用户名: 密码: 验证码:
广西大瑶山西铅锌铜多金属矿成矿条件及找矿预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广西大瑶山西侧多金属一重晶石成矿带位于桂中腹地,地处大瑶山西侧,是广西“十五”矿产勘查规划的重点找矿区域之一,但对该区成矿作用的研究及新技术运用于找矿预测方面相对滞后,导致自盘龙铅锌矿后,该区的找矿勘探一直未取得突破。基于此,本论文以生产和科研工作为基础,重点分析区域成矿作用,建立切合实际的多金属成矿模型,归纳控矿因素,总结成矿规律,并运用GIS技术对区域矿产做出预测评价。
     已有的研究对该区矿床的成因众说纷纭,通过归纳,认为目前的争议主要集中在两方面:(一)一类认为该区矿床属受一定层位控制的,中低温热水沉积—后期热卤水再作用的铅锌重晶石矿床;(二)另一类则认为该区矿床为受深大断裂控制的,热液充填型铅锌铜重晶石矿床。为此,本文在分析区域成矿地质背景的基础上,对地层岩性、构造、热水沉积岩及成岩后生作用等方面与成矿的关系进行了深入的论述,最后还引用典型矿床作了实例说明。大量的论述表明,研究区多金属矿床具备“生、储、盖”三位一体的控矿条件组合和“层、相、位”三位一体的成矿规律。简言之,从成矿条件的角度来讲,矿源层+白云岩、含生物屑炭质灰岩及层间破碎带+泥岩或泥质岩构成了生、储、盖三位一体的控矿条件组合。从成矿作用来讲,成矿物质来源以泥盆系地层和寒武系地层为主,部分来自深源岩浆作用;含矿流体主要为沿深大断裂下渗的海水和雨水在深部被加热而形成,但也有深源流体的掺入;热源主要为地热增温和岩浆作用释放的热量;对于成矿温度,不同地区、不同类型矿床略有差异,整体上来看,北段铜、铅、锌、金矿床(点)成矿温度为181—230℃,南段铅锌、黄铁矿矿床(点)成矿温度为135—197℃。从成矿规律的角度来看,赋矿层位+沉积相+构造位置构成了“层、相、位”三位一体的矿床时空分布规律组合。研究区的热水沉积岩主要有重晶石岩、硅质岩、铁白云石、次生层状硅质岩、燧石结核灰岩等,大量有关它们分布、产状、形成环境及岩石地球化学方面的研究证明,它们是在一次大规模的热水沉积事件中形成的,并因此形成象州断陷盆地内由重晶石岩—硅质岩—铁白云石岩一次生层状硅质岩—燧石结核灰岩组成的热水沉积建造,该建造与矿体在空间分布、产状及成因机理上密切相关,显示出热水沉积岩的成矿效应。
     我们在研究区多个区段做过系统的1:2.5万沟系次生晕化探扫面工作,同时,还比较系统地收集了区域1:5万、1:10万化探资料,并将1:2.5万的实测数据进行尺度放大后对1:10万、1:5万数据进行局部修正融合,然后再一次圈定化探异常,本文选取主要成矿元素(Cu、Pb、Zn、Ba、Au)进行了异常说明。整体上发现化探异常具以下特征:①硅化岩区Au、Cu、Ba、Zn、Pb异常显著。灰岩区Zn、Pb异常显著。硅质岩区Au、Ag、Cu异常显著;②Ba异常普遍,尤其在硅化岩区,而灰岩区的官桥组地层Ba异常亦明显,Zn次之;③异常总体上呈现出两类组合,即Ba-Zn-Pb组合和Ba-Cu-Au组合;④自北向南的异常元素组合呈现出Cu-Au-Zn-Pb-Ba-Ag系列→Ba-Zn-Pb-Cu系列→Pb-Zn-Ba系列的分带特征。同时,对研究区不同尺度的物探特征也做了简要说明。
     基于这些认识,总结了区域多金属矿成矿规律。从成矿时间上来看,大瑶山西侧地区自下泥盆系地层形成时就有铅锌黄铁矿等同生矿床的形成,随后至下泥盆世官桥期时,就开始发生了盆地热卤水的成矿作用,自此进入区内铅锌的主要成矿时期。随后自印支期至燕山期,伴随着构造运动和岩浆活动,已形成矿床遭受改造,并形成以铜、铅锌及金矿为主的脉状矿化。在空间分布上,区域构造格架决定了矿带的位置及展布,矿源层及层序边界面决定了赋矿层位。而局部构造、热水沉积作用、蚀变作用及对应的成矿作用又决定了矿体的位置、矿种的空间分布及组合等。而在矿物共生组合规律上,由于成矿专属性的作用,不同的大地构造位置及成矿地质条件决定了不同的矿床类型,并因此产出不同的矿种,形成不同的矿物共生组合。
     最后,在研究区建立了两套预测模型,模型Ⅰ:针对具有层控特征的铅锌黄铁矿及重晶石矿体,模型Ⅱ:另一套针对热液成因的铜,铅锌,金及重晶石矿。按照建立的两个预测模型,对提取的地质变量进行控矿权重赋值,并用专家打分法进行修正,再对成矿信息量按成矿有利度大小进行重分类,随后对每个预测单元格内的成矿有利度进行计算,生成区域找矿有利地段预测图。通过计算,在大瑶山西侧确定了4个成矿远景区,分别是东乡—通挽铅锌黄铁矿远景区,水村—东乡铅锌铜远景区,头排—寺村重晶石、铜铅锌远景区,古尝—龙江铜、金、重晶石成矿远景区,本次预测共圈定铅锌铜多金属—重晶石找矿有利地段13个,A级找矿有利地段4个,B级找矿有利地段4个,C级找矿有利地段5个。
     通过本文研究,形成以下结论:
     (1)在大瑶山西侧的多金属矿床主要是多期成矿作用叠加而成的复成因类型矿床,分别为海底热水沉积作用形成的同生铅锌多金属含矿层、断陷盆地内由热卤水作用形成的层控型铅锌多金属矿化叠加和受构造控制的深部热液充填交代型铜金多金属—重晶石矿化。但以第二类占主要,是大瑶山西侧寻找大规模矿体的主攻类型。
     (2)热水沉积岩具有重要的控矿作用,空间上相关,成因上相联,特征明显且稳定。而在以往针对该区的找矿及研究工作中,热水沉积岩往往被忽略,所以加强对热水沉积岩的成矿研究,对找矿预测及矿体的定位勘探至关重要,也是打破该区的传统找矿思路,用新理论取得找矿突破的最关键一步。
     (3)研究区的成矿作用具有典型的“生、储、盖”三位一体的控矿条件组合和“层、相、位”三位一体的成矿规律。
     (4)预测有利区内各种示矿信息及找矿标志明显,成矿地质条件充分,大量已知矿床(点)在有利区内产出,大部分地区勘探程度较低,并且已有的工作也都是以“就矿找矿”的思路对断裂破碎带控制的矿体作了一些地表评价和部分深部验证,说明通过调整找矿思路和方法,该区第二轮找矿有取得突破的良好前景。
The Pb、Zn、Cu multi-metal—barite ore deposit of western Dayaoshan, Guangxi is locating in Guizhong basin, western of the Dayaoshan mountain, which is one of the most important exploration area of "The Tenth Five Years Plan"of Guangxi. Eventhough, the study of metallogenetic mechanism and new technology for ore prospecting and forecasting in this area is fall behind, as a result, the ore exploration in this aera have got little achievement since the finding of Panlong Pb-Zn deposit in 2003. So, based on field work and room study, this paper analyzed the minerogenetic mechanism, and then built the mineralization model for this area, generalized the major ore constraints, summarized the metallogenetic law, at the last, we have also did some mineral resource prediction and assessment (MRPA) for this area in GIS.
     There are many wording for the metallogenetic mechanism in this area, after studied many literatures, we found all these wording are focusing on two respects:①Someone thout the ore in this area was mainly controlled by stratum, and the ore was forming in mid-low temperature water sedimentary and then reformed by later hydrothermal,the main mineral resources are galena,sphalerite,barite;②While the others hold the point that the ore was mainly controlled by deep faults, and the ore was forming in hydrothermal silting these fault and cranny,so the main mineral resources are galena,sphalerite,chalcopyrite,barite and so on. In these, based on the ore forming setting analysis,this article have discussed the stratum,lithology,structure,hot water sedimentary rock and the epigenesis after deposition,at the end,we have cited a typical ore deposit to explain the analysis. A great many exposition have made known that the ore in this area have the three ore controlling factors "source,fill,cover" to an organic whole and three ore forming laws" stratum,face,position"to an organic whole character.To the mineralization, source bed +dolostone,biological fossil bearing carbon limestone and crush belt between layers+mudfish or mud-bearing stone have beening constituted to form the three ore controlling factors "source,fill,cover" to an organic whole. While to the mineralization laws,ore contained stratum+ sedimentary face+ constructive position have beening constituted to form the three ore forming laws"stratum, face, position" to an organic whole.There are five kinds of hot water sedimentary rock,they are barite, silicolite, ferrodolomite, secondary layer silicolite, nodular chert limestone,the study about their distributed,occurrence,forming environment and the rock geochemical character have prove that they have formed in a wide ranging hot water sediment event,and therefore formed the hot water sedimentary buildups barite-silicolite-ferrodolomite-secondary layer silicolite-nodular chert limestone in the Xiangzhou fault basin,there are strong relation between the hot water sedimentary buildups and the ore deposits,the hot water sediment event have played a important role in the ore forming course.
     As a result,this paper hold the opinion that there are three types of ore deposit in the study are,the first type is the syngenetic Pb-Zn-multi-metal—Barite ore deposit formed in the sea floor hot water sedimentent, the second type is the stratabound Pb-Zn-multi-metal ore deposit formed as the hot brine evolution in the fault basin, while the third type is the structure-constrainted Cu-multi-metal—Barite ore deposit formed as the hydrothermal silting these fault-cranny and reactived with country rock. The ore-forming matters mainly came from Devonian and Cambrian stratum, some portion came from deep magmatism; The ore-bearing fluid came from the seawater and rainwater, which infiltrated follow the deep faults and been heated in the deep, but there was still deep fluid mixed into the ore-bearing fluid.The heat mainly came from the terrestrial heat and magmatism.At different region or different type of ore deposits have different ore forming temperature, overall, the Pb、Zn、Au deposit in the northern part has the ore forming temperature 181—230℃, while the Pb、Zn、pyrite in the southern part has the temperature 135—197℃.
     We have did the valley's secondary soil geochemical prospecting at the scale 1:25000 in some parts of this area systemly, meanwhile, we have collected 1:50000,1:100000 soil geochemical data this area systemly, then we larged the 1:25000 soil geochemical data's scale to 1:50000 or 1:100000, and then did some revise to the data we collected using these data, at last draught the anomaly map again. This article would select the main ore-forming element to state the soil geochemical character. On the whole, we found the soil geochemical has some characters as the following:①The Au、Cu、Ba、Zn、Pb anomaly is very obvious in silicification area, while the Zn、Pb anomaly is very obvious in limestone area, and the Au、Ag、Cu is very obvious in silicolite area;②The Ba anomaly is very widespread, especially in silicification area, while in the "Guanqiao formation" in limestone area, the Ba anomaly is also very widespread, and the Zn takes second place;③There are mainly two types of elements group in anomaly, one group is the Ba-Zn-Pb while the other group is the Ba-Cu-Au;④From north to south, there are some laws in the elements grouping, that is they have such grouping from Cu-Au-Zn-Pb-Ba-Ag to Ba-Zn-Pb-Cu to Pb-Zn-Ba as from north to south。Beside, we have stated the geophysics character in our study area simply.
     Based on these knowledge, we summarized the mineralization law in our study area. At the time of mineralization, the minerogenetic began as the low Devonian forming, and then in the "Guanqiao sedimentary"of low Devonian, there came the hot brine minerogenetic as the Xiangzhou fault basin had already formed, most of the deposit in our study area had formed in this time.And at the Yinzhi-Yanshan period, this area had undergone great tectonic movement and magmatism, the ore deposit had been reformed, and the nervation of Cu、Pb、Zn had arised. In the space distribution, the tectonic setting determined the ore deposits distributed, the source bed and the interface of layers determined the ore-bearing stratum, while the mini-structure、hot water deposit、alteration and minerogenetion had determined the ore body's location mineral's grouping and zoning.In the mineral grouping, metallogenic specialization and heritage, as well as the tectonic setting and metallogenic geology condition determined the ore types and mineral grouping.
     At the last, we have built two kinds of mineral resource prediction and assessment model, No.1:to the strata-bound Pb、Zn、pyrite and barite deposit; No.2:to the hydrothermal Cu、Pb、Zn、Au and barite deposit. According to the two MRPA model, we abstracted geology variances and evaluated each of them, revised them by expert commentary, and then sorted them according the benefit to mineralization each geology variances did, at last we calculated the weight of each geology variances in every forecast grid and generated the map for the preferable ore-finding area.After that work, we have defined four probable ore-forming area, they are Dongxiang-Tongwan Pb、Zn、pyrite probable forming area, Shuicun-Dongxiang Pb、Zn、Cu probable forming area, Toupai-Sicun barite、Cu、Pb、Zn probable forming area and Guchang-Longjiang Cu、Au、barite probable forming area, Meanwhile, we have also defined thirteen preferable ore-finding area, among them, the A grade is four,B grade is four,and C grade is five.
     After this study, we got the conclusion as following:
     ①There are three types ore deposit in western Dayaoshan, the first type is the syngenetic Pb-Zn-multi-metal—Barite ore deposit formed in the sea floor hot water sedimentent, the second type is the stratabound Pb-Zn-multi-metal ore deposit formed as the hot brine evolution in the fault basin, while the third type is the structure-constraints Cu-multim-metal—Barite ore deposit formed as the hydrothermal silting these fault-cranny and reactived with country rock. Among them,the second type is very widespread in our study area,and so it is the main type we should pay great attention to in our exploration.
     ②The hot water sedimentary had played a important role in the metallogenic, they have strong relation between the ore deposit in space distribution and genesis, and the characters is very obvious and stable.While in the past ore exploration and study in this area, we payed little attention to the hot water sedimentary, so we should realize the importance of the hot water sedimentary and do some stud, we may make great progress in our exploration unexpected, it is also one of the most important step to go away from the traditional exploration thinking in this area.
     ③There is a very typical character that the ore in this area have the three ore controlling factors "source, fill, cover" to an organic whole and three ore forming laws"stratum, face, position"to an organic whole character.
     ④The ore indication and ore-finding sign is very clearly in the preferable ore-finding area, the ore-forming condition is good, there are many ore deposits and mineralization outcrops in the preferable ore-finding area too, meanwhile, most of this area have skin-deep exploration, so if we have the right theory and better technology, there is no doubt that our exploration will make great progress in this area.
引文
[1]徐仕琪,周可法,张晓帆等,G1S空间分析在成矿预测中的运用——以西天山为例.新疆地质[M],2008,26(1):27—31.
    [2]肖克炎.矿产资源GIS评价系统[M].北京:地质出版社,2000.47—85.
    [3]池顺都,GIS,经验找矿与求异找矿结合的工具——化探异常找矿效果经验分析[J].地质与勘探,2000,36(1):71—74.
    [4]陈建平,陈勇,王全明,基于GIS的多元信息成矿预测研究——以赤峰地区为例[J].地学前缘(中国地质大学(北京);北京大学),2008,15(4):18—26.
    [5]矫东风,吕新彪,基于GIS空间分析的成矿预测[J].地质找矿论丛,2003,18(4):269—275.
    [6]赵俊三,赵耀龙,GIS发展的最新趋势及其运用前景[J].测绘工程,2000,9(2):21—25.
    [7]王全明,方一平.矿产资源调查评价中的GIS[J].中国地质,2001,28(4):38—44.
    [8]邓吉牛,地质资料二次开发在矿山找矿中的作用[J].中国地质,2000,(4):33—35.
    [9]白忠峰,桂中坳陷构造特征及其与油气关系:[硕士学位论文].北京:中国地质大学(北京),2006.
    [10]刘宝珺.岩相古地理基础和工作方法[M].北京:地质出版社,1985.32—41.
    [11]任纪舜,陈挺愚,牛宝贵,等.中国东部及邻区大陆岩石圈的构造演化与成矿[M].北京:科学出版社,1990.23—28.
    [12]王剑,宁浦功.桂北桂中泥盆纪沉积盆地大地构造演化与铅锌成矿作用[J].广西地质,1998,11(1):1—6.
    [13]张善明,吕新彪,邓国祥,等.地质界面控矿原理及其运用要点[J].地质科技情报,2009,28(6):51—56.
    [14]方维萱,胡瑞忠.秦岭造山带泥盆纪三级构造热水沉积成矿盆地主控因素——大型—超大型矿床集中区研究(Ⅰ)[J].大地构造与成矿,2001,25(1):27—35.
    [15]刘宝珺,王剑.论海平面变化与层控矿床成因[J].地球科学——中国地质大学学报,1997,22(3):285—294.
    [16]李人澍.成矿系统分析的理论与实践[M].北京: 地质出版社,1996:35—40.
    [17]张振飞,夏庆霖.成矿环境空间结构的模糊建模[J].地球科学——中国地质大学学报,2005,30(1):109—113.
    [18]赵兴元.矿源层研究之管见[J].地球科学—中国地质大学学报,1989,:60、68.
    [19]杨海生,周永章,杨志军,等.华南热水成因硅质岩建造的稀土元素地球化学特征[J].矿物岩石地球化学通报,2003,22(1):61—64.
    [20]李毅,苏夏征,陈大经,等.广西热水沉积矿床中硅质岩岩石学及岩石化学特征[J].矿产与地质,2007,21(4):445—451.
    [21]周永章.广西丹池盆地泥盆系热水成因硅质岩的地球化学特征[J].沉积学报,1990,8(3):75—83.
    [22]徐跃通.信江盆地石炭纪硅岩地球化学特征及沉积环境意义[J].地质科学,1998,33(1):48—49.
    [23]周永章,陈炳辉,张恩,等.华南热水沉积建造地球化学与古海洋热水流体成矿作用[R].[第四界世界华人地质科学讨论会论文集].广州:中山大学,2002.
    [24]涂光炽,等.中国层控矿床地球化学(第一卷)[M].北京:科学出版社,1984.25—65.
    [25]宋春晖,武安斌,周少平.西成矿田海底热水喷溢沉积成因硅质岩及其与矿化关系[J].沉积学报,10(4):60—67.
    [26]杨海生,周永章,杨志军,等.热水沉积硅质岩地球化学特征及意义—以华南地区为例[J].中山大学学报(自然科学版)2003,42(6):111—115.
    [27]王明艳,息朝庄,李毅,等.广西热水沉积矿床中重品石岩地质地球化学特征[J].矿产与地质,2008,22(4):335—341.
    [28]杨瑞东,魏怀瑞,鲍淼,等.贵州天柱上公塘—大河边寒武纪重晶石矿床海底热水喷流沉积结构、构造特征[J].地质论评,2007,53(5):675—682.
    [29]陈先沛,高计元.广西中部泥盆系的多金属—重晶石矿床和热水沉积作用[J].沉积学报,1987,5(3):149—148.
    [30]李文炎,余洪云.中国重品石矿床[M].北京:地质出版社,1991.43—77.
    [31]刘继顺.喷流沉积成矿作用研究的若干问题[J].矿产与地质,1996,10(1):6—10.
    [32]Craing HB, Robert JW, Katherina VR et al. Wallrock alteration at the Sullivan deposit, British Columbia, Canada. In:Lydon JW (ed.) The Geological Enviroment of the Sullivan Deposit, British Columbia[M].Berlin:Springer Publication,2000.
    [33]陈先沛,陈多福.广西上泥盆统乳房状燧石的热水沉积地球化学特征[J].地球化学,1989,1:1—8.
    [34]Murchey BL,Jones D L. Amid-pemian chert event widespread deposition of biogenetic siliceous sediments in coastal island arc and oceanic basins Palaeogeography, Palaeoclimatology[J].palaeoecology,1992.,96:161—174.
    [35]孙邦东.广西铅锌矿矿源层探讨[J].广西地质,2002,15(1):37—42.
    [36]卢家烂,傅家谟.中国科学院地球化学研究所有机地球化学开放研究实验室研究年报[M].北京:科学出版社,1990.
    [37]夏林.有机质与沉积铅锌矿床成因关系的几个基本问题[J].云南地质,2000,19(2)179—183.
    [38]Hu Mingan, Disnar J R, Sureau J F. Organic geochemical indicators of biological sulphate reduction in early diagenetic Zn-Pb mineralization:the Bois-Madame deposit (Gard, France) [J].Applied Geochemistry,1995,10 (4):419—435.
    [39]滕吉文.地球深部物质和能量交换的动力过程与矿产资源的形成[J].大地构造与成矿学, 27(1):3—21.
    [40]翟裕生,邓军,宋鸿林,等.同生断层对层控超大型矿床的控制[J].中国科学(D辑),1998,28(3):214-218.
    [41]程小久.同生断层控矿作用综述[J].矿床地质,1994,(增刊):110—130.
    [42]Sawkins F J. Metal deposits related to intracontinental hotspot and rifting environment[J]. J Geol,1976,84:653—671.
    [43]Gibbs A D. Structural evolution of extensional basin margins[J]. Journal of the Geological Society,1984,141:609—620.
    [44]Rosendahl B R. Architecture of continental rifts with special reference to East Africa[R]. Annual Review of Earth and Planetary Sciences,1987,15:31—43.
    [45]Scott D L, Rosendahl B R. North Viking graben:an East African prospective[J]. AAPG Bull, 1989,73(2):155—165.
    [46]Morley C K, Nelson RA, Patton TL, et al.Transfer zones in East African rift system and their relevance to hydrocarbon exploration in rifts[J].AAPG Bull,1990,7 (8):1234—1253.
    [47]Faulds J E, Varga R J. The role of accommondation zone and transfer zone in the regional segmentation of extended terranes[J].Geology Society of America Special Paper,1998,323:1 —45.
    [48]刘德来,王伟,马莉.伸展盆地转换带分析—以松辽盆地北部为例[J].地质科技情报,1994,13(2):5—9.
    [49]Clendenin C W, Duane M J. Focused fluid flow and Ozark Mississippi Valley-type deposits[J]. Geology,1990,18:116—119.
    [50]John McL. Miller, E.P. Nelson, M.Hitzman, P. Muccilli, et al. Orthorhombic fault-fracture patterns and non-plane strain in a synthetic transfer zone during rifting:Lennard shelf, Canning basin, Western Australia[J].Journal of Structural Geology,2007,29:1002—1021.
    [51]Hulbert L J, Gregoire D C, Paktunc D, et al. Sedimentary nickel, zinc and platinum-group-element mineralization in Devonian black shales at the Nick Property, Yukon, Canada:a new deposit style[J]. Expl.Mining Geol.,1992,1:39—62.
    [52]White S H,Boorder H, Smith C B. Structural controls of kimberlite and lamproite emplacement. J[J]. Geochem. Explor.,1985,53:245—264.
    [53]Henley R W, Adams D P M. Strike-slip fault reactivation as a control on epithermal vein-style gold mineralization[J]. Geology,1992,20:443—446.
    [54]Elena A. Konstantinovskaya, Lyal B. Harris, Jimmy Poulin, et al. Transfer zones and fault reactivation in inverted rift basins:Insights from physical modeling[J].Tectonophysics,2007, 441:1—26.
    [55]Robert W.K. Orthorhombic fault patterns:The odd axis model and slip vector orientations[J]. Tectonics,1989,8(3):483—495.
    [56]广西壮族自治区地质矿产局.广西西区域地质志[M].北京:地质出版社,1985.77—94.
    [57]王宝碌,吕世琨,胡居贵.试论川滇黔菱形地块[J].云南地质,2004,23(2):140—153.
    [58]王绳祖,张流.塑性流动网络控制下川滇菱形块体及邻区构造应力场与地震构造[J].地震地质,2002,24(3):324—334.
    [59]蒋炳铨.华南地区山字型、弧形构造与“格状断裂”[J].成都理工大学学报(自然科学版),1980,4(4)23—33.
    [60]刘秋生,李火车,何碧竹,等.“花窗结构,菱形中心”——断陷盆地的沉积规律[J].石油与天然气地质,2001,22(3):217—220.
    [61]刘树人.菱形断块演化及其对滇东北地区铅锌矿床控制的初步分析[J].云南地质,1986,5(1):39—45.
    [62]邓军,吕古贤,杨立强,等.构造应力场转换与界面成矿[J].地球学报,1998,19(3):244—250.
    [63]Tom Pedersen等.沉积盆地中的流体流——垂向裂隙中孔隙水的流动模式[J].地质科学译丛,1995,12(2):69—75.
    [64]Wenzheng Jin, Liangjie Tang, Keming Yang, et al. Transfer zones within the Longmen Mountains thrust, SW China[J]. Geosciences Journal,2009,13(1):1—14.
    [65]吕新彪,赵鹏大,姚书振.长江中下游地区地质异常与成矿[J].地质学报,1998,72(3):260—266.
    [66]Gerard I.Tripp, Julian R. Vearncombe Fault/fracture density and mineralization:a contouring method for targeting in gold exploration[J]. Journal of Structural Geology,2004,26:1087— 1108.
    [67]胡明安,徐伯骏,曹新志,等.地质界面对桂中凹陷区铅锌矿床的控制意义[J].地球科学——中国地质大学学报,2005,30(3):353—358.
    [68]肖荣阁,原振雷,刘敬党,费红彩,等.区域成矿流体的形成与演化[J].地学前缘(中国地质大学,北京),2004,11(2):461—468.
    [69]Michael F. Hochella. The changing face of mineral-fluid interface geochemistry. In:Greg B. Arehart, John R. Hulston. Water-rock interaction:proceedings of the 9th International Symposium on Water-Rock Interaction [M]. Rotterdam:Brookfield, VT:A.A. Balkema,1992:7—12.
    [70]戴永定,刘铁兵,沈继英.生物成矿作用与生物矿化作用[J].古生物学报,1994,33(5):575—594.
    [71]何进忠,姚书振,彭德启,等.西秦岭地区生物礁与铅锌矿关系的再认识[J].地球学报,2008,29(1):61—71.
    [72]WANG Jun, QIN Wenqing, ZHANG Yansheng, et al. Bacterial leaching of chalcopyrite and bornite with native bioleaching microorganism[J]. Transactions of Nonferrous Metals Society of China,2008,181468—1472.
    [73]A.A.Sicree,H.L.Barnes. Upper Mississippi Valley district ore fluid model:the role of organic complexes[J]. Ore Geology Reviews,1996,11,105—131.
    [74]层状白云岩储层特征与成因:以滇桂地区泥盆系、石炭系及湘鄂交界地区三叠系为例[M].北京:地质出版社,1999.101—119.
    [75]崔彬,李忠.成矿空间初探[J].地质与勘探,2000,36(6):6—8.
    [76]王红伟.海拉尔盆地盖层分布及断层封闭性评价——以乌尔逊、贝尔凹陷为例[D]:[硕士学位论文].西安:西北大学,2004.
    [77]Cui Bin. Synthetic metallogenic prediction in the material field-energy field-spatial field. In: The Theoretical and Applied Problem of Geology[M]. Moscow:Moscow University Press, 1996.
    [78]崔彬,李忠.物质场—能量场—空间场综合成矿预测[J].现代地质,1998,12(4):501—505.
    [79]于崇文.成矿作用动力学[M].北京:地质出版社,1998:1—23.
    [80]韩发,孙海田.Sedex型矿床成矿系统[J].地学前缘,1999,6(1):139—154.
    [81]张长青,余金杰,毛景文,等.密西西比型(MVT)铅锌矿床研究进展[J].矿床地质,2009,28(2):195—210.
    [82]赵逊,I.J.Fairchild.广西泥盆系碳酸盐岩主要白云岩化类型的岩石学及氧碳稳定同位素特征[J].广西地质,1989,2(1):21—33.
    [83]Rimstidt J D. Gangue mineral transport and deposition. In:Barnes H L,ed. Geochemistry of hydrothermal ore deposits[M]. New York:John Wiley and Sons Ico.487—516.
    [84]孟良义.热液矿床中的硅化与成矿[J].科学通报,43(6):575—579.
    [85]谭运金,邓国政,皮俊明,等.强硅化岩的地质、地球化学特征及其找矿评价意义[J].中国钨业,2002,17(2):14—21.
    [86]胡受权,徐旃章,张寿庭.云南宁蒗地区巴打湾沉积—热液改造型重品石矿床地质特征[J].地质与勘探,1998,34(5):23—27.
    [87]张振贤,周怀玲,袁少平.广西武宣县乐梅铅锌矿床地质特征和成因探讨[J].广西地质,1989,2(3):33—46.
    [88]Anderson G M. Precipitation of Mississippi Valley-type ores.Econ[J]. Geol.,1975,70:937— 942.
    [89]梁国宝.广西大瑶山西侧铜铅锌多金属成矿带成矿地质特征及找矿方向研究[R].[硕士学位论文].武汉:中国地质大学(武汉),2003.
    [90]王志华.景观地球化学研究在土壤地球化学测量中的作用[J].地质与勘探,1999,35(6):55—57.
    [91]李国华,王大伟,王国富,等.1:2.5万沟系次生晕地球化学找矿方法探讨[J].地质与勘探,2001:37(3):50—52.
    [92]谢学锦、程志中、张立生,等中国西南地区76种元素地球化学图集[M].北京:地质出版社,2008:44—217.
    [93]范永香,阳正熙.成矿规律与成矿预测[M].徐州:中国矿业大学出版社,2005.18—99.
    [94]张会琼.佛子冲铅锌矿田构造控矿特征与成矿预测[D].[硕士学位论文].北京:中国地质大学(北京),2007.
    [95]Renguang Zuo, Qiuming Cheng, F.P.Agterberg, et al. Application of singularity mapping technique to identify local anomalies using stream sediment geochemical data, a case study from Gangdese, Tibet, western China[J]. Journal of Geochemical Exploration,2009,101: 225—235.
    [96]叶天竺,朱裕生,夏庆霖,等.固体矿产预测评价方法技术[M].北京:中国大地出版社,2004.104—207.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700