁竹,蒋金泉. 基于最大 Lyapunov 指数的冲击地压预测模型[J]. 采矿与安全工程学报,2006,23(2):215-219.
    [145] 代高飞,尹光志,皮文丽,李东伟. 用滑块模型对冲击地压的研究(I). 岩土力学,2004,25(8):1263-1266+1282.
    [146] 尹光志,代高飞,皮文丽,李东伟. 冲击地压的滑块模型研究. 岩土力学,2005,26(3):359-364.
    [147] Mogi K. Fracture and flow of rocks under high triaxial compression[J]. J Geophys Res(76): 1255-1269, 1971.
    [148] Mogi K. Effect of the triaxial stress system on fracture and flow of rocks[J]. Phys Earth Planet Interiors, (5): 318-324, 1972
    [149] B. Haimson, C Chang. A new true triaxial cell for testing mechanical properties of rock and its use to determine rock strength and deformability of Westerly granite[J]. International Journal of Rock Mechanics and Mining Sciences, 37: 285-296, 2000.
    [150] Labuz J F, Papamichos E. Preliminary results of plane strain testing of soft rocks. Rockmechanics as a Multi-disciplinary science. Balkema, Rotterdam, 1991.
    [151] 秦四清,李造鼎等. 岩石声发射技术概论[M]. 成都:西南交通大学出版社,1993.
    [152] Li C, Norlund E. Experimental verification of Kaiser effect in rocks[J]. Rock Mechanics and Rock Engin, 1993, 26(4); 333-351.
    [153] 陈忠辉,唐春安,徐小荷,李春林. 岩石声发射 Kaiser 效应的理论和实验研究[J]. 中国有色金属学报,1997,7(1):9-12.
    [154] 李世愚,滕春凯,刘绮亮等. 三维破裂及其在震源和断层研究中的应用[J].地震地磁观测与研究, 1998,19(1):11~25.
    [155] Lockner D A. The role of acoustic emission in the study of rock fracture[J]. Int. J. Rock Mech. Min. Sci, 1993, 30(7): 883-900.
    [156] ISRM. Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int. J Rock Mech Min Sci Geomech Abstr 1983; 20:283-90.
    [157] Balla A. Stress conditions in triaxial compression[J]. J. Soil Mech. Found. Engr. ASCE, 1960, 86: 57-84.
    [158] Brady B T. An exact solution to the radially end-constrained circular cylinder under triaxial loading[J]. Int. J. Rock Mech. Min. Sci., 1971, 8: 165-178.
    [159] Al-Chalabi M, C L Huang. Stress distribution within circular cylinders in compression[J]. Int. J. Rock Mech. Sci. & Geomech. Abstr., 1974, 11: 45-56.
    [160] R E 古得曼著.王鸿儒,王鸿硕等译.岩石力学原理及其应用[M]. 水利出版社,1989 年.
    [161] Labuz J F and J M Bridell. Reducing frictional constraint in comprssion testing through lubrication[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1993(30): 451-455.
    [162] 李通林,谭学术. 矿山岩石力学[M]. 重庆大学出版社,1991.
    [163] J Sulem, I Vardoulakis and E Papamichos et al. Elasto-plastic modeling of red Wildmoor sandstone[J]. Mech. Cohes. Frict. Mater., 1999, 4: 215-245.
    [164] 郑颖人,沈珠江,龚晓南. 广义塑性力学-岩土塑性力学原理[M]. 北京:建筑工业出版社,2002.
    [165] 史宏彦,谢定义,汪闻韶. 平面应变条件下无粘性土的破坏准则[J]. 土木工程学报,2001,34(1):79-83.
    [166] Vardoulakis I. Bifurcation analysis of the plane rectilinear deformation on dry sand samples[J]. Int. J. Solids Structs. 1983, 17: 1085-1101.
    [167] Vardoulakis I, Goldscheider M. Biaxial apparatus for testing shear bands in soil[A]. Pro. 10th Int. Conf. Soil Mech. Found. Engng, 1981:819-824. Stockholm. Balkema, Rotterdam.
    [168] 李蓓. 平面应变仪的研制及上海地区粘性土剪切带形成的试验[D]. 同济大学,上海。
    [169] M Yumlu, M U Ozbay. A study of the behavior of brittle rocks under plane strain and triaxialloading conditions[J]. Int. J. Mech. Min. Sci. & Geomech. Abstr, 1995, 32(7): 725-733.
    [170] 黄 滚,尹光志,李东伟. 一种双轴岩石平面应变仪的改进和应用. 重庆建筑大学学报,2006,28(2):43-46+51.
    [171] Labuz J. F, I. Vardoulakis, A. Drescher. Plane-strain apparatus. U.S. Patent 5,063,785, 1991.
    [172] A Ord, I Vardoulakis, R Kajewski. Shear band formation in Gosford sandstone[J]. Int. J. Mech. Min. Sci. & Geomech. Abstr,1990, 23(5): 397-409.
    [173] Chen W F, E Mizuno. Nonlinear analysis in soil mechanics: theory and implementation[M]. Elsevier Science Publishers B. V., 1990.
    [174] A Aydin. Fractures, faults, and hygrocarbon entrapment, migration and flow[J]. Marine and Petroleum Geology, 17: 797-814, 2000.
    [175] P N Mollema and M A Antonellini. Compaction bands: A structural analog for anti-mode I cracks in Aeolian sandstone[J]. Techonophysics, 267: 209-228, 1996.
    [176] W A Olsson. Theoretical and experimental investigation of compaction bands in porous rock[J]. Journal of Geophysical Research, 104(B4):7219-7228, 1999.
    [177] P L Bransby and G W E Milligan. Soil deformations near cantilever sheet pile walls[J]. Geotechnique, 25(2): 175-195, 1975.
    [178] P L Bransby and G W E Milligan. Combined active and passive rotational failure of a retaining wall in sand[J]. Geotechnique, 26(3): 473-494, 1976.
    [179] G W E Milligan. Soil deformations near anchored sheet-pile walls[J]. Geotechnique, 33(1): 41-55, 1983.
    [180] J Desruse and R Chambon. Shear band analysis for granular materials: The question of incremental of nonlinearity[J]. Ingenieur-Archiv, 59:187-196,1989.
    [181] 钱建固,黄茂松. 轴对称状态下土体剪切带触发形成的分叉理论[J]. 岩土工程学报,2003,25(4):400-404.
    [182] Rice. The localization of plastic deformation[A]. Proc. 14th International Congress on Theoretical and Applied Mechanics. Delft edited by W T Koiter, 1976, 1: 207-220.
    [183] Vermeer P A, DeBorst R. Non-associated plasticity for soils, concrete and rock[J]. Heron, 1984, 29(3): 5-63.
    [184] Labuz J F, S T Dai, Papamichos E. Plane strain compression of rock-like materials[J]. Int. J. Mech. Min. Sci. & Geomech. Abstr., 1996, 33(4): 573-584.
    [185] May R. Simple mathematical models with very complicated dynamics[J]. Nature, 1976, 261.
    [186] Landsberg P T, Schoell E, Shukla P. Simple model for the origin of chaos in semiconductors. Physica D, 1988, 30(1): 235-243.
    [187] Kida S, Yamada M, Ohkitani K. Route to chaos and turbulence. Physica D, 1989, 37(1-3):116-125.
    [188] Bhatia N P, Egerland W O. On the existence of Li-Yorke points in the theory of chaos[J]. Nonlinear analysis, Theory, Methods & Applications, 1986, 10(6): 541-545.
    [189] Linsay P S, Cumming A W. Three-frequency quasiperiodicity, phase locking, and the onset of chaos[J]. Physica D, 1989, 40(2): 196-217.
    [190] 郑伟谋,郝柏林.实用符号动力学[M]. 上海,上海科技教育出版社,1994.
    [191] 盛昭瀚,马军海. 非线性动力系统分析引论[M]. 北京:科学出版社,2001.
    [192] 陈予恕,唐云. 非线性动力学中的现代分析方法[M].北京:科学出版社,1992.
    [193] 任建喜,葛修润,杨更社. 单轴压缩岩石损伤扩展细观机理 CT 实时实验[J]. 岩土力学,2001,22(2):130-133.
    [194] 赵永红,凌 勇. 细砂岩裂纹周围变形破坏过程及应变场分布[J]. 岩土力学,2004,25(6):865-870.
    [195] Dai Gao-fei, Yin Guang-zhi, Pi Wen-li. CT Real-time Analysis of Damage Evolution of Coal under Compression, International Workshop on X-ray CT for Geomaterials(GeoX2003), the City of Kumamoto, Japan on November 6-7, 2003.
    [196] 许 江,李 贺,鲜学福. 对单轴应力状态下砂岩微观断裂发展全过程的实验研究[J]. 力学与实践,1986,8(4):16-20.
    [197] Christian Merkwirth, Ulrich Parlitz, Immo Wedekind et al. TSTOOL1.11, 2002.
    [198] Rosenstein M T, Collins J J and De Luca C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D, 1993, 65, 117.
    [199] Holger Kantz, Thoma Schreiber. Nonlinear time series analysis[M]. Cambridge Press, 2001.
    [200] Abarbanel H D I. Analysis of Observed Chaotic Data[M]. Springer, New York, 1996.
    [201] S M 潘迪特,吴宪民著,李昌琪,荣国俊译. 时间序列及系统分析与应用[M]. 北京:机械工业出版社,1988.
    [202] 王东生,曹 磊. 混沌、分形及其应用[M]. 合肥:中国科学技术大学出版社,1995.
    [203] 吕金虎,陆君安,陈士华. 混沌时间序列分析及其应用[M]. 武汉:武汉大学出版社,2002.
    [204] Huang J, Turcotte D L. Evidence for chaotic fault interaction in the seismicity of the San Andreas fault and Nakai trough[J]. Nature, 1990, 348: 234-6.
    [205] 秦四清,张倬元. 地震孕育过程中的非线性动力学模型[J]. 中国地震,1994,10(3):223-229.
    [206] 谢和平. 分形-岩石力学导轮[M]. 北京:科学出版社,1996.
    [207] 尹光志. 岩石力学中的非线性理论与冲击地压预测的研究. [博士学位论文][D]. 重庆:重庆大学,1999.
    [208] Turcotte D L. Fractals in geology and geophysics[J]. Pure and Appl. Geophys., 1989, 131:1-2.
    [209] Kagan Y Y, Z Knopoff. Spatial distribution of earthquakes: the two-point correlation function, Geophys. J. R. astr. Soc., 1980, 62: 303-320.
    [210] 尹光志,鲜学福,代高飞. 岩石非线性动力学理论及其应用[M]. 重庆:重庆大学出版社,2004.
    [211] 代高飞,尹光志等. 采场顶板来压的分形预报[J]. 矿山压力与顶板管理,2000(4):8-10.
    [212] W F Brace and J D Byerlee. Stick-slip as a mechanism for earthquake[J]. Science, 1966, 153(3739): 990-992.
    [213] W F Brace. Laboratory studies of stick-slip and their application to earthquake[J]. Tectono-physics, 1972, 14(3): 189-200.
    [214] Andy Ruina. Slip instability and state variable friction laws[J]. Geophys. Res., 1983, 83: 10359-10370.
    [215] Dieterich J H. Experimental and model study of fault constitutive properties, in solid earth geophysics and geotechnology[A]. edited by S. Nemat-Nasser, Am. Soc. Mech. Eng., New York, 1980, 20-30.
    [216] 牛志仁,陈党民. 摩擦系统倍周期分叉细结构的研究[J]. 中国地震,1996,12(1):16-25.
    [217] Turcotte D L 著. 陈 顒,郑 捷,季 颖 译. 分形与混沌—在地质学和地球物理学中的应用[M]. 北京:地质出版社,1993.
    [218] 代高飞. 岩石非线性动力学特征及冲击地压的研究[D]. [博士学位论文]. 重庆:重庆大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700