用户名: 密码: 验证码:
武夷山不同海拔土壤有机碳库及其矿化特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择福建省武夷山国家自然保护区不同海拔高度的4个典型植被土壤,采用野外采样和布置室内培育试验相结合的方法,系统分析了土壤的有机碳库及其矿化特征。结果表明:
     (1)土壤总有机碳及各活性有机碳含量均随海拔高度的升高而增加,随土层的加深而下降。4种活性有机碳两两间的相关性均达到极显著的正相关。各活性有机碳占土壤总有机碳的比率总的趋势是易氧化碳>矿化碳>微生物生物量碳>水溶性有机碳。土壤总有机碳含量是土壤活性有机碳含量在不同海拔高度上产生差异的主导因子。土壤活性有机碳含量具有明显的季节性变化特征。土壤温度是影响各活性有机碳含量季节变化的重要因子。
     (2)依据三库一级动力学理论区分的不同海拔高度植被土壤有机碳各库的大小差异明显。土壤活性和惰性有机碳的含量均随海拔高度的升高而增加,缓效性有机碳含量为高山草甸>亚高山矮林>常绿阔叶林>针叶林。
     (3)经25℃365天室内培养后,不同海拔高度植被土壤的矿化速率在1.67×10~(-2)~4.46×10~(-2)gC·kg~(-1)·d~(-1)之间,高山草甸的最快,常绿阔叶林的最慢。矿化率在17.5%~22.8%,变化趋势为针叶林>亚高山矮林>常绿阔叶林>高山草甸。土壤矿化速率和矿化率总体上呈现随土层的加深而递减的趋势。不同温度条件下土壤有机碳的矿化量有显著区别。365天培养后,不同土层的Q10平均值,常绿阔叶林为1.46,针叶林为1.46,亚高山矮林为1.41,高山草甸为1.45。同一植被土壤随着土层的加深,Q10值显著减小。
In this study, soil organic carbon(SOC) pools and the characteristic of carbon mineralization were systematically studied by sampling analysis and laboratory incubation in four typical vegetation communities along the elevation gradient in Wuyi Mountain. Our results showed that:
     (1) The amount of total organic carbon(TOC), microbial biomass carbon(MBC), readily oxidation carbon(ROC), water-solubable organic carbon (WSOC) and mineralizable carbon(MC) all increased along the elevation gradient and decreased with the increasing soil depth. The four kinds of labile organic carbon correlated positively with each other. The order of ratios of labile carbon to TOC was: ROC>MC>MBC>WSOC. Statistical analysis found that the most obvious effect of TOC appeared to be as aprimary constraint on the amount of soil labile organic carbon along an elevation gradient. Significant seasonal variation of soil labile organic carbon was found. Soil temperature was the major regulatory factor on the seasonal variations of soil labile organic carbon.
     (2) The sizes of SOC pools distinguished based on the three-pool theory significantly differed from one another along the elevation gradient in Wuyi Mountain. Both the active carbon and recalcitrant carbon increased along the elevation gradient. The content order of slow carbon was alpine meadow(AM)>sub-alpine dwarf forest(SDF)> evergreen broadleaved forest (EBF)> coniferous forest (CF).
     (3) SOC mineralization rates were estimated between 1.67×10-2~4.46×10-2gC·kg-1d-1 after 365 days’laboratory incubation at 25℃. The mineralization rate in AM was the highest and in EBF was the lowest. The mineralization ratio was between 17.5%~22.8%, the change trend was CF>SDF>EBF>AM. The mineralization rate and mineralization ratio of SOC decreased across soil depth. The quantity of carbon mineralization differed significantly at different temperature along the elevation gradient. At the end of 365 days’incubation, the average Q10 values was across soil depth were 1.46, 1.46, 1.41, 1.45 in EBF, CF, SDF, AM, respectively. The Q10 values decreased significantly with the increasing soil depth.
引文
曹建华,潘根兴,袁道先等.岩溶地区土壤溶解有机碳的季节动态及环境效应[J].生态环境, 2005, 14(2):224-229.
    常顺利,杨洪晓,葛剑平.净生态系统生产力研究进展与问题[J].北京师范大学学报(自然科学版), 2005, 41(5):517-521.
    陈国潮,何振立,黄昌勇.红壤微生物生物量C周转及其研究[J].土壤学报, 2002, 39(2): 152 -160.
    陈国潮,何振立,姚槐应.红壤微生物量的季节性变化研究[J].浙江大学学报(农业与生命科学版), 1999, 25(4):387-388.
    陈庆强,沈承德,易惟熙等.土壤碳循环研究进展[J].地球科学进展, 1998, 13(6):555-563.
    陈全胜,李凌浩,韩兴国.水分对土壤呼吸的影响及机理[J].生态学报, 2003, 23(5):972-978.
    陈全胜,李凌浩,韩兴国等.土壤呼吸对温度升高的适应[J].生态学报, 2004, 24(11):2649- 2655.
    陈仁华.武夷山不同森林类型土壤微生物分布状况的研究[J].福建林业科技, 2004, 4:44-47
    陈珊,张常钟,刘东波等.东北羊草草原土壤微生物生物量的季节变化及其与土壤生境的关系[J].生态学报, 1995, 15(1):91-94.
    陈英,陈蓓,张军等.免耕覆盖对土壤微生物量碳的影响[J].生态环境, 2008, 17(6): 2370-2373.
    陈佐忠,汪诗平.中国典型草原生态系统[M].北京:科学出版社, 2001.
    戴慧,王希华,阎恩荣.浙江天童土地利用方式对土壤有机碳矿化的影响[J].生态学杂志, 2007, 26(7):1021-1026.
    范志平,王红,邓东周等.土壤异养呼吸的测定及其温度敏感性影响因子[J].生态学杂志, 2008, 27(7):1221-1226.
    方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报, 2000, 24(5):635-638.
    方燕鸿.武夷山米槠、甜槠常绿阔叶林的物种组成及多样性分析[J].生物多样性, 2005, 13(2):148-155.
    韩成卫,李忠佩,刘丽等.去除溶解性有机质对红壤水稻土碳氮矿化的影响[J].中国农业科学, 2007, 40(1):107-113.
    郝瑞军,李忠佩,车玉萍.水分状况对水稻土有机碳矿化动态的影响[J].土壤, 2006, 38(6):750-754.
    何建源主编.武夷山研究(自然资源卷)[M].厦门:厦门大学出版社, 1994.
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤, 1997(2):61-67.
    黄昌勇主编.土壤学[M].北京:中国农业出版社, 2000.
    黄黎英,曹建华,周莉等.不同地质背景下土壤溶解有机碳含量的季节动态及其影响因子[J].生态环境, 2007, 16(4):1282-1288.
    姜培坤.不同林分下土壤活性有机碳库的研究[J].林业科学, 2005, 41(1):10-13.
    焦坤,李忠佩.红壤稻田土壤溶解有机碳含量动态及其生物降解特征[J].土壤, 2005, 37(3):272-276.
    李仁岗,于荣,王伯仁.土壤活性有机质的研究进展[J].土壤肥料, 2000, (6): 3-7.
    李淑芬,俞元春,何晟.南方植被土壤溶解有机碳与土壤因子的关系[J].浙江林学院学报, 2003, 20(2):119-123.
    李淑芬,俞元春,何晟.土壤溶解性有机碳的研究进展[J].土壤与环境, 2002, 11(4):422-429.
    李玉强,赵哈林,赵学勇等.土壤温度和水分对不同类型沙丘土壤呼吸的影响[J].干旱区资源与环境, 2006, 20(3):154-158.
    李玉武.次生植被下土壤活性有机碳组分季节动态研究[C].硕士学位论文.成都:中国科学院成都生物研究所, 2006.
    李忠佩,唐永良,石华等.不同轮作措施下瘠薄红壤中碳氮积累特征[J].中国农业科学, 2002, 35(10):1236-1242.
    林大仪主编.土壤学实验指导[M].北京:中国林业出版社, 2004.
    刘绍辉,方精云,清田信.北京山地温带森林的土壤呼吸[J].植物生态学报, 1998, 22(2):119-126.
    刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报, 1997, 17(5):469-476.
    鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社, 2000.
    毛青兵.天台山七子花群落下土壤微生物生物量的季节动态[J].生物学杂志, 2003, 20(3):16-18.
    莫治雄译.用动态方法原位测定土壤呼吸强度[J].土壤学进展, 1991, 19(6):50-53.
    牟守国.温带阔叶林、针叶林和针阔混交林土壤呼吸的比较研究[J].土壤学报, 2004, 41(1): 564-570.
    倪进治,徐建民,谢正苗等.不同施肥处理下土壤水溶性有机碳含量及其组成特征的研究[J].土壤学报, 2003, 4:724-730.
    倪进治,徐建民,谢正苗等.不同有机肥料对土壤生物活性有机质组分的动态影响[J].植物营养与肥料学报, 2001, 7(1):56-63.
    朴河春,洪业汤,袁芷云等.贵州喀斯特地区土壤中微生物量碳的季节性变化[J].环境科学学报, 2000, 20(1):106-110.
    权伟,徐侠,王丰等.武夷山不同海拔高度植被细根生物量及形态特征[J].生态学杂志, 2008, 27(7):1095-1103.
    邵月红,潘剑君,孙波.长期施肥对红壤不同形态碳的影响[J].中国生态农业学报, 2006, 14(1):125-127.
    邵月红,潘剑君,孙波.长期施用有机肥对瘠薄红壤有效碳库及碳库管理指数的影响[J].土壤通报, 2005, 36(2):177-180.
    邵月红.我国亚热带和温带土壤有机碳动态变化及InTEC模型的验证[D].硕士学位论文,南京:南京农业大学, 2005.
    沈宏,曹志洪,胡正义.土壤活性有机碳的表征及其生态效应[J].生态学杂志, 1999, 18(3):32-38.
    沈宏,曹志洪,徐志红.施肥对土壤不同碳形态及碳库管理指数的影响[J].土壤学报, 2000, 37(2):166-173.
    沈宏,曹志洪.不同农田生态系统土壤碳库管理指数的研究[J].生态学报, 2000, 20(4):663-668.
    沈宏,曹志洪.长期施肥对不同农田生态系统土壤有效碳库及碳素有效率的影响[J].热带亚热带土壤科学, 1998, 7(1):1-5.
    施政,汪家社,何容等.武夷山不同海拔土壤呼吸及其主要调控因子[J].生态学杂志, 2008, 27(4):563-568.
    宋金明.海水中溶解有机碳的测定[J].海洋湖沼通报, 1992, 1:21-27.
    苏永中,赵哈林,张铜会等.不同退化沙地土壤碳的矿化潜力[J].生态学报, 2004, 24(2):372-378.
    苏永中,赵哈林.土壤有机碳储量、影响因素及其环境效益的研究进展[J].中国沙漠, 2002, 22(3):220-228.
    陶澍,曹军.山地土壤表层水溶性有机物淋溶动力学模拟研究[J].中国环境科学, 1996, 16(6): 410-414.
    陶澍,崔军,张朝生.水生腐殖酸的可见-紫外光谱特征[J].地理学报, 1990, 454:484-489.
    陶澍.引滦水中不同形态天然有机物的卤代活性[J].环境科学学报, 1994, 14(1):19-23.
    汪伟,杨玉盛,陈光水等.罗浮栲天然林土壤可溶性有机碳的剖面分布及季节变化[J].生态学杂志, 2008, 27(6):924-928.
    王国兵,阮宏华,唐燕飞等.天然次生栎林和火炬松人工林土壤微生物量碳动态变化研究[J].应用生态学报, 2008, 19(1):37-42.
    王红,范志平,邓东周等.不同环境因子对樟子松人工林土壤有机碳矿化的影响[J].生态学杂志, 2008, 27(9): 1469-1475.
    王晶,谢宏图,朱平等.土壤活性有机质(碳)的内涵和现代分析方法概述[J].生态学杂志, 2003, 22(6):109-112.
    王连峰,潘根兴,石盛莉等.庐山6种树木立地土壤溶液铝形态与溶解有机碳变化[J].应用生态学报, 2003, 14(10):1602-1606.
    王连峰,潘根兴,石盛莉等.酸沉降影响下庐山森林生态系统土壤溶液溶解有机碳分布[J].植物营养与肥料学报, 2002, 8(1):29-34.
    王淼,姬兰柱,李秋荣等.土壤温度和水分对长白山不同森林类型土壤呼吸的影响[J].应用生态学报, 2003, 14(8):1234-1238.
    王清奎,汪思龙,冯宗炜等.土壤活性有机质及其与土壤质量的关系[J].生态学报, 2005a, 25(3):513-519.
    王清奎,汪思龙,高洪等.土地利用方式对土壤有机质的影响[J].生态学杂志, 2005b, 24(4):360-363.
    王清奎,汪思龙,于小军等.常绿阔叶林与杉木林的土壤碳矿化潜力及其对土壤活性有机碳的影响[J].生态学杂志, 2007, 26(12):1918-1923.
    王艳芬,陈佐忠,Larry T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998, 22(6):545-551.
    文启孝.土壤有机质研究法[M].北京:中国农业出版社, 1984.
    吴建国,艾丽,苌伟.祁连山中部四种典型生态系统土壤有机碳矿化及其影响因素[J].生态学杂志, 2007a, 26(11):1703-1711.
    吴建国,艾丽,朱高等.祁连山北坡云杉林和草甸土壤有机碳矿化及其影响因素[J].草地学报, 2007b, 15(1):20-28.
    吴建国,徐德应.土地利用变化对土壤有机碳的影响—理论、方法和实践[M].北京:中国林业出版社, 2004.
    吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化的影响的比较[J].植物生态学报, 2004, 28(4):530-538.
    吴金水,肖和艾.土壤微生物生物量碳的表观周转时间测定方法[J].土壤学报, 2004, 41(3):401-407.
    吴庆标,王效科,任玉芬. CO2红外分析仪在土壤有机碳矿化中的测试与应用研究[J].土壤, 2006, 38(3):304-308.
    吴雅琼,刘国华,傅伯杰等.森林生态系统土壤CO2释放随海拔高度的变化及其影响因子[J].生态学报, 2007, 11:4678-4685.
    吴仲民,曾庆波,李意德等.尖峰岭热带植被土壤C储量和CO2排放量的初步研究[J].植物生态学报, 1997, 21(5):416-423.
    武天云,Schoenau J J,李凤民等.土壤有机质概念和分组技术研究进展[J].应用生态学报, 2004, 15(4):717-722.
    徐秋芳,姜培坤,沈泉.灌木林与阔叶林土壤有机碳库的比较研究[J].北京林业大学学报, 2005, 27(2):18-22.
    徐秋芳.植被土壤活性有机碳库德研究[D].博士学位论文.浙江:浙江大学, 2003.
    徐侠,陈月琴,汪家社.武夷山不同海拔高度土壤活性有机碳变化[J].应用生态学报, 2008, 19(3):539-544.
    徐阳春,沈其荣,冉炜.长期免耕与施用化肥对土壤微生物生物量碳、氮、磷的影响[J].土壤学报, 2002, 39(1):89-96.
    杨刚,何寻阳,王克林等.不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J].土壤通报, 2008, 39(1):189-191.
    杨芳,吴家森,钱新标等.不同施肥雷竹林土壤微生物量碳的动态变化[J].浙江林学院学报, 2006, 23(1):70-74.
    杨钙仁,张文菊,童成立等.温度对湿地沉积物有机碳矿化的影响[J].生态学报, 2005, 25(2):243-248.
    杨继松,刘景双,孙丽娜.温度、水分对湿地土壤有机碳矿化的影响[J].生态学杂志, 2008, 27(1):38-42.
    杨丽霞,潘剑君.土壤活性有机碳库测定方法研究进展[J].土壤通报, 2004, 35(4):502-506.
    杨玉盛,林瑞余,李庭波等.森林凋落物淋溶中的溶解有机物与紫外-可见光谱特征[J].热带亚热带植物学报, 2004, 12(2):124-128.
    杨玉盛,邹双全,刘爱琴.格氏栲天然林水源涵养功能的研究[J].自然资源学报, 1992, 7 (3):217-233.
    姚拓,杨俊秀.森林枯落层及土壤层微生物生态研究[J].西北林学院学报, 1997, 12(4): 97-103.
    易志刚,蚁伟民,周国逸等.鼎湖山三种主要植被类型土壤碳释放研究[J].生态学报, 2003, 23(8):1673-1678.
    俞元春,何晟,李炳凯等.杉林土壤溶解有机碳吸附及影响因素分析[J].南京林业大学学报(自然科学版), 2005, 29(2):15-18.
    俞元春,李淑芬.江苏下蜀林区土壤溶解有机碳与土壤因子的关系[J].土壤, 2003, 35(5):424-428.
    宇万太,赵鑫,马强等.长期定位试验下施肥对潮棕壤活性碳库及碳库管理指数的影响[J].土壤通报, 2008, 39(3):539-544.
    张成娥,陈小莉,郑粉莉.子午岭不同环境土壤微生物生物量与肥力关系研究[J].生态学报, 1998, 18(2):218-222.
    张甲王申,曹军,陶澎.土壤水溶性有机物的紫外光谱特征及地域分异[J].土壤学报, 2003, 40(1):118-122.
    张金波,宋长春,杨文燕.不同土地利用下土壤呼吸温度敏感性差异及影响因素分析[J].环境科学学报, 2005, 25(1):1537-1542.
    张齐生等著.中国竹材工业化利用[M].北京:中国林业出版社, 1995.
    张文菊,童成立,杨钙仁等.水分对湿地沉积物有机碳矿化的影响[J].生态学报, 2005, 25(2):249-253.
    章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系[J].土壤与环境, 2002, 11(2):140-143.
    郑成洋,方精云.福建黄岗山东南坡气温的垂直变化[J].气象学报, 2004, 62(2):251-255.
    周广胜.全球碳循环[M].北京:气象出版社, 2003.
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展, 2005, 20(1):99-105.
    周启星.湿地资源保护与合理利用的生态学[A].生态环境研究与可持续发展[C],北京:中国环境科学出版社, 1997, 15-20.
    周玮.花江峡谷喀斯特土壤酶与可氧化有机碳研究[C].硕士学位论文.贵阳:贵州大学, 2007.
    朱鹤健.武夷山土壤垂直分布和特征.武夷科学(2)[M].福州:福建科技出版社, 1982, 150-163.
    朱培立,王志明,黄东迈等.无机氮对土壤中有机碳矿化影响的探讨[J].土壤学报, 2001, 38(4):457-463.
    朱志建,姜培坤,徐秋芳.不同森林植被下土壤微生物生物量碳和易氧化态碳的比较[J].林业科学研究, 2006, 19(4):523-526.
    庄铁诚,张瑜斌,林鹏等.武夷山植被土壤生化特性的初步研究[J].应用生态学报, 1999, 10(3):283-285.
    Acea M J, Carballas T. Principal components analysis of the soil microbial populations of humid zone of Galicia (Spain)[J]. Soil Biology & Biochemistry, 1990, 22:749-759.
    Adams T M, Adams S N. The effects of liming and soil pH on carbon and nitrogen contained in the soil biomass[J]. Journal of Agricultural Science, 1983, 101:553-558.
    Agnelli A, Ascher J, Corti G, et al. Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total extracellular DNA[J]. Soil Biology & Biochemistry, 2004, 36:859-868.
    ?gren G I, Bosatta E. Temperature response of soil organic matter[J]. Soil Biology & Biochemistry, 2002, 34:129-132.
    Ajwa H A, Rice C W, Sotomayor D. Carbon and nitrogen mineralization in tallgrass prairie and agricultural soil profiles[J]. Soil Science Society of America Journal, 1998, 62:942-951.
    Alavoine G, Nicolardot B. High-temperature catalytic oxidation method for measuring total dissolved nitrogen in K2SO4 soil extracts[J]. Anal Chim Acta, 2001, 445:107-115.
    Alvarez C R, Alvarez R, Grigera M S, et al. Associations between organic matter fractions and the active soil microbial biomass[J]. Soil Biology & Biochemistry, 1998, 30(6):767-773.
    Alvarez R, Alvarez C R. Soil organic mattcr pools and their associations with carbon mineralization kinctics[J]. Soil Science of America Journal, 2000, 64:184-189.
    Anders M, Michael A, Michael J,et al. Carbon stocks,soil respiration and microbial biomass in fire-prone
    tropical , grassland , woodland and forest ecosystems[J]. Soil Biology & Biochemistry, 2004, 36:1707-1711.
    Anderson J P E, Domsch K H. A physiological method for the quantitative measurement of microbial biomass in soils[J]. Soil Biology & Biochemistry, 1978, 10:215-221.
    Anderson T H, Domsch K H. Rations of microbial biomass carbon to total organic carbon in arable soils[J]. Soil Biology & Biochemistry, 1989, 21:471-479.
    Andre?n O, Paustian K. Barley straw decomposition in the field: a comparison of models[J]. Ecology, 1987, 68:1190-1200.
    Arnold S S, Fernandez I J, Rustad L E. Microbial response of and acid forest soil to experi-mental soil warming[J]. Biology and Fertility of Soils, 1999, 30(3):239-244.
    Baes A U, Bloom P R. Fulvic acid ultraviolet-visible spectra: Influence of solvent and pH[J]. Soil Science Society of America Journal, 1990, 54:1248-1254.
    Bagherzadeh A, Brumme R, Beese F. Temperature dependence of carbon mineralization and nitrous oxide emission in a temperate forest ecosystem[J]. Journal of Forestry Research , 2008, 19( 2):107-112.
    Barbhuiya A R, Arunachalam A, Pandeyb H N, et al. Dynamics of soil microbial biomass C, N and P in disturbed and undisturbed stands of a tropical wet-evergreen forest[J]. European Journal of Soil Biology, 2004, 40:113-121.
    Batjes N H. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science, 1996, 47(2):151-163.
    Bauhus J, Pare D C, Cote L. Effects of tree species stand age and soil type on soil microbial biomass and its activity in a southern boreal forest[J]. Soil Biology & Biochemistry, 1998, 30(8):1077-1089.
    Bekku Y S , Nakatsubo T, Kume A , et al. Effect of warming on the temperature dependence of soil respiration rate in arctic ,temperature and tropical soils[J]. Applied Soil Ecology, 2003, 22:205-210.
    Bekku Y S, Nakatsubo T, Kume A, et al. Soil Microbial Biomass, Respiration rate,and temperature dependence on a successional glacier foreland in Nylesund, Svalbard[J]. Arctic, Antarctic, and Alpine Research, 2004, 36(4):395-399.
    Bending G D, Turner M K , Jones J E. Interaction between crop residue and soil organic matter quality and functional diversity of soil microbial communities[J]. Soil Biology & Biochemistry, 2002, 34: 1073-1082.
    Berger T W,Neubauer C ,Glatzel G. Factors controlling soil carbon and nitrogen stores in pure stands of Norway spruce( Picea abies) and mixed species stands in Austria[J]. Forest Ecology and Management, 2002, 159:3-14.
    Biederbeck V O, Janzen H H, Campbell C A, et al. Labile organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology & Biochemistry, 1994, 26 (12):1647-1656.
    Blair B J and Lefroy R D. Soil carbon fractions based on their degree of oxidation,and the developments of a carbon management index for agricultural systems[J]. Aust.J. Agric.Res, 1995, 46:1456-1466.
    Blair G J, Lefroy R D B, Lisle L. Soil carbon fractions based on their degree of oxidation and the development of a carbon management index for agricultural systems[J]. Aust.J.Agric.Res, 1995, 46:1459-1466.
    Boone R D, Nadelhoffer K J, Ganary J D, et al. Roots exert a strong influence on the temperature sensitivity of soil respiration[J]. Nature, 1998, 396:570-572.
    Boruvka L, Mladkova L, Drabek O. Factors controlling spatial distribution of soil acidification and Al forms in forest soils[J]. Journal of Inorganic Biochemistry, 2005, 99:1796-1806.
    Bouma T J, Kai L N M, David E, et al. Estimating respiration of roots in soil: interactions with soil C ,soil temperature and soil water content[J]. Plant and Soil, 1997,195:221-232.
    Bowden R D, Newkirk K M, Rullo G M. Carbon dioxide and methane fluxes by a forest soil under laboratory controlled moisture and temperature conditions[J].Soil Biology & Biochemistry, 1998, 30:1591-1597.
    Boyer J N, Groffman P M. Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles[J]. Soil Biology & Biochemistry, 1996, 28:783-790.
    Bruce D.C and Deborah L.A. Dissolved organic carbon in old field soils: Total amounts as a measure of available resources for soil mineralization[J]. Soil Biology & Biochemistry, 1992, 24(6):585-594.
    Cambardella C A, Elliott E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J]. Soil Science Society of America Journal. 1993, 57:1071-1076.
    Campbell C A. Soil organic carbon, nitrogen and fertility[M]. In: M. Schnitzer and Khan S U(eds) soil organic matter. Amsterdam: Elsevier Scientific Publ Co, 1978, 173-272
    Candler R, Zech W, Alt H G. Characterization of water-soluble organic substances from a typic dystrochrept under spuce using GPC, IR, 3H NMR, and 13C NMR spectroscopy[J]. Soil Sci, 1988, 146: 445-452.
    Ceulemans R, Janssens I A, Jach M E. Effects of CO2 enrichment on trees and forests: lessons to be learned in view of future ecosystem studies. Annals of Botany, 1999, 84:577-590.
    Chantigny M C. Dissolved and water-extractable organic matter in soils: a review on the in?uence of landuse and management practices[J]. Geoderma, 2003, 113:357-380.
    Chapin F S, Matson P A, Mooney H A. Principles of Terrestrial Ecosystem Ecology[M]. New York: Springer-Verlag, 2002.
    Chapman P J, Reynolds B, Wheater H S. The seasonal variation in soil water acid neutralizing capacity in peaty podzols in mid-Wales[J]. Water Air Soil Pollut, 1995, 85:1089-1094
    Chaussod R, Houat S, Guiraud G. Size and turnover of the microbial biomass in agricultural soils, laboratory and field measurements[M]. In Jenkinson D S , Smith K A. eds . Nitrogen Efficiency in Agricultural Soils. London and New York: Elsevier, 1988.312-328
    Chen H, Tian H Q. Does a general temperature-dependent Q10 model of soil respiration exist at biome and global scale?[J]. Journal of Integrative Plant Biology, 2005, 47(11):1288-1302.
    Chen T H, Chiu C Y, Tian G L. Seasonal dynamics of soil microbial biomass in coastal sand dune forest[J]. Pedobiologia, 2005, 49:645-653.
    Christ M J, David M B. Dynamics of extractable organic carbon in spodosol forest floor[J]. Soil Biology & Biochemistry, 1996, 28(9):1171-1179.
    Christensen B T. Carbon in primary and secondary organomineral complexes[M].In: Carter M R, Stewart A B, eds. Structure and Organic Matter Storage in Agricultural Soils. Boca Raton, Florida: CRC Press, Inc. 1996, 97-165.
    Coleman D C, Crossley D A. Hendrix P. Fundamentals of soil Ecology[M]. New York: Academic Press, 1996.
    Coleman K., Jenkinson D S. RothC-26.3—A model for the turnover of carbon in soil[M]. In: Powlson D S, Smith P, Smith J U(eds.), Evaluation of Soil Organic Matter Models. NATO ASI Series, 1996,vol.138.
    Collins H P, Elliott E T, Pustian K, et al. Soil carbon pools and fluxes in long-term corn belt agroecosystems[J]. Soil Biology & Biochemistry, 2000, 32:157-168.
    Collins H P, Paul E A, Paustian K, et al. Characterization of soil Organic Carbon relative to its stability and turnover[A]. In: Paul E A, Paustian K, Elliott E T, et al (eds). Soil Organic Matter in Temperate Agroecosystoms, Long-Term Experiments in North America[C]. Boca Raton, Florida: CRC Press, Inc, 1997, 51-72.
    Conant R T, Dalla-Betta P, Klopatek C C, et al. Controls on soil respiration in semiarid soil[J]. Soil Biology & Biochemistry, 2004, 36:945-951.
    Contin M, Corcimaru S, De Nobili M, et al. Temperature changes and the ATP concentrations of the soilmicrobial biomass[J]. Soil Biology & Biochemistry, 2000, 32:1219-1225.
    Cook B D, Allan D L. Dissolved organic carbon in old field soils: total amounts asam easure of available resources for soil mineralization[J]. Soil Biology & Biochemistry, 1992, 24,585-594.
    Cortina J, Romanya J, Vallejo V R. Nitrogen and phosphorus leaching from the forest floor of a mature Pinus radiata stand[J]. Geoderma, 1995, 66: 321-330.
    CotéL, Brown S, ParéD, et al. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood[J]. Soil Biology & Biochemistry, 2000, 32:1079-1090.
    Cox P M, Betts R A, Jones C D, et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model[J]. Nature, 2000,480:184-187.
    Cronan C S, Aiken G R. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York.Geochim.Cosmochim.Acta, 1985, 49:1697-1705.
    Cronan C S. Patterns of organic acid transport from forested watersheds to aquatic ecosystems[M]. In Organic Acids in Aquatic Ecosystems. E M Perdue and E T Gjessing(eds). Life Sciences Research Report 48. Chichester: John Wiley§Sons Ltd, 1990, 245-260.
    Currie W S, Aber J D. Modeling leaching as decomposition process in humid montane forests[J]. Ecology, 1997, 78:1844-1860.
    Dalias P, Anderson J M , Bottner P, et al. Temperature responses of carbon mineralization in conifer forest soils from different regional climates incubated under standard laboratory conditions[J]. Global Change Biology, 2001a, 6:181-192.
    Dalias P, Anderson J M, Bottner P, et al. Long-term effects of temperature on carbon mineralisation processes[J]. Soil Biology & Biochemistry, 2001b, 33:1049-1057.
    Davidson E A, Galloway L F, Strand M K. Assessing available carbon: comparison of techniques across selected forest soils[J]. Communications In Soil Science and Plant Analysis, 1987, 18:45-64.
    Davidson E A, Janssens I A, Luo Y Q. On the variability of respiration in terrestrial ecosystems: Moving beyond Q10[J]. Global Change Biology, 2006, 12:154-164.
    Davidson E A, Janssens I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change[J]. Nature, 2006, 440:165-173.
    Davidson E A, Verchot L V, Cattnio J H, et al. Effects of soil water content on soil respiration in forests and cattle pastures of eastern Amazonia[J]. Biochemistry, 2000a, 48:53-69.
    Dawson H J, Ugolini F C, Hrutfiord B F, et al. Role of soluble organics in the soil processes of apodzol, Central Cascades[J]. Soil Science, 1978, 126:290-296.
    Delprat L, P Chassin, M Lineres, et al. Characterization of dissolved organic carbon in cleared forest soils converted to maize cultivation[J]. Eur J Agron, 1997, 7:201-210
    Denmead O T. Chamber systems for measuring nitrous oxide emission from soils in the field[J]. Soil Science Society of America Journal, 1979, 43:89-95.
    Devi, N B, Yadava P S. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-East India[J]. Applied soil Ecology, 2006, 31:220-227.
    Dobbins D C. Methodology for assessing respiration and cellular incorporation of radiolabekked substrates by soil microbial communities[J]. Mirobial Ecology, 1988, 15:257-276.
    Domisch T, Finer L, Lehto T, et al. Effect of soil temperature on nutrient allocation and mycorrhizas in Scots pine seedlings[M]. Plant and Soil, 2002, 239:173-182.
    Doran J W, A J Jones, M A Arshad, et al. Determinants of soil quality and health[M]. In R.Lal(ed.). Soil quality and soil erosion. Lewis Publ, Boca Raton, FL, 1999, 17-36.
    Dosskey M G, Pertsch P M. Transport of dissolved organic matter through a sandy forest soil[J]. Soil Science Society of America Journal, 1997, 61:920-927.
    Eaton W D. Microbial and nutrient activity in soils from three different subtropical forest habitats in Belize,Central America before and during the transition from dry to wet season[J]. Applied Soil Ecology, 2001, 16:219-227.
    Ellert B H , Gregorich E G. Management induced changes in the actively cycling fractions of soil organic matter[M].In: Mcfee W W , Kelly J M. eds. Carbon Forms and Functions in Forest Soils. Wisconsin, Madison, USA: Soil Science Society of America, Inc, 1995, 119-138.
    Elzein A and Balesdent J. Mechenistic simulation of vertical distribution of carbon concentrations and residence times in soils[J]. Soil Science Society of America Journal, 1995, 59:1328-1335.
    Engelhaupt E, Bianchi T S, Wetzel R G, et al. Photo-chemical transformations and bacterial utilization of high-molecular-weight dissolved organic carbon in a southern Louisiana tidal stream(Bayou Trepagnier)[J]. Biogeochemistry, 2003, 62:39-58.
    Epron D, L Farque, E, Lucot, et al. Soil CO2 eflux in a beech forest:The contribution of root respiration[J]. Annals of Forest Science, 1999, 56:289-295.
    Eswarran H,Van Den Berg E V,Reich P. Organic carbon in soil of the world[J]. Soil Science Society of America Journal. 1993, 57:192-194.
    Evans C D, T D Davies, P J Wigington, et al. Use of factor analysis to investigation processes controlling the chemical composition of four streams in the Adirondack Mountains, New York[J]. J Hydrol, 1996, 185:297-316.
    Fang C M, Moncrieff J B. The dependence of soil CO2 efflux on temperature[J]. Soil Biology & Biochemistry, 2001, 33:155-165.
    Fang C M, Smith P, Moncrieff J B. Similar response of labile and resistant soil organic matter pools to changes in temperature[J]. Nature, 2005, 433:57-59.
    Fehse J, Hofstede R, Aguirre N, et al. High altitude tropical secondary forests: a competitive carbon sink?[J] Forest Ecology and Management, 2002,163:9-25.
    Feller C, Balesdnet J, Nicolardot, et al. Approaching“functional”soil organic matter pools through particle-size fractionation: examples for tropical soils[M].In:Lal R.,J M Kimble,R F Follett et al eds.Assessment methods for soil carbon. Boca Baton, Florida: Lewis Publishers, 2001, 53-67.
    Fernandes S A P,Bernoux M,Cerri C C, et al. Seasonal variation of soil chemical p roperties and CO2 and CH4 fluxes in unfertilized and fertilized pastures in an Ultisol of the Brazilian Amazon[J]. Geoderma, 2002, 107: 227-241.
    Fierer N, Colman B P, Schimel J P, et al. Predicting the temperature dependence of microbial respirationin soil:a continental-scale analysis[J]. Global Biogeochemical Cycles, 2006, 20:1-10.
    Findlay S E G, Sinsabaugh R L, Sobczak W V, et al. Metabolic and structural response of hyporheic microbial communities to variations in supply of dissolved organic matter[J]. Limnology and Oceanography, 2003, 48:1608-1617.
    Fisher F M, Gosz J R. Effects of trenching on soil processes and properties in a New Mexico mixed-conifer forest[J]. Biology and Fertility of Soils, 1986, 2:35-42.
    Fleessa H, Ludwig G. Heil B, et al. The origin of organic-c, dissolved organic C and resporation in a long-term maize experiment in Halle, Germany,determined by 13C natural abundance[J]. Journal of Plant Nutrition§Soil Sci, 2000, 163(2):157-163.
    Follett R F. CRP and microbial biomass dynamics in temperate climates[M]. In: Lal R eds. Management of soil carbon sequestration in soil. Advances in Soil Science. Boca Raton, FL: CRC Press, 1997, 11:305-322.
    Franko U, Oelschlagel B, Schenk S. Simulation of temperature, water and nitrogen-dynamics using the model CANDY[J]. Ecology Model, 1996, 81:213-222.
    Franzlucbbers A J, Stuedemann J A, Schomberg H H, et al. Soil organic C and N pool under long-term pasture management in the southern piedmont USA[J]. Soil Biology & Biochemistry, 2000, 32:469-478.
    Franzluebbers A J, Haney R L, Hons F M. Relationships of chloroform fumigation–incubation to soil organic matter pools[J]. Soil Biology & Biochemistry, 1999, 31:395-405.
    Franzluebbers A J, Hons F M. SoilZuberer D A. Soil organic C, microbial biomass and mineralizable C and nitrogen in sorghum[J]. Soil Science Society of American Journal, 1995, 59:460-466
    Franzluebbers K, Weaver R W, Juo A S R, et al. Mineralization of carbon and nitrogen from cowpea leaves decompositing in soils with different levels of microbial biomass[J]. Biology and Fertility of Soils, 1996, 19:100-102.
    Garten Jr C T, PostⅢW M, Hanson P J, et al. Forest soil carbon inventories and dynamics along anelevation gradient in the southern Appalachian Mountains[J]. Biogeochemistry, 1999, 45:115-145.
    Garten Jr. C T and Hanson P J. Measured forest soil C stocks and estimated turnover times along an elevation gradient[J]. Geoderma, 2006, 136:342-352.
    Giardina C P, Ryan M G, Hubbard R M, et al. Tree species and soil textural controls on carbon and nitrogen mineralization rates[J]. Soil Science Society of American Journal, 2001, 65:1272-1279.
    Godde M, David M B, Christ M J. et al. Carbon mobilization from the forest floor under red spruce in the northeastern USA[J]. Soil Biology & Biochemistry, 1996, 28:1181-1189
    Gonzalez-Vila F J, Lankes U, Lundeman H D. Comparison of the information gained by pyrolytic techniques and NMR spectroscopy on the structural features of aquatic humic substrances[J]. Journal of Analytical §Applied pyrolysis, 2001, 58:349-359.
    Grayston S J,Griffith G S,Mawdsley J L. et al.. Accounting for variability in soil microbial communities in temperate grassland ecosystems[J]. Soil Biology & Biochemistry, 2001, 33: 533-551.
    Gregorich E G, Beare M H, Stoklas U, et al. Biodegradability of soluble organic matter in maize-cropped soils[J]. Geoderma, 2003, 113,237-252.
    Gregorich E G, Ellert B H .Light fraction and macroorganic matter in mineral soils[M]. In: soil sampling and methods of analysis(ed by M R Carter). Canadian Society of Soil Science, 1993, 397-407.
    Gregorich E G. Turnover of carbon through the microbial biomass in soils with different textures[J]. Soil Biology & Biochemistry, 1991, 23(8):799-805
    Gressel N, McColl J Q, Powers R F, et al. Spectroscopy of aqueous extracts of forest litter.II Effects of management practice[J]. Soil Science Society of American Journal, 1995, 59:1723-1731
    Grisi B, Grace C, Brookes P C, et al. Temperature effects on organic matter and microbial biomass dynamics in temperate and tropical soils[J]. Soil Biology & Biochemistry, 1998, 30:1309-1315.
    Guggenberger G, Kaiser K, Zech W. Mobilization and immobilization of dissolved organic matter in forest soils[J]. Z Pflanzernaehr Bodenkd, 1998, 161:401-408.
    Guggenberger G, Zech W, Schulten H R.1994. Formationand mobilization path ways of dissolved organic matter: evidence from chemical structural studies of organic matter fractions in acid forest floor solutions[J]. Organic Geochemistry, 21:51-66.
    Guggenberger G, Zech W. Composition and dynamics of dissolved organic carbohydrates and lignin-degradation products in two coniferous forests, N E Bavaria, Germany[J]. Soil Biology & Biochemistry, 1994b, 26:19-27.
    Guggenberger G, Zech W. Heavy metal binding By hydrophobic and hydrophilic dissolved organic fractions in aspodosol A and B horizon[J]. Water Air Soil Pollut, 1994a, 72:111-127.
    Gunderson P, B A Emmett, O J Kjonaas, et al. Impact of nitrogen deposition on nitrogen cycling in forests: A synthesis of NITREX data[J]. For Ecol Manage, 1998, 101:37-55.
    Harrison K G, Broecker W S, Bonani G. The effect of changing land use on soil radiocarbon[J]. Science, 1993, 262,725-726.
    Hassink J. Effects of soil texture and grassland management on soil organic C and N and rates of C and Nmineralization[J]. Soil Biology & Biochemistry, 1994, 26:1221-1231.
    Haynes R J. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand [J]. Soil Biology & Biochemistry, 2000, 32:211-219
    Hendrick R L, Pregitzer K S. Temporal and depth-related patterns of fine root dynamics in northern hard wood forest[J]. Ecology, 1996, 77(1):167-176.
    Herbert B E and P M Bertsch. Characterization of dissolved and colloidal organic matter in soil solution: A review[M]. In Carbon forms and functions in forest soils. J M Kelly and W W McFee(eds). SSSA, Madison, WI, 1995, 63-88.
    Hogberg P, Nordgren A, Buchmann N, et al. Large-scale forest girdling shows that current photosynthesis drives soil respiration[J]. Nature, 2001, 411:789-792.
    Holland E A, Neff J C, Townsend A R, et al. Uncertainties in the temperature sensitivity of decomposition in tropical and subtropical ecosystems:Implications for models[J]. Global Biogeochemical Cycles, 2000, 14: 1137-1151.
    Hongve D. Production of dissolved organic carbon in forested catchments[J]. Journal of Hydrology, 1999, 224(3-4):91-99.
    Hook P B, Burke I C. Biogeochemistry in a shortgrass landscape: Control by topography,soil texture,and microclimate [J]. Ecology, 2000, 81(10): 686-703.
    Houghton R A. Changes in the storage of terrestrial carbon since 1850[M]. In: Lai R, Kimble J, eds. Soils and Global Change.Boca Raton, Florida: CRC Press. 1995, 45-65.
    Huang Y G, Eglinton E R, E van der Hage, et al. Dissolved organic matter and its parent organic matter in grass upland soil horizons studied by analytical pyrolysis techniques[J]. European Journal of Soil Biology, 1998, 49:1-15.
    Hunter M .D, Linnen C R, Reynolds B C. Effects of endemic densities of canopy herbivores on nutrient dynamics along a gradient in elevation in the southern Appalachians[J]. Pedobiologia, 2003, 47:231-244.
    Hyvonen R, Matti P B, Agren G I. Modelling carbon dynamics in coniferous forest soils in a temperature gradient[J]. Plant and Soil, 2002, 242:33-39.
    Insam H, Parkinson D, Domsch K H. Relationship between soil organic carbon and microbial biomass on consequences of reclamation sites[J]. Microbial Ecology, 1988, 15(2): 177-188.
    IPCC. Climate Change 2001: 'The scientific Basis', Contribution of Working Group I to the Third assessment Report of the Intergovermental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2001.
    Irvine J and Law B E. Contrasting soil respiration in young and old—growth ponderosa pine forests[J]. Globle Change Biology, 2002,8:1183-1193.
    Jandl R., Sollins P. Water-extractable soil carbon in relation to the below ground carbon cycle[J]. Biology and Fertility of Soils, 1997, 25:196-201.
    Jenkinson D S, Adams D E, Wild A. model estimates of CO2 emissions from soil in response to globalwarming[J]. Nature, 1991, 351:304-306.
    Jenkinson D S, Ladd J N. Microbial Biomass in Soil: Measurement and Turnover In Soil Biobhemistry[M]. V. Paul EA & Ladd J N(eds). New York: Marcel Dekker INC, 1981, 415-458.
    Jenkinson D S, Powlson D S. The effects of biocidal treatment on metabolism in soil V.A method for measuring soil biomass[J]. Soil Biology & Biochemistry, 1976, 8:209-213.
    Jenkinson D S. The turnover of organic carbon and nitrogen in soil. philosophical transaction royal society, London, 1990, 329:361-368
    Jenkinson D.S, Rayner J H. The turn over of soil organic matter in some of the Rothamsted classical experiments[J]. Soil Science, 1977, 123:298-305.
    Jenkinson J S, Ladd J N. Microbial biomass in soil: Measurement and turnover[M]..In E A Paul and J N Ladd(eds). Soil biochemistry, Vol.5. New York: Marcel Dekker INC, 1981, 415-471.
    Jenny H, Gessel S P, Bingham F T. Comparative of decomposition rates of organic matter in temperate and tropical region[J]. Soil Science, 1949, 68:419-432.
    Joergensen R G, Brookes P C, Jenkinson D S. Survial of the microbial biomass at elevated temperatures[J]. Soil Biology & Biochemistry, 1990, 22:1129-1136.
    Johansson M B, Berg B, Meentemeyer V. Litter mass-loss rates in late stages of decomposition in a climatic transect of pine forests.Long-term decomposition in a Scots pine forest[J]. Canadian Journal of Botany, 1995, 73:1509-1521.
    Jonasson S,Michelsen A,Schmidt I K,et al. Responses in soil microbes and plants to changed temperature,nutrient and light regimes in the Arctic[J]. Ecology, 1999, 80:1828-1843.
    Kaiser K, Guggenberger G, Zech W. Sorption of DOM and DOM fractionst to forest soils[J]. Geoderma, 1996, 74:281-303.
    Kalbitz K, Schmerwitz J, Schwesig D, et al. Biodegradation of soil-derived dissolved organic matteras related to its properties[J]. Geoderma, 2003b, 113:273-291.
    Kalbitz K, Schwesig D, Schmerwitz J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation[J]. Soil Biology & Biochemistry, 2003a, 35:1129-1142.
    Kalbitz K, Solinger S, Park J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165:277-304.
    Kandeler E, Tscherko D, Bardgett R D, et al. The response of soil micro-organisms and roots to elevated CO2 and temperature in a terrestrial model ecosystem[J]. Plant and Soil, 1998, 202:251-262.
    Karlen D .L, J C Gardner, and M J Rosek. A soil quality framework for evaluating the impact of CRP[J]. J Prod Agric, 1998, 11:56-60.
    Kautz T, Wirth S, Ellmer F. Microbial activity in a sandy arable soil is governed by the fertilization regime[J]. European Journal of Soil Biology, 2004, 40:87-94.
    Kaye J P and Hart S C. Competition for nitrogen between plants and soil microorganisms[J]. Trends Ecology Evolution, 1997, 12:139-143.
    Keller J K, Bridgham S D, Chapin C T,et al. Limited effects of six years of fertilization on carbonmineralization dynamics in a Minnesota fen[J]. Soil Biology & Biochemistry, 2005, 37:1197-1204.
    Khan M S, Zaidi A, Wani P A. Role of phosphate-solubilizing microorganisms in sustainable agriculture A review [J]. Agronomic Sustainable Development, 2007, 27:29-43.
    Khanna P K,Ludwig B,Bauhus J, et al. Assessment and significance of labile organic C pools in forest soils[M].In:Lal R,Kimble J M,Follett R F§Stewart B A eds. Assessment methods for soil carbon. Boca Raton, Florida: Lewis Publishers, 2001, 167-182.
    Kicklighter, D. W. et al. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils[J]. Geophys .Res, 1994, 99:1303-1315.
    Kirschbaum M U F. The temperature dependence of orgamic-matter decomposition—still a topic of debate[J]. Soil biology &biochemistry, 2006, 38:2510-2518.
    Kirschbaum M U F. The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic C storage[J]. Soil Biology & Biochemistry, 1995, 27(6): 753-760.
    Kirschbaum M U F. Will changes in soil organic carbon act as a positive or negative feedback on global warming [J]. Biogeochemistry, 2000, 48:21-51.
    Knorr W, Prentice I C, House J I, et al. Long-term sensitivity of soil carbon turnover to warming[J]. Nature, 2005, 433:298-301.
    Lange O L , Green T G A. Lichens show that fungi can acclimate their respiration to seasonal changes in temperature[J]. Oecologia, 2005, 142:11-19.
    Leavitt S W, Follett R F, Paul E A. Estimation of the slow and fast cycling soil organic carbon pools from 6N HCl hydrolysis [J]. Radiocarbon, 1996, 38:230-231.
    Lee D Y, Farmer J. Dissolved organic matter interaction with napropamide and four other nonionic pesticides[J]. J Environ Qual, 1989, 18:468-474.
    Leenheer J A. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and waste waters[J]. Environ Sci Technol, 1981, 15:578-587.
    Lefroy R D B, Blair G J, Strong W M. Changes in soil organic matter with cropping as measured by organic carbon fractions and 13C natural isotope abundance[J]. Plant Soil, 1993, 155/156: 399-402.
    Leifeld J, Fuhrer J. The temperature response of CO2 production from bulk soils and soil fractions is related to soil organic matter quality[J]. Biogeochemistry, 2005, 75:433-453.
    Leinweber P, Schulten H R, Korschens M. Hot water extracted organic matter: Chemical composition and temporal variations in a long-term field experiment[J]. Biology and Fertility of Soils, 1995, 20:17-23.
    Leirós M C, Trasar-Cepeda C, Seoane S, et al. Dependence of mineralization of soil organic matter on temperature and moisture[J]. Soil Biology & Biochemistry, 1999, 31:327-335.
    Liechty H O, Kuuseoks E, Mroz G.D. Dissolved organic carbon in northern hardwood stands with differing acidic inputs and temperature regimes[J]. J.Environ Qual. 1995, 24:927-933
    Lin G, Rygiewicz P T, Ehleringer J R, et al. Time-dependant responses of soil CO2 ef?ux components to elevated CO2 and temperature in experimental forest mesocosms[J]. Plant and Soil, 2001, 229:259-270.
    Linn D M, Doran J W. Aerobic and anaerobic microbial populations in no-till and plowed soils[J]. SoilScience Society of America Journal, 1984, 48:1267-1272.
    Liski J, Ilvesniemi H, Makela A et al. CO2 emissions from soil in response to climatic warming are overestimated–the decomposition of old soil organic matter is tolerant of temperature[J]. Ambio, 1999, 28:171-174.
    Lloyd J, Taylor J A. On the temperature dependence of soil respiration[J]. Functional Ecology, 1994, 8:315-323.
    Logninow W, Wisniewski W, Strony W M, et al. Fractionation of organic carbon based on susceptibility to oxidation[J]. Polish Journal of Soil Science, 1987, 20:47-52.
    Lou Y S, Li Zh P, Zhang T L, et al. CO2 emissions from subtropical arable soils of China[J]. Soil Biology & Biochemistry, 2004, 36:1835-1842
    Luiz?o F J, Proctor J, Thompson J, et al. Rain forest on MaracáIsland, Roraima, Brazil: Soil and litter process response to artifical gaps[J]. Forest Ecology and Management, 1998, 102:291-303.
    Lukac M, Calfapietra C, Godbold D L. Production, turnover and my corrhizal colonization of root systems of three Populus species grown under elevated CO2(POPFACE)[J]. Global Change Biology, 2003, 9:838-848.
    Lundquist E J, Scow K M, Jackson L E, et al. Rapid response of soil microbial communities from conventional, low input,and organic farming systems to a wet/dry cycle[J]. Soil Biology & Biochemistry, 1999, 31:1661-1675
    MacDonald N W, Randlett D L, Donald Z R. Soil Warming and Carbon Loss from a Lake States Spodosol[J]. Soil Science Society of America Journal, 1999, 63:211-218.
    MacDonald N W, Zak D R, Pregitzer K S. Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization[J]. Soil Science Society of America Journal, 1995, 59:233-240.
    Marschner B, Bredow A. Temperature effects on release and ecologically relevant properties of dissolved organic carbon in sterilized and biologically active soils amples[J]. Soil Biology & Biochemistry, 2002, 34,459-466.
    Martens R. Current methods for measuring microbial bio-mass C in soil: potentials and limitations[J]. Biology and Fertility of Soils, 1995, 19:87-99.
    Marumoto T. Nitrogen and microbial biomass in arable soils[M]. In: Wada H, Tsuru S eds. Soil biomass. Tokyo: Hakuyusya, 1984, 115-140.
    McDowell W H, Currie W S, Aber J D, et al. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils[J]. Water Air Soil Pollut, 1998, 105:175-182.
    McGill W B, Cannon K R, Robertson J A, et al. Dynamicsof soil microbial biomass and water-soluble organic C in Bretonl after 50 years of cropping to two rotations[J]. Can J Soil Sci, 1986, 66:1-19.
    McGuire A D, Melillo J M, Kicklighter D, et al. Equilibrium responses of soil carbon to climate change: Empirical and process—based estimates[J].Biogeog, 1995,22:785-796.
    McLauchlan K K, Hobbie S E. Comparison of Labile Soil Organic Matter Fractionation Techiniques[J]. Soil Science Society of America Journal, 2004, 68(5):1616-1625.
    Melillo J M, Steudler P A , Aber J D , et al. Soil warming and carbon-cycle feedbacks to the climate system[J]. Science, 2002, 298:2173-2176.
    Menzel D W, Vaccaro R F. The measurement of dissolved organic and particulate carbon in seawater[J]. Limnology of Oceanographer, 1964, 9:138-142.
    Merckx R, den Hartog A, Van Veen J A. Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biology & Biochemistry, 1985, 17(4):565-569.
    Meyer J L, Edwards R T, Risley R. Bacterial growth on dissolved organic carbon from blackwater river[J]. Microb.Ecol, 1987, 13:13-29.
    Michalzik B and Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. Eur.J.Soil Sci, 1999, 50:579-590.
    Michalzik,B.,Tipping,E.,Mulder,J, et al.. Modelling the production and transport of dissolved organic carbon in forest soils[J]. Biogeochemistry, 2003, 66:241-264.
    Michelsen A, Graglia E, Schmidt I K, et al. Differential responses of grass and a dwarf shrub to long term changes in soil microbial biomass C,N and P,following factorial addition of NPK fertilizer,fungicide and labile carbon to a heath[J]. New Phytol, 1999, 143:523-538.
    Mikan C J, Schimel J P, Doyle A P. Temperature controls of microbial respiration in arctic tundra soils above and below freezing[J]. Soil Biology & Biochemistry, 2002, 34:1785-1795.
    Mondini C, Contin M, Leita L, et al. Response of microbial biomass to air-drying and rewetting in soils and compost[J]. Geoderma, 2002, 105:111-124.
    Moneral M A. Denitrification and its relation to soluble carbon[D]. M. Sc. Thesis. Department of Soil Sci, University of Alberta, Edmonton, Alta, 1983,100.
    Moore T R. Dissolved organic carbon: sources, sinks, and fluxes and role in the soil carbon cycle[M]. In: soil processes and the carbon cycle(Lal R, Kimble J M, Follett R F, et al, (eds)). Boca Raton, Floridaorida: CRC press, 1998, 281-292.
    Moore T R. Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand[J]. Maimai.Water Resour.Res, 1989, 25(6):1321-1330.
    Moore T R. Spectrophotometric determination of dissolved organic carbon in peat waters[J]. Soil Science Society of America Journal, 1985, 49:150-159.
    Moore T R., Desouza W, Koprivnijak J F. Controls on the sorption of dissolved organic carbon in soils[J]. Soil Science, 1992, 154:120-129.
    Mulholland P J, C N Dahm, M B David. et al. What are the temperal and spatial variations of organic acids at the ecosystem level?[M] In:Organic Acids in Aquatic Ecosystems.E M Perdue and E T Gjessing(eds). Life Sciences Research Report 48. Chichester: John Wiley§Sons Ltd, 1990, 315-329.
    Nambu K, Yonebayashi K. Role of dissolved organic matter in translocation of nutrient cations from organic layer materials in coniferious and broad leaf forest[J]. Soil Science and Plant Nutrition, 1999, 45:307-319.
    Neff J C, Asner G P. Dissolved organic carbon in terrestrial ecosystems: synthesis and a model, 2001,4:29-48.
    Nelson P N, Dictor M C, Soulas G. Availability of organic carbon in soluble and particle-size fractions from a soil profile[J]. Soil Biology & Biochemistry, 1994, 26:1549-1555.
    Niklinska M, Maryanski M, Laskowski R. Effect of temperature on humus respiration rateand nitrogen mineralization: Implications for global climate change[J]. Biogeochemistry, 1999, 44:239-257.
    Norden U. Leaf litterfall concentrations and fluxes of elements in deciduous tree species[J]. Scan J For Res, 1994, 9:9-16.
    Núìez S, Martínez-YrízarA, BúrquezA, et al. Carbon mineralization in the southern Sonoran desert[J]. Acta Oecologica, 2001, 22:269-276.
    Nyberg G. Ekblad A, Hgberg R B P. Short-term patterns of carbon and nitrogen mineralisation in a fallow field amended with green manures from agroforestry trees[J]. Biology and Fertility of Soils, 2002, 36:18-25.
    Oades J M. The retention of organic matter in soils[J]. Biogeochemsitry, 1988, 5:35-70.
    Ocio J A., Brookes P C. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterisation of the biomass that develops[J]. Soil Biology & Biochemistry, 1990, 22:685-694.
    Park J H, Kalbitz K, Matzner E. Resource control on the production of dissolved organic carbon and nitrogen in a deciduous forest floor[J]. Soil Biology & Biochemistry, 2002, 34(6):813-822.
    Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grassland[J]. Soil Sci. Soc Amer.J, 1987, 51:1173-1179.
    Paul E A, Clark F E(eds). Soil microbiology and biochemistry[M]. New York: Academic Press Inc, 1989, 1(31):91-130.
    Paul E A, Clark F E. Soil Microbiology and Biochemistry[M]. 2nd. New York: Academic Press Inc. 1996,184.
    Paul E A, D Harris, H P Collins, et al. Evolution of CO2 and soil carbon dynamics in biologically managed,row-crop agroecosystems [J]. Applied Soil Ecology, 1999,11:53-65.
    Paul EA, Paustian K, Elliott ET, et al (eds). Soil Organic Matter in Temperate Agroecosystoms, Long-Term Experiments in North America[M]. Boca Raton, Floridaorida: CRC Press, Inc, 2001, 51-72.
    Perruchoud D, Joos F, Fischlin A, et al. Evaluating timescales of carbon turnover in temperate forest soils with radiocarbon data. Global Biogeochemical Cycles, 1999, 13(2): 555-573.
    Peterjohn W T, Melillo J M, Steudler P A, et al. Responses of trace gas fluxes and N availability to experimentally elevated soil temperature[J]. Ecological Applications, 1994, 4:617-625.
    Post W M, Emanuel W R, Zinke P J, et al. Soil carbon pools and world life zones[J]. Nature, 1982, 298(8):156-159.
    Post W M, J Pastor, P J, and A G Stangenberger. Global patterns of soil nitrogen storage[J]. Nature, 1985, 317:613-616.
    Post W M, King A M, Wullschleger S D. Soil organic matter models and global estimates of soil organic carbon [M]. In: Powlson D S, et al(eds). Evaluation of Soil Organic Matter Models. Berlin, Heidelberg: Springer-Verlag, 1996, 201-224.
    Powlson D S, Brookes P C, Christensen B T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation[J]. Soil Biology and Biochemistry, 1987, 19:159-164.
    Powlson D S, Jenkinson D S. The effects of biocidal treatments on metabolism in soilⅡ. Gamma irradiation, autoclaving air-dring and fumigation[J]. Soil Biology & Biochemistry, 1976, 8:179-188.
    Powlson D. Will soil amplify climate change[J]? Nature, 2005, 433:204-205.
    Priha O, Grayston S J, Hiukka R, et al. Microbial community structure and characteristics of the organic matter in soils under Pinus sylvestris,Picea abies and Betulapendula at two forestsites[J]. Biology and Fertility of Soils, 2001, 33:17-24.
    Priha O. Microbial activities in soils under Scots pine, Norway spruce and silver birch[R]. Finnish Forest Research Institute, Research papers 731, 1999, 50.
    Qualls R G, Haines B L, Swank W T, et al. Soluble organic and inorganic nutrient fluxes in clear cut and mature deciduous forests[J]. Soil Science Society of America Journal, 2000, 64:1068-1077.
    Qualls R G, Haines B L, Swank W T. Fluxes of dissolved organic nutrients and humic substances in a deciduous forest[J]. Ecology, 1991, 72:254-266.
    Qualls R G, Haines B L. Biodegradability of dissolved organic matter in forest throughfall,soil solution and streamwater[J]. Soil Science Society of America Journal, 1992, 56:578-586.
    Raghubanshi A S, Srivastava S C, Singh R S, et al. Nutrient release in leaf litter[J]. Nature, 1990, 346:227. Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils[J]. Global Biogeochemical Cycles, 1995, 9:23 -36.
    Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus, 1992, 44(B):81-99.
    Reichstein M, Katterer T, Andrén O, et al. Temperature sensitivity of decomposition in relation to soil organic matter pools: Critique and outlook[J]. Biogeosciences, 2005, 2:317-321.
    Reichstein M, Subke J A, Angeli A C,et al. Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon,or incubation time?[J]. Global Change Biology, 2005, 11:1754-1767.
    Rey A, Petsikos C, Jarvis P G, et al. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions[J]. European Journal of Soil Science, 2005, 56:589-599.
    Robertson G P,Wedin D, Groffman P M, et al. Soil carbon and nitrogen availability[M]. In: Robertson GP, Bledsoe CS, Coleman DC, et al(eds). Standard Soil Methods for Long-Term Ecological Research. New York: Oxford University Press, Inc. 1999, 258-271.
    Robson A D. Soil Acidity and Plant Growth[M]. Sydney: Academic Press, 1989.
    Rodeghiero M, Cescatti A. Main determinants of forest soil respiration along an elevation/temperature gradient in the Italian Alps[J]. Global Change Biology, 2005, 11:1024-1041.
    Rosacker L L, Kieff T L. Biomass and adenylate energy charge of a grassland soil during drying[J]. Soil Biology & Biochemistry, 1990, 22:1121-1127.
    Ross D J, Tate K R, Scott N A, et al. Land-use change: effects on soil carbon , nitrogen and phosphorus pools and fluxes in three adjacent ecosystems[J]. Soil Biology & Biochemistry. 1999, 31:803-813.
    Roy A, Singh K P. Dynamics of microbial biomass and nitrogen supply during primary succession on blastfurnace slag dumps in dry tropics[J]. Soil Biology & Biochemistry, 2003, 35:365-372.
    Ruan H H, Zou X M, Zimmerman J K, et al. Asynchronous fluctuation of soil microbial biomass and plant litterfall in a tropical wet forest[J]. Plant and Soil, 2004, 260:147-154.
    Rustad L E, Norby R J, Mitchell M J, et al. A meta-analysis of the response of soil respiration net nitrogen mineralization and aboveground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126:543-562.
    Salifou T, Lamourdia T, Jeanne R M, et al.. Carbon and nitrogen enhancement in Cambisols and Vertisols by Acacia spp. in eastern Burkina Faso: Relation to soil respiration and microbial biomass[J]. Applied Soil Ecology, 2007, 35:660-669.
    Saynes V, Hidalgo C, Etchevers J D, et al. Soil C and N dynamics in primary and secondary seasonally dry tropical forests in Mexico[J]. Applied Soil Ecology, 2005, 29:282-289.
    Schimel D S, Braswell B H, Holland E A, et a1. Climate edaphic and biotic controls over storage and turnover of carbon in soils[J]. Global Biogeochemistry Cycles, 1994, 8:279-293.
    Schlesinger W H. In Biogeochemistry: an Analysis of Global Change[M]. San Diego, California, USA: Academic Press, 1997, 161-165.
    Scott M J, Jones M N, Woof C, et al. Concentrations and fluxes of dissolved organic carbon in drainage water from an upland peat system[J]. Enviroment International. 1998, 24(5-6):537-546.
    Scott-Denton L E, Sparks K L, Monson R K. Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest[J]. Soil Biology & Biochemistry, 2003, 35:525-534.
    Silver W L. The potential effects of elevated CO2 and climate change on tropical forest soils and biogeochemical cycling[J]. Climate Change, 1998, 39:337-361.
    Singh J S, Raghubanshi A S, Singh R S, et al. Microbial biomass acts as a source of plant nutrient in dry tropical forest and savanna[J]. Nature, 1989, 399:499-500.
    Six J, Conant R T, Paul E A, et al. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils[J]. Plant and soil, 2002, 241:155-176.
    Skopp J, Jawson M D, Doran D.W. Steady-state aerobic microbial activity as a function of soil water content[J]. Soil Science Society of America Journal, 1990, 54:1619-1625.
    Smith J L, Paule A. The significance of soil microbial biomass estimations[M], In Soil BiochemistryV.6, Bollag J M & Stotzky G(eds). New York: Marcel Dekker, inc, 1991, 359-396.
    Smith J L. Cycling of nitrogen through microbial activity[M].In:Hadfield J C, Steward B.A. (Eds), Soil Biology: Effects on Soil Quality. Boca Raton, Florida: Lewis Publishers, 1994, 91-120.
    Smith P, Smith J U, Powlson D S, et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments[J]. Geoderma, 1997, 81, 153-225.
    Smolander A, Kitunen V. Soil microbial activities and characteristics of dissolved organic C and N in relation to tree species[J]. Soil Biology & Biochemistry, 2002, 34(5):651-660.
    Smolander A, Loponen J, Suominen K, et al. Organic matter characteristic sand C and N transformations in the humus layer under two tree species, Betulap endula and Picea abies[J]. Soil Biology & Biochemistry, 2005, 37:1309-1318.
    Sparling G P, Ross D J. Biochemical methods to estimate soil microbial biomass: current developments and applications[M]. In: Soil organic matter dynamics and sustainability of tropical agriculture. Mulongoy K and Merckx R(eds). Wiley-Sayce, Leuven, 1993, 21-17
    Sparling G P. Ratio of microbial biomass carbon to soil organic carbon as a sensitive indicator of changes in soil organic matter[J]. Soil Research, 1992, 30:195-207.
    Sparling G, Vojvodió-Vukovi M, Schipper L A. Hot-water-soluble Casa simple measure of labile soil organic matter: The relationship with microbial biomass C[J]. Soil Biology & Biochemistry, 1998, 30:1469-1472.
    Stevenson. Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients[M]. JohmWiley & New York: Sons, Inc, 1985.
    Subke J A, Hahn V, Battipaglia G, et al. Feedback interactions between needle litter decomposition and rhizosphere activity[J]. Oecologia, 2004, 139:551-559.
    Takle E S, Massman W J, Brandle J R, et al. Influence of high-frequency ambient pressure pumping on carbon dioxide efflux from soil[J]. Agricultural and Forest Meteorology, 2004, 124:193-206.
    Thuille A, Buchmann N, Schulze E D. Carbon stocks and soil respiration rates during deforestation,grassland use and subsequent Norway spruce afforestation in the Southern Alps,Italy[J]. Tree Physiology, 2000, 20:849-857.
    Tipping E, Woof C, Rigg E, et al. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment[J]. Enviroment Internatonal, 1999, 25:83-95.
    Townsend A R, Vitousek P M, Desmarais D J, et al. Soil carbon pool structure and temperature sensitivity in ferred using CO2 and 13CO2 incubation fluxes from five Hawaiian soils[J]. Biogeochemistry, 1997, 38:1-17.
    Trumbore S E, Davidson E A, Camargo P B, et al. Below ground cycling of carbon in forests and pastures of eastern Amazonia[J]. Global Biogeochemical, 1995, 9:515-528.
    Trumbore S E. Potential responses of soil organic carbon to global environmental change[J]. Proceedings of the National Academy of Science USA, 1997, 94:8284-8291.
    Trumbore S. Carbon respired by terrestrial ecosystem-recent progress and challenges[J]. Global ChangeBiology, 2006, 12:141-153.
    Tsui C C,Chen Z S,Hsieh C F. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan[J]. Geoderma, 2004, 123:131-142.
    Updegraff K, Pastor J, Bridgham S D, et al. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands[J]. Ecological Applications, 1995, 5:151-163.
    Van Gestel M, Ladd J M and Amat M. Carbon and nitrogen mineralization from two soils of contrasting texture and microaggregate stability: Influence of sequential fumigation, drying and storage[J]. Soil Biology & Biochemistry, 1991, 23:313-322.
    Van Gestel M, Ladd J N, Amato M. Microbial biomass responses to seasonal change and imposed drying regimes at increasing depths of undisturbed topsoil profiles[J]. Soil Biology & Biochemistry, 1992, 24(2):103-111.
    Van Gestel M, Merckx R, Vlassak K. Microbial biomass and activity in soils with ?uctuating water contents[J]. Geoderma, 1993, 56:617-626.
    Van Keulen H. (Tropical)soil organic matter modeling: problems and prospects[J]. Nutr Cycl. Agroecosyst, 2001, 61:33-39.
    Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Science, 1978, 125:343-350.
    Vance E D, Brookes P C, Jenkinson D S. An extraction method for measuring soil microbial biomass C[J]. Soil Biology & Biochemistry, 1987, 19:703-707.
    Vanhala P, Karhu K,Tuomi M, et al. Temperature sensitivity of soil organic matter decomposition in southern and northern areas of the boreal forest zone[J]. Soil Biology & Biochemistry, 2008, 40:1758-1764.
    Verburg P S J, Van Dam D, Hefting M M, et al .Microbial transformations of C and N in a boreal forest floor as affected by temperature[J]. Plant and Soil, 1999, 208:187-197.
    Voroney R P, Paul E A, Anderson D W. Decomposition of wheat straw and stabilization of microbial products[J]. Canadian Journal of Soil Science, 1989, 69:63-77.
    Vose J.M, Elliot K. J, Johnson D.W, et al. Soil respiration responses to three years of elevated CO2 and N fertilization in ponderosapine (Pinus ponderosa Doug.ex Laws)[J]. Plant and Soil, 1997, 190:19-28.
    Waldrop M P, Zak D R, Sinsabaugh R L. Microbial community response to nitrogen deposition in northern forest ecosystems[J]. Soil Biology &Biochemistry, 2004, 26:1443-1451.
    Wander M M, Traina S J, Srinne B R. The effects of organic and conventional management on biological cutive soil organic matter fraction[J]. Science Society of America Journal, 1994, 58:1130-1139.
    Wang F L, Bettany J R. Influence of freeze-thaw and flooding on the loss of soluble organic carbon and carbon dioxide from soil[J]. Environ. Qual, 1993, 22:709-714.
    Wang W J, Dalal R C, Moody P W, et al. Relationships of soil respiration to microbial biomass, substrate availability and clay content[J]. Soil Biology &Biochemistry, 2003, 35:273-284.
    Wardle D A. A comparative assessment of factors which influence microbial biomass carbon and nitrogenlevels in soil[J]. Biological Reviews, 1992, 67:321-358.
    Watson R T, Noble I R, Bolin B, et al. Land Use, Land Use Change, and Forestry: a Special Report of the IPCC[M]. Cambridge: Cambridge University Press, 2000, 189-217.
    Webster J J, Hampton G J, Leach F R. ATP in soil: a new extractant and extraction procedure[J]. Soil Biology & Biochemistry, 1984, 16:335-342.
    Weil R R, Islam K R, Stine M A., et al. Estimating active carbon for soil quality assessment: A simplified method for laboratory and field use[J]. Am. J. Alternative Agric, 2003, 18:3-17.
    Whitehead D L, Dibb H, Hartley R D. Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter[J]. Soil Biology & Biochemistry, 1981, 13:343-348.
    Witter M P. Organization of the entorhinal-hippocampal system: a review of current anatomical data[J]. Hippocampus, 1993, (3):33-44.
    Wu J, Brookes P.C. The proportional mineralization of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil[J]. Soil Biology & Biochemistry, 2005, 37:507-515.
    Wu J, Joergensen R G, Pommerening B, et al. Measurement of soil microbial C—an automic procedure[J]. Soil Biology &Biochemistry, 1990, 22:1167-1169.
    Xiao X. et al. Transient climate change and net ecosystem production of the terrestrial biosphere[J]. Global Biogenochemical Cycle, 1998, 12:345-360.
    Xu M, Qi Y. Spatial and seasonal variation of Q10 determined by soil respiration measurements at a Sierra Nevadan forest [J]. Global Biogeochemical, 2001, 15(3):687-697.
    Yang H S. Modelling organic matter mineralization and exploring options for organic matter management in arable farming in Northern China[D]. PhD thesis, Wageningen Agricultural University, Wageningen. VanKeulen H, 2001.
    Yano Y, McDowell W H., Aber J D. Biodegradable dissolved organic carbon in forest soil solution and effects of chronic nitrogen deposition[J]. Soil Biology & Biochemistry, 2000, 32:1743-1751.
    Yano Y, Mcdowell WH, Kinner N. Quantification of biodegradable dissolved organic carbon in soil solution with flow-through bioreactors[J]. Soil Science Society of America Journal, 1998, 62:1556-1564.
    You S T, Yin Y J, Allen H E. Partitioning of organic matter in soils: effects of Ph and water ratio[J]. The Science of the Total environment, 1999, 227(2-3):155-160.
    Zhang W, Parker K M, Luo Y, et al. Soil microbial responses to experimental warming and clipping in a tall grass prairie[J]. Global Change Biology, 2005, 11:266-277.
    Zogg G P, Zak D R, Burton A J, et al. Fine root respiration in northern hardwood forests in relation to temperature and nitrogen availability[J]. Tree Physiology, 1996, 16:719-725.
    Zogg G P, Zak D R, Ringelberg D B, et al. Compositional and functional shifts in microbial communities due to soil warming [J]. Soil Science Society of America Journal, 1997, 61:475-481.
    Zou X M, Ruan H H, Fu Y, et al., Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure[J]. Soil Biology & Biochemistry, 2005, 37:1923-1928.
    Zsolnay A, Baigar E, Jimenez M, et al. Differentiating with fluorescence spectroscopy the sources ofdissolved organic matter in soils subjected to drying[J]. Chemosphere, 1999, 38:45-50.
    Zsolnay A, Steindl H. Geovariability and biodegradability of the water-extractable organic material in an agricultural soil[J]. Soil Biology & Biochemistry, 1991, 23:1077-1082.
    Zsolnay A. Dissolved humus in soil waters[M]. In: Piccolo A, ed. Humic Substances in Terrestrial Ecosystems. Amsterdam: Elsevier, 1996, 171-223.
    Zsolnay A. Dissolved organic matter: artefacts, definitions, and functions[J]. Geoderma, 2003, 113:187-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700