用户名: 密码: 验证码:
流溪河水库氮磷营养盐动态与收支分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流溪河水库是一座位于北回归线上的典型峡谷型深水水库。本论文基于2000-2008年调查,分析了该水库营养盐的长期变化和时空分布动态;于2007年9月-2008年12月开展了水库营养盐收支的观测与监测,现场测定了水库悬浮颗粒物的沉降速度和表层底泥的营养盐释放速率,估算了水库全年的营养盐收支,并利用模型对水体营养盐浓度进行预测。
     流溪河年均降雨量超过2000mm,其中80%的降雨量集中在丰水期。水库水动力学具有热带亚热带地区的特征,水库入流基本来自上游流域集水后的汇入,入流量与降雨量时间分布基本一致。全年水力滞留时间约170d,受入库流量和发电出流的影响,丰水期与枯水期差别明显,丰水期滞留时间是枯水期的1/4。作为深水水库,水体分层现象明显,水体分层与混合为单循环模式,仅在冬季发生短期的混合,不利于底层-表层的水体交换。
     TN、TP和Chla多年平均浓度分别是0.6mg/L和0.02mg/L和1.93 mg/m~3,SD多年平均值为2.9m,属贫中营养水体;从长期变化趋势判断可见水质略有下降。N/P的质量比为30:1,DIN/DIP的质量比为78:1,该水库浮游植物生长为强烈的磷限制性水体,较高的N/P比是由流域中热带亚热带红壤中营养盐组成特点和流域较高的森林覆盖率、较低的人口密度所决定。
     营养盐浓度等水质变量的分布具有明显的时空异质性,丰水期初期(4-5月)营养盐、Chla浓度显著地高于其它月份。沿入库河流至水库大坝方向,营养盐和Chla具有递减规律,即:河流区>过渡区>湖泊区,透明度则相反。通过水库三个特征区域:吕田、汇水、大坝的环境变量相关性分析来看,反应了环境因子在流溪河水库的分布规律和信息,并且能很好的作为该水库湖沼学特征的证明。水库的纵向特征主要受季风气候的影响,丰水期的降水集中加上水库的本身形态特征,是导致流溪河水库湖沼学特征呈显著的季节性和空间梯度的关键因素。
     水库悬浮颗粒物沉降受水文因素影响大:过渡区沉降速率与入库流量有较好的一致性,外来悬浮颗粒物沉降主要在该区发生;湖泊区沉降受外来性悬浮颗粒物影响减小,而内生悬浮物的影响明显。沉降物磷形态特点表明了悬浮物来源信息和沉降特征。该水库的内源释放较强,该深水水库的大部分时间水底处于厌氧环境,加之热带亚热带较高的水温有利于底质磷释放。内源释放对上覆水体的营养盐输入是水体负荷的重要部分。
     2008年输入硝氮382456kg,总氮792177kg,正磷3780kg,总磷318645kg。根据输入量估算水库营养盐负荷。硝氮年面积负荷33.3g/m~2·a;总氮68.9 g/m~2·a;正磷0.33g/m~2·a:总磷2.8 g/m~2·a。最后估算的营养盐滞留率情况是:硝氮滞留率3.2%;总氮滞留率32.1%;正磷滞留率-62.9%;总磷滞留率11%。总氮和总磷滞留率高于离子态营养盐,其中正磷更是较高的负滞留,说明生物可利用营养盐在该贫营养水体的利用率很高。流溪河水库水质得以保持较好的原因,一是流域的水土保持较好,营养盐负荷水平低;二是该水库的湖沼学特征,利于营养盐排放,使得营养盐在水库的滞留率较低。
     应用OECD模型和Vollenweider模型模拟该水库总磷的负荷-响应,结果说明基于温带水体的预测模式也适合流溪河水库这一热带亚热带水体。
Liuxihe Reservoir,located at the Tropic of Cancer,is a typical large valley-type reservoir. This master thesis studied the nutrient dynamics and distribution last from 2000 to 2008 and estimated the annual nutrient budget including input by dryfall and wetfall,inflow,outflow, internal release and sedimentation.The predictive model by OECD and Vollenweider was applied to estimate phosphorus concentration in the reservoir.
     The hydrodynamics of Liuxihe Reservoir is drived precipitation with moonson.The annual precipitation is on average 2000 mm,most of which occurred in the summer,a typical flooding seasons in tropics.Main inflows to the reservoir come from two feeding streams,and the inflow dynamics is consistent with coming flooding season.The mean water residence time was about 170 days with a great variation between flooding season and dry season. Water residence time in the flooding season was only one-quarter of that in the dry season. The thermal stratification was monomictic,a short mixing happened in winter,which promotes the nutrient flux from surface sediment.
     The mean concentrations of TN,TP,Chlorophyll a and SD were 0.6 mg/L,0.02 mg/L, 1.93 mg/m~3 and 2.9 m,respectively,indicating the reservoir was oligo-mesotrophic.However, there is a tendency of eutrophication through last nine years observation.Mass ratio of TN/TP and DIN/DIP were 30:1 and 78:1,respectively,the high ratios mean that growth of phytoplankton is surely limited by phosphorus.The high N/P ratio was attributed to red soil which high iron content combines tightly phosphorus,and well-vegetated watershed and low human population activity.
     The nutrients as well as other water quality variables show a significant temporal and spatial variation.In the early phase of the flooding season(April to May),nutrients and Chlorophyll a concentration was remarkedly higher than the other periods,and it decreases from the riverine zone to lacustrine zone as:riverine zone>transition zone>lacustrine zone, with a converse tendency for water transparency.The nutrient variability in these three zones shows a typically longitudual gradient.The longitudinal pattern of nutrients in the Liuxihe Reservoir was mainly due to the precipitation with monsoon and morphology of the water basin.
     Sedimentation was mostly affected by hydrodynamic factors such as inflow.The sedimentation rate in the transition zone is in consistency with the inflows.Sedimentation in the lacustrine zone is hardly affected by allochthonous particles from the inflow but by autochthonous particles.Phosphorous concentration in sediment indicates the information and sediment character.This reservoir has a certain phosphorus releasing rate,for the mostly anaerobic conditions of the sediments and high sub-tropical water temperature.Entogenous release to the overlying water is an important part of nutrients loading to the water body.
     In 2008,the total input of NO_3-N(382456kg),TN(792177kg),PO_4-P(3780kg),TP (318645kg),using the formula inputs-outputs=change in storage,retention rates are NO_3-N (3.2%),TN(32.1%),PO_4-P(-62.9%),TP(11%).Retention rates of TN and TP are much higher than the ion nutrients,and PO_4-P has high negative storage,which indicates a high utilization rate by the plankton in the oligotrophic water body.
     OECD and Vollenweider's models are applied to predict total phosphours concentration of the reservoir.The results showed that predictive models were suitable for Reservoir Liuxihe which was located between tropics and subtropics,although the models reserach was based on temperate waterbody.
引文
1.An KG,Park SS.Indirect influence of the summer monsoon on chlorophyll-total phosphorus models in a reservoir:a case study.Ecol Modell,2002,152:191-203.
    2.Hart B T,Wendy V D,Nani D.Nutrient budget for Saguling Reservoir,West Java,Indonesia.Water Research,2002,36:2152-2160.
    3.Brierley B,Harper D.Ecological principles for management techniques in deeper reservoirs.Hydrobiologia,1999,395/396:335-353.
    4.Brzakova M,Hejzlar J,Nedoma J.Phosphorus uptake by suspended and settling seston in a stratified reservoir.Hydrobiologia,2003,504:39-49。
    5.Caraco N,Cole JJ,Likens GE.A cross-system study of phosphorus release from lake sediments.In:Comparative Analysis of Ecosystems:Patterns,Mechanisms and Theories.New York:Springer-Verlag,1991:241-258.
    6.Carpenter SR,Caraco NF,Correll DL,et al.Nonpoint pollution of surface waters with phosphorus and nitrogen.Ecol Appl,1998,8:559-568.
    7.Casamithjana X,Serra T,Colomer J.Effects of the water withdrawal in the stratification patterns of a reservoir.Hydrobiologia,2003,504:21-28.
    8.Chi YA,An SC,Hee MO.Rainfall,phycocyanin,and N:P ratios related to cyanobacterial blooms in a Korean large reservoir.Hydrobiologia,2002,474:117-124.
    9.Clement A,Somlybdy L,Koncsos L.Modeling the phosphorus retention of the Kis-B alaton upper reservoir,Water Science Technology.1998,37 (3):113-120.
    10.Dillon P.J.The phosphorus budget of Cameron Lake,Ontario:The importance of flushing rate to the degree of eutrophy of lakes Limnol.Ocean ogr.1975,20:28-39.
    11.Gale P M,Reddy K R,Graetz D A.Mineralization of sediment organic mater under anoxic condition.Environ Qual,1992,21:394 400.
    12.Gomez E,Durillon C,Rofes G,Picot B.Phosphate adsorption and release from sediments of brackish lagoons:pH,O_2 and loading influence,Water Research,1999,33 (10):2437-2447.
    13.Gran(?)li W.Internal phosphorus loading in Lake Ringsjon.Hydrobiologia,1999,404:19-26.
    14.Gordon,J.A.and R.M.Behel.Suspended sediment characteristics of Lake Cumberland,Kentucky.1984,Pages 259-264.
    15.Grover JP,Chrzanowski TH.Limiting resources,disturbance,and diversity in phytoplankton communities.Ecol Monogr,2004,74:533-551.
    16.Han BP,Armengol J,Garcia JC,et al.The thermal structure of Sau Reservoir:a simulation approach.Ecol Modell,2000,125:109-122.
    17.Jassby,A.D.,J.E.Reuter,R.P.Axler,C.R.Goldman,and S.H.Hackley.,Atmospheric deposition of nitrogen and phosphorus in the annual nutrient load of Lake Tahoe.Wat.Resour.Res.1994,30:2207-2216.
    18.Kemp W M.Sampon P.Ammonium recycling versus denitrification in Chesapeake bay sediments.Limnol.Oceanogr.l990,35(7):1545-1563.
    19.Kennedy,R.H.,K.W.Thomton,and R.C.Gunkel.The establishment of water quality gradients in reservoirs.Can.Wat.Resour,1982,7:71-81.
    20.Kennedy RH.Considerations for establishing nutrient criteria for reservoirs.Lake Reserv Manag,2001,173:175-187.
    21.Lewis Jr WM.Basis for the protection and management of tropical lakes.Lake Reserv:Res Manag,2000,5:35-48.
    22.Molot,L.A.and Dillon.Nitrogen mass balances and denitrification rates in central Ontario lakes.Biogeochemistry 1993,20:195-212.
    23.OECD,1982.Eutrophication of waters.Monitoring,assessment and control.OECD,Paris,154,pp.
    24.Pardo P,Rauret G,Lopez-Sanchez J F.Shortened screening method for phosphorus fractionation in sediments.A complementary approach to the standards,measurements and testing harmonized protoco.Analytica Chimica Acta.2004,(508):201-206.
    25.Peter M.Vitouset,John D.Aber,Robert W.Howarth et al.Human alteration of the global nitrogen cycle:source and consequences.Ecological applications,1997,7(3):737-750.
    26.Reynolds CS.The Ecology of Freshwater Phytoplankton.Cambridge University Press.Cambridge,1984.
    27.Reynolds C.S.The ecology of phytoplankton.Cambridge University Press.2006.page 153.
    28.Reynolds S.Phosphorus and the entrophication of lakes:A personal view.Phosphorous in the environment its chemistry and biochemisitry.Amsterdam:Elsevier,1978.201-215.
    29.Shapiro J.1988.Introductory lecture at the international symposium “Phosphorus in freshwater ecosystems” Uppsala Sweden in October,1985.Hydrobiologia,170:9-17。
    30.Sirois A,Barrie L A.An estimate of the importance of dry deposition as a pathway of acidic substances from the atmosphere to the biosphere in easternCanada.Tellus,1988,40B:59~80.
    31.Straskraba M.Retention time as a key variable of reservoir limnology.In:Tundisi JG and Straskraba M.Theoretical Reservoir Ecology and its Applications,International Institute of Ecology,Brazilian A cademy of Sciences and Backhuys Publishers.1999.385-410.
    32.Straskraba M,Tundisi JG.Reservoir water quality management.International Environment committee,1999:1-229p.
    33.Sybil P.S.Denitrification in Freshwater and Coastal Marine Ecosystems:Ecological and Geochemical Significance.Limnology and Oceanography,1988,33:702-724.
    34.Thornton KW,Kimmel BL,Payne FE.Reservoir Limnology:Ecological perspectives.A Wiley-Interscience Publication,1990:16.
    35.Thornton KW,Kennedy RH,Carrol JH,et al.Reservoir sedimentation and water quality-Aheuristic model.In:Stefen HG,ed.Proceedings of the symposium on surface water inpoundments.Amer.Soc Civil Engr,New York,NY,1981,654-661.
    36.Thornton K W,Kimmel B L and Payne F E.Reservoir limnology:Ecological perspectives.A Wiley-Interscience Publication.1990.
    37.Ulrich K-U.Effects of land use in the drainage area on phosphorus binding and mobility in the sediments of four drinking water reservoirs.Hydrobiologia,1997,345:21-38.
    38.Vanni MJ,Renwick WH,Headworth JL.Dissolved and particulate nutrient flux from three adjacent agricultural watersheds:A five-year study.Biogeochemistry,2001,54:85-114.
    39.Watson,S.,E.McCauley,and J.A.Downing.Sigmoid relationships between phophorus,algal biomass,and algal community structure.Can.J.Fish.Aquat.Sci.1992,49:2605-2610
    40.Wetzel R G Limnology.2~(nd) edition.Philadelphia:Saunders College Publi-shing. 1983.860.
    41.Wetel R G.Detritus,macrophytes and nutrient cycling in lakes,Men.1~(st).Ital.Idrobiol.1990,47:233-249.
    42.Wetzel R G.Limnology:Lake and River Ecosystems.Academic press,2003.
    43.陈能汪,洪华生等.九龙江流域大气氮干沉降[J].生态学报,2006(8):2602-2607.
    44.董浩平,姚琪.水体沉积物磷释放及控制[J].水资源保护,2004(6):20-23.
    45.范成新,张路,杨龙元 等.湖泊沉积物氮磷内源负荷模拟[J].海洋与湖沼,2002,33:370-377.
    46.黄宜凯.湖泊水体中悬浮物降解的实验研究[J].水资源保护,1998(4):27-31.
    47.金像灿,屠清瑛.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1990,第二版.
    48.林国恩,望甜,林秋奇等.广东流溪河水库湖沼学变量的时空动态分布[J].湖泊科学.2009,21(3):397-404.
    49.林秋奇,韩博平.水库生态系统特征研究及其在水库水质管理中的应用[J].生态学报,2001,21:1034-1040.
    50.林秋奇,胡韧,韩博平.流溪河水库水动力学对营养盐和浮游植物分布的影响[J].生态学报,2003,23:2278-2284.
    51.林秋奇,流溪河水库后生浮游动物多样性与群落结构的时空异质性[D].广州:暨南大学生命科学与技术学院,2007.
    52.林少君,贺立静,黄沛生等.浮游植物叶绿素a的提取方法比较与改进[J].生态科学,2005,24:9-11.
    53.林彰文.热带典型水库沉积物磷与硅藻的空间分布[D].广州:暨南大学生命科学与技术学院,2006.
    54.李秋华,韩博平,南亚热带调水水库春季浮游植物群落的结构与动态[J].热带亚热带植物学报,2007,15(4):294-300.
    55.李文霞,冯海艳,杨忠芳等.阮晓红水体富营养化与水体沉积物释放营养盐[J].地质通报,2006(25):602-608.
    56.秦伯强,胡维平,高光等.太湖沉积物悬浮的动力学机制及内源释放的概念 性模型[J].科学能报刊,2003,48:760-768.
    57.隋少峰,罗启芳.武汉东湖底泥释磷特点[J].环境科学,2001,22(1):102-105.
    58.王洪起,朱萱,蔡凌等.水上公园水体污染源调查及氮磷收支平衡研究[J].天津建设科技,1999,3:23-25.
    59.王雨春,朱俊,马梅等.西南峡谷型水库季节性分层与水质的突发性恶化[J].湖泊科学,2005,17:54-60.
    60.向军,逢勇,李一平等.浅水湖泊水体中不同颗粒悬浮物静沉降规律研究[J].水科学进展。2008,19:111-115.
    61.杨龙元,秦伯强,胡维平等.太湖大气氮、磷营养元素干湿沉降率研究[J].海洋与湖沼,2007,38:104-110.
    62.杨扬,刘明请,吴振斌等.亚热带水体营养状态定量评价及预测研究[J].水生生物学报,2001,25:230-235.
    63.赵孟绪,韩博平.汤溪水库蓝藻水华发生的影响因子分析[J].生态学报.2005,07;26-33.
    64.曾巾,杨柳燕,肖琳等.湖泊氮素生物地球化学循环及微生物的作用[J].湖泊科学.2007,19:382-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700