用户名: 密码: 验证码:
浅海远距离匹配场声源定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
匹配场声源定位是水声学研究中的经典问题,在过去的几十年中,出现了多种匹配场处理算法。由于海洋环境的复杂性,直到现在仍然没有一种有效的能够实时解决真实环境中远距离声源的定位方法。原因之一是声压是一个时变的量,其幅度和相位是起伏的,单次或有限多次的测量无法完整反映声场的真实特性,因此基于声压场难以给出准确的声源定位;原因之二是海洋声信道是三维的,而几乎所有的已有的算法只能解决信道模型与距离无关的问题;第三个原因是三维声压场的计算极其复杂,还没有快速准确计算声场的有效方法。为了解决浅海远距离声源的定位问题,提高定位精度和匹配场处理速度,本文藉助特征声线传播时间,提出了一种匹配场声源定位的新方法。应用特征声线传播时间,从而可以忽略声压的幅度信息,声场的噪声容限得到了提高,并且代价函数对模型失配的敏感性得到降低;通过到达信号包络的延迟,声压相位模糊的干扰便可消除;声线传播时间是声速的伪线性函数,其起伏要比声压小得多;三维环境中特征声线的计算速度快、且精度高。基于以上对声线传播时间的分析,本文选取最短传播时间特征声线到达不同接收水听器的相对时间差,研究了远距离声源的定位问题。
     众所周知,匹配场声源定位包括两个方面。一是声场建模,二是代价函数的构造。声场建模是整个问题的基础,本文从射线理论模型出发,详细分析了三维特征声线计算程序HARPO和RTPO。结果表明,哈尔滨工程大学唐俊峰博士开发的RTPO程序有更高的计算精度和更快的计算速度。基于最短传播时间特征声线到达相邻基元时延和声线传播时间,文中构造了匹配定位的第一类和第二类代价函数。应用两类代价函数,文中分别仿真了水深失配、接收水听器位置失配和声速失配对定位精度的影响。仿真结果表明,第一类代价函数对水深失配和接收水听器位置失配是较敏感的,而对声速失配不敏感,并且具有较高的深度估计精度;第二类代价函数对三种失配都不敏感,但是它的深度分辨率较低。为了克服第一类代价函数对失配的敏感性,文中提出了增加基元的定位方法。数值计算表明,该方法在一定程度上抑制了接收水听器位置失配的影响,使得声源的距离深度估计精度得以较大提高,
Source localization by matched-field processing is a classical problem in underwater acoustics; many methods were presented in the past several decades. Because of the complexity of ocean environment, until now, there is no efficient method that can solve long-range source localization in time under real environmental condition. The first reason lies in that sound pressure is a time variant quantity, its amplitude and phase are fluctuating, single measurement or limited time measurements couldn't give the real character of the sound field completely, so it is difficult to localize a source accurately based on sound pressure only; the second reason lies in that ocean acoustic channel is three-dimensional, while almost all the current methods are only fit to range independent environment; the last reason lies in that the 3-D sound field calculation is time exhausted, there is no efficient algorithm that can calculate the sound field quickly. In order to realize long-range source localization in shallow water and to improve the accuracy of localization as well as the speed of matched-field processing, a new method is studied in this thesis. Not sound pressure but eigenray travel time is adopted. Using ray travel time, noise tolerance could be enhanced and the sensitivity to model mismatch may be degraded by neglecting the amplitude information; phase ambiguity could be eliminated by exploiting group delay of the arriving wave packets; ray travel time is a pseudo-linear function of sound speed and its fluctuation is much smaller than sound pressure's; eigenray calculation in 3-D environment is fast and accurate. With the above analysis of ray travel time, long-range source localization based on relative ray arrival time between two isolated hydrophones is studied in this dissertation.It is well known that source localization by matched-field processing consists of two parts. One is the establishment of acoustic model; the other is the construction of a suitable cost function. Establishment of an accurate model is the basis of the whole problem. Derived from the geometrical model, two 3-D
    eigenray calculation programs such as HARPO and RTPO are analyzed in detail. The results demonstrate that the RTPO program developed by Dr Tang Junfeng, a student of our group is more accurate and has higher calculating speed than HARPO. After that, two kinds of cost functions are constructed. The first is based on relative ray arrival time between two adjacent hydrophones; the second is directly based on ray travel time. With these two functions, mismatches of water depth, receiver location and sound speed have been simulated respectively. The simulation results show that the first cost function is sensitive to the mismatches of water depth and receiver location, but is insensitive to sound speed mismatch and can give high accuracy of depth estimation; the second cost function is insensitive to all three kinds of mismatches, but its resolution of depth estimation is very poor. In order to overcome the first function's sensitivities to the mismatches, a method of increasing the number of elements is used. Numerical calculation shows that this method degrades the sensitivity to the mismatch of receiver location and improves the accuracy of range and depth estimation, but is ineffective to ocean depth mismatch. For the purpose of analyzing the sensitivities to the mismatches of the cost functions, three formulas for calculating the ray travel time error or time delay error caused by the mismatches of receiving array location, ocean depth and sound speed are derived respectively. With them, the effects on source localization by matched field processing taken by the mismatches are verified, and the theoretical results agree with the simulations completely.As an important part of the thesis, time delay estimation in multipath environment is studied theoretically and experimentally. Based on the extraction of the signal's relative arrival time, source localization in different range is studied step by step. By computer simulations, we find that multi-elements method is effective when the space between two elements is large, but it can only localize the source in the range of 10km. In order to expand the efficient localization range, fractionization method is used. But it is not always feasible when the ocean bottom becomes flat. Under this condition, multipath time delay is needed. Using
    the fractionization method or the combination of multipath time delay with time delay between two adjacent phones, source localization of the range of 60km in different ocean environmental models is realized respectively. Especially when the ocean bottom is complicate, fractionization method becomes more efficient. In order to confirm the validity of the methods, ASIAEX data and South China Sea experimental data are used to do the research of source localization. The calculated results agree with the true source locations.With the above simulation analysis and experimental studies, it could be concluded that the new method introduced in the thesis is feasible to realize long-range source localization in shallow water, and it has high accuracy and fast speed. Ray tracing in 3-D sound channel is very fast and accurate. Besides that ray theory is helpful to calculate three-dimensional sound field. Using eigenray travel time, parameters inversion in real environment could be finished quickly. It is true that introducing ray travel time into matched field processing is an optimal choice.
引文
[1] 杨士莪著.水声传播原理.哈尔滨:哈尔滨工程大学出版社,1994:1-1页
    [2] 田坛,刘国枝,孙大军编著.声呐技术.哈尔滨:哈尔滨工程大学出版社,1999:138-141页
    [3] Baggeroer B, Kuperman W A and Mikhalevsky P N. An overview of matched field methods in ocean acoustics. IEEE J. Oceanic Eng. 1993, 18(4): 401-424P
    [4] Anderson T W. An introduction to multivariate statistical analysis. 2nd Ed. New York: John Wiley, 1984
    [5] Hinich M J. Maximum-likelihood processing for a vertical array. J. Acoust. Soc. Am. 1972, 54(2): 499-503P
    [6] Bucker H P. Use of calculated sound fields and matched-field detection to locate sound sources in shallow water. J. Acoust. Soc. Am. 1976, 59(2): 368-372P
    [7] Rajan S D, Lynch J F and Frisk G V. Perturbative inversion methods for obtaining bottom geoacoustic parameters in shallow water. J. Acoust. Soc. Am. 1987, 82(3): 998-1017P
    [8] Tolstoy A, Diachok 0 and Frazer L N. Acoustic tomography via matched field processing. J. Acoust. Soc. Am. 1991, 89(3): 1119-1126P
    [9] Tolstoy A. Linearization of the matched field processing approach to acoustic tomography. J. Acoust. Soc. Am. 1992, 91(2): 1119-1126P
    [10] 汪德昭,张仁和.海洋气候声学测温计划.声场声信息国家重点实验室年报.1993,3:1-4页
    [11] Baggeroer A B and Kuperman W A. Stochastic matched field processing. J. Acoust. Soc. Am. 1992, 91, Suppl
    [12] Baggeroer A B and Munk W H. The Heard Island feasibility test. Physics Today. 1992, 45: 22-30P
    [13] Tolstoy A. Matched field processing for underwater acoustics. Singapore: World Scientific, 1993
    [14] Porter M B and Tolstoy A. The matched field processing benchmark problems. J. Comp. Acoust. 1994, 2: 161-185P
    [15] Tolstoy A. Sensitivity of matched field processing to sound-speed profile mismatch for vertical arrays in a deep water Pacific environment. J. Acoust. Soc. Am. 1989, 85: 2394-2404P
    [16] 王静.水声信号处理中匹配场处理技术研究的现状和展望.水声技术.2000,19(1):34-38页
    [17] Baggeroer A B, Kuperman W A at al. IEEE J. Oceanic Eng. 1993, 18: 425-427P
    [18] Clay C S and Li S. Use of arrays for acoustic transmission in a noisy ocean. Review of Geophysics. 1966, 4(4): 475-507P
    [19] Hinich M J. Maximum likelihood estimation of a radiating source in a waveguide. J. Acoust. Soc. Am. 1979, 66(2): 480-483P
    [20] Cater G C. Variance bounds for passively locating an acoustic source with a symmetric line array. J. Acoust. Soc. Am. 1977, 62(4): 922-926P
    [21] Heitmeyer R M, Feizell R G and Molsely W B. Full field ambiguity function processing in a complex shallow-water environment. Washington DC. NRL Report 8868, Naval Research Laboratory. 1984
    [22] Woodward P M. Probability and information theory, with applications to radar. New York: McGraw-Hill, 1953
    [23] Hinich M J. Array design for measuring source depth in a horizontal waveguide. J. Appl. Math. 1977, 32(4): 800-805P
    [24] Klemm R. Range and depth estimation by line arrays in shallow water. Signal Processing. 1981, 3: 333-344P
    [25] Fizell R G. Application of high-resolution processing to range and depth estimation using ambiguity function methods. J. Acoust. Soc. Am. 1987, 82(2): 606-613P
    [26] Baggeroer A B, Kuperman W A and Schmidt H. Matched field processing: source localization in correlated noise as an optimum parameter estimation problem. J. Acoust. Soc. Am. 1988,83(2):571-587P
    [27] Capon J, Greenfield R J and Kolker R J. Multidimensional maximum-likelihood processing of a large aperture seismic array. Proc. IEEE. 1967, 55 (2): 192-211P
    [28] Hinich M J and Sullivan E J. Maximum-likelihood passive localization using mode filtering. J. Acoust. Soc. Am. 1989,85(1):214-219P
    [29] Sullivan E J, Volkman W and Bongi S. Estimators for model-based passive localization. Italy: SACLANTCEN memorandum SM-211, SACLANT Undersea Research Centre, La Spezia, 1988
    [30] Richardson A M and Nolte L W. A posterior probability source localization in an uncertain sound speed, deep ocean environment. J. Acoust. Soc. Am. 1991,89(5) :2280-2284P
    [31] Shang E C, Clay C S and Wang Y Y. Passive harmonic source ranging in waveguides by using mode filter. J. Acoust. Soc. Am. 1985,78(1):172-175P
    [32] I-Tai Lu. Simultaneous characterization of source, array and environment using a ray travel-time inversion approach. J. Comp. Acoust. 1997, 5(2): 193-218P
    [33] I-Tai Lu. Robustness of a ray travel-time inversion approach. J. Acoust. Soc. Am. 1999,106(5) :2442-2453P
    [34] Bucker H P. Experimental test of acoustic localization in shallow water. J. Acoust. Soc. Am. 1985, 77(S1) :S71
    [35] Fizell R G. Bottom effects on matched-field localization performance in the North Pacific. J. Acoust. Soc. Am. 1987,82(S1):S84P
    [36] Hamson R M and Heitmeyer R M. Environmental and system effects
     on source localization in shallow water by the matched-field processing of a vertical array. J. Acoust. Soc. Am. 1989, 86 (5) : 1950-1959P
    [37] Gingras D F and Gerstoft P. Inversion for geometric and geoacoustic parameters in shallow water: experimental results. J. Acoust. Soc. Am. 1995, 97 (6) : 3589-3598P
    [38] Ozard J M, MIL Yeremy et al. Matched-field processing in a range-dependent shallow water environment in the Northeast Pacific Ocean. IEEE J. Oceanic Eng. 1996, 21 (4) : 377-383P
    [39] 施国全.低信噪比下运动目标的被动定位和参数估计.声学与电子工程.2000,(2):5-9页
    [40] 高天赋等.短垂直阵简正波匹配的声源定位.声学学报.1996,21(4):493-505页
    [41] 陈耀明.多线谱加权匹配简正波处理声源定位.声学学报.1999,24(2):167-173页
    [42] 孙枕戈.基于声线理论的水声被动定位原理.声学学报.1996,21(5):824-831页
    [43] Sullivan E J, Middleton D. Estimation and detection issues in matched-field processing. IEEE J. Oceanic Eng. 1993, 18 (3) : 156-167P
    [44] Tolstoy A. Propagation model accuracy for MFP. J. Comp. Acoust. 2000, 8 (3) : 389-399P
    [45] 杨士莪著.水声传播原理.哈尔滨:哈尔滨工程大学出版社,1994:2-2页
    [46] Pierce A D. Extension of the method of normal modes to sound propagation in an almost-stratified medium. J. Acoust. Soc. Am. 1965, 37 (1) : 19-27P
    [47] Kanabis W G. A shallow water acoustic model for an ocean stratified in range and depth. NUSC Tech. Rept. 4887-Ⅰ. 1975, Ⅰ
    [48] Kanabis W G. A shallow water acoustic model for an ocean stratified in range and depth. NUSC Tech. Rept. 4887-Ⅱ. 1976,Ⅱ
    [49] Evans R B. A coupled mode solution for acoustic propagation in a waveguide with stepwise depth variations of a penetrable bottom. J. Acoust. Soc. Am. 1983,74(1): 188-195P
    [50] Graves R D, Nagl A, Uberall H and Zarur G L. Adiabatic mode theory of underwater sound propagation: Application to the wedge-shaped ocean. J. Acoust. Soc. Am. 1975, 58(2) : 1171-1178P
    [51] Nagl A, Uberall H, Haug A J and Zarur G L. Adiabatic mode theory of underwater sound propagation in a range-dependent environment. J. Acoust. Soc. Am. 1978,63(3) :739-749P
    [52] Chwieroth F S, Nagl A, Uberall H, Graves R D, Zarur G L. Mode coupling in a sound channel with range-dependent parabolic velocity profile. J. Acoust. Soc. Am. 1978,64(2):1105-1112P
    [53] Pierce A D. Guided mode disappearance during upslope propagation in variable depth shallow water overlying a fluid bottom. J. Acoust. Soc. Am. 1982,72(2):523-531P
    [54] Pierce A D. Augmented adiabatic mode theory for upslope propagation from a point source in variable-depth shallow water overlying a fluid bottom. J. Acoust. Soc. Am. 1983, 74(6):1837-1847P
    [55] Arnold J M and Felsen L B. Rays and local modes in a wedge-shaped ocean. J. Acoust. Soc. Am. 1983,73(4): 1105-1119P
    [56] Keller J B and Papadakis J S. Wave Propagation and Underwater Acoustics. Lecture Notes in Physics. New York: Springer-Verlag,1977, 70
    [57] Henrick R F, Brannan J R, Warner D B and Forney G P. The uniform WKB modal approach to pulsed and broadband propagation. J. Acoust. Soc. Am. 1983, 74(5): 1464-1473P
    [58] Sachs D A and Silbringer A. Focusing and refraction of harmonic
     sound and transient pulse in stratified media. J. Acoust. Soc. Am. 1971, 49 (3) Pt. 2: 824-840P
    [59] Brown M G. Application of the WKBJ Green's function to acoustic propagation in horizontally stratified oceans. J. Acoust. Soc. Am. 1982, 71 (6) : 1427-1432P
    [60] 张仁和.水下声道中的反转点会聚区(Ⅱ)广义射线理论.声学学报.1982,7(2)
    [61] 张仁和.反转点附近声场的渐近理论.声学学报.1988,13(2)
    [62] 张仁和,何怡,刘红.水平不变海洋声信道中的WKBZ简正波方法.声学学报.1994,19(1):1-12页
    [63] Tappert F D and Hardin R H. A synopsis of the AESD workshop on acoustic modeling by non-ray tracing techniques. Arlington: C. W. Spofford, AESD TN-73-05, 1973
    [64] 杨士莪著.水声传播原理.哈尔滨:哈尔滨工程大学出版社,1994:66-66页
    [65] 朴胜春.抛物方程方法中海底边界条件处理的改进研究.哈尔滨工程大学博士学位论文.1999:9-32页
    [66] Lee D and McDaniel S T. Ocean acoustics propagation by finite difference methods. Oxford: Pergamon Oxford, 1988
    [67] Vefring E H and Mjolsnes S. A parabolic equation based on a rational-cubic approximation. J. Acoust. Soc. Am. 1990, 87 (2) : 619-623P
    [68] Dalrymple R A, Munasinghe L C, Wood D H and Kurby J T. A very-wide-angle acoustic model for underwater sound propagation. J. Acoust. Soc. Am. 1990, 87 (4) : 1863-1876P
    [69] Lee D. and Schultz M H and Saad Y. A three-dimensional wide-angle wave equation with vertical density variations in computational acoustics: Ocean-acoustic models and supercomputing, eds. Lee D, Cakmak A and Vichnevetsky R. North-Holland, Amsterdam, 1990: 129-142P;
    [70] Lee D and Siegmann W L. A three-dimensional propagation model-FOR3D. Proc. Acoustics'93, 1993: 815-822P
    [71] Lee D and Schultz M H. Numerical ocean acoustic propagation in three dimensions. Singapore: World Scientific, 1995
    [72] R. J. URICK著.洪中译.水声原理.哈尔滨:哈尔滨船舶工程学院出版社,1990:96页
    [73] 何祚镛,赵玉芳著.声学理论基础.北京:国防工业出版社,1981:58页
    [74] 杨士莪著.水声传播原理.哈尔滨:哈尔滨工程大学出版社,1994:46页
    [75] 刘伯胜,雷家煜著.水声学原理.哈尔滨:哈尔滨船舶工程学院出版社,1993:18页
    [76] 布列霍夫斯基赫著.分层介质中的波.北京:科学出版社,1983
    [77] Jones R M, Riley J P and Georges T M. A versatile three-dimensional Harmiltonian ray tracing computer program for acoustic wave in the atmosphere(ocean). Wave Propagation Lab, NOAA TECH, Memo, ERL WPL-98, 1982
    [78] 杨士莪,黄益旺.过渡海区匹配场定位技术.中国国防科学技术报告.2000
    [79] 唐俊峰.三维声场声速剖面反演研究.哈尔滨工程大学硕士学位论文.2003
    [80] Fertner A, Sjolund A. Comparison of various time delay estimation method by computer simulation. IEEE Trans. on ASSP. 1986, 34 (5) : 1329-1330P
    [81] Special Issue on Time Delay Estimation. IEEE Trans. Acoust. Speech Signal Processing. 1981, ASSP-29
    [82] Tze Fen, Li. Multipath time delay estimation using regression stepwise procedure. IEEE Trans. Signal Processing. 1998, 46 (1) : 191-195P
    [83] Catharina Carlemalm, Susanne Halvarsson, Torbjorn Wigren and Bo Wahlberg. Algorithms for Time Delay Estimation Using a Low Complexity Exhaustive Search. IEEE Trans. Automatic Control. 1999, 44 (5) : 1031-1037P
    [84] Schultheiss P M, Messer H and Shor G. Maximum likelihood time delay estimation in non-Gaussian noise. IEEE Trans. Signal processing. 1997, 45 (10) : 2571-2575P
    [85] Vaccaro R J, Ramalingam C S and Tufts D W. Least-squares time-delay estimation for transient signals in a multipath environment. J. Acoust. Soc. Am. 1992, 92 (1) : 210-218P
    [86] Manickam T G, Vaccaro R J and Tufts D W. A least-squares algorithm for multipath time-delay estimation. IEEE Trans. Signal processing. 1994, 42 (11) : 3229-3233P
    [87] IDC Processing of Seismic, Hydroacoustic, and Infrasnoic Data. IDC Documentation, SAIC. 1999
    [88] Bell B M, Ewart T E. Separating multipath by global optimization of a multidimensional matched filter. IEEE Trans. Acoust. Speech signal processing. 1986, ASSP-34: 1029-1037P
    [89] Lanniello J P. High resolution multipath time delay estimation for broad-band random signals. IEEE Trans. ASSP. 1998, 36 (3) : 320-327P
    [90] 吴喜录,陈庆生,张元,程翔.目标声定位时延估计的对比研究.现代引信.1996,(4):7-10页
    [91] 张贤达.现代信号处理.第二版.北京:清华大学出版社,2002
    [92] 曾文俊.信号处理中的反卷积技术.哈尔滨工程大学学士学位论文.2000
    [93] Jian Li and Renbiao Wu. An efficient algorithm for time delay estimation. IEEE Trans. Signal Processing. 1998, 46 (8) : 2231-2235P
    [94] 张贤达.信号处理中的线性代数.北京:科学出版社,1997
    [95] Soderstro M T, Stoica P. System identification. London: Prentice Hall, 1989: 128-165P
    [96] 黄益旺,杨士莪,朴胜春.实验数据的多途提取研究.哈尔滨工程大学学报.2002,23 (6):9-11页
    [97] Spiesberger J L. Identifying cross-correlation peaks due to multipaths with application to optimal passive localization of transient signals and tomographic mapping of the environment. J. Acoust. Soc. Am. 1996, 100 (2) Pt. 1: 910-917P
    [98] 王昭,李宏,施坤林,赵俊渭.小基阵高精度时延估计方法研究.西北工业大学学报.2000,18(1):142-146页
    [99] 杨亦春,程翔,陈庆生.智能鱼雷被动声定位精度问题.弹道学报.1999,11(3):8-13页
    [100] 李国罡,石岩,胡昌振.被动声探测系统的时间延迟估计技术.现代引信.1998,(2):17-22页
    [101] Yiwang Huang, Shie Yang, Shengchun Piao. Extracting the multipath structure from the experimental data. IWAET, Harbin, 2002. Harbin: Harbin Engineering University press, 2002
    [102] Yiwang Huang, Shengchun Piao, Shi-e Yang. Extracting the arrival time of a bombing source. IWAET, Harbin, 2002. Harbin: Harbin Engineering University press, 2002
    [103] 黄益旺.基于射线理论的匹配场声源定位研究.哈尔滨工程大学硕士学位论文.2002
    [104] Hunter K S. Global-shape-function models of underwater explosion bubble: [dissertation]. Colorado: Univ of Colorado, 2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700