用户名: 密码: 验证码:
金属氧簇基无机—有机杂化材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文利用不同类型柔性及非中心对称的有机配体,借助配位键或分子间相互作用来剪切、修饰或桥连金属氧簇基本单元,进而构筑手性及各种新型多孔金属氧簇基无机-有机杂化化合物。研究这类化合物的合成条件和规律,以及新物质结构和性能间的关系。
     利用水热技术和常规水溶液合成方法,合成了28种新型的金属–有机配位聚合物,通过元素分析,IR,XRPD,TG和单晶X–射线衍射对晶体结构进行了表征,对化合物的热稳定性和光致发光等性质进行了初步研究。
     1、利用柔性配体bbi、钒氧笼[V_(10)O_(26)]~(4-)、不同的钒链和过渡金属Cu、Co、Ni和Zn离子在没有任何手性源的情况下构筑了一系列的多酸基手性无机-有机杂化化合物。[Cu(bbi)_2V_(10)O_(26)][Cu(bbi)]_2·H_2O (1a) [Cu(bbi)_2V_(10)O_(26)][Cu(bbi)]_2·H_2O (1b) [Ni_2(bbi)_2(H_2O)4V_4O_(12)]·2H_2O (2a) [Ni_2(bbi)_2(H_2O)4V_4O_(12)]·2H_2O (2b) [Co(bbi)(H_2O)V_2O_6] (3a) [Co(bbi)(H_2O)V_2O_6] (3b) [Zn-2(bbi)_2(V_3O_9)(OH)]·H_2O (4) [Zn_2(bbi)_2(V_4O_(12))] (5) [Zn(bbi)(V_2O_6)] (6) bbi = 1,4-bis(1H-imidazol-1-yl)butane
     非手性配体多样的构象、具有螺旋状多钒酸盐单元和笼状结构的多酸,有利于手性多酸化合物的合成。存在于分子内的弱相互作用,如氢键和Cu–O弱相互作用,在手性传递、保持和化合物的自发拆分上有很重要的作用。这些物种成功的分离不仅得到了一些迷人的结构,同时也为利用非手性配体和POM基本单元自发拆分合成手性POM基化合物提供了一种合理的方法。
     2、选用八钼酸盐,柔性配体bbi,硝酸铜,三乙胺在水热条件下调节不同pH合成了基于金属-氧簇的超分子异构体。[H_2bbi][Cu~II(bbi)_2(β-Mo_8O_(26))] (7) [Cu~II(bbi)_2(H_2O)(β-Mo_8O_(26))0.5] (8) [Cu~II(bbi)_2(α-Mo_8O_(26))][Cu~I(bbi)]_2 (9) [Cu~IICu~I(bbi)_3(α-Mo_8O_(26))][CuI(bbi)] (10) [Cu~I(bbi)]_2[Cu_2~I(bbi)_2(δ-Mo_8O_(26))_(0.5)][α-Mo_8O_(26)]_(0.5) (11) [Cu~I(bbi)][Cu~I(bbi)(θ-Mo_8O_(26))_(0.5)] (12)
     我们认为bbi配体和铜离子构筑的多样的金属-有机单元,八钼酸盐的不同构型和配位方式及多酸阴离子和金属-有机单元的非键作用对形成不同结构有重要作用。另外,随着增加有机胺的量,我们首次实现了在多酸基的金属-有机框架中将CuII不同程度的还原为CuI。有机胺不仅仅做还原剂还做缓冲溶剂降低结晶速度,有利于形成具有相似结构的化合物(如超分子异构体)。多酸基的超分子异构体的成功合成为超分子异构现象提供了新的实际模型,也有助于理解化合物结构-性质的相互关系。最重要的是这项工作将原位合成,超分子异构体,多酸化学结合起来为探索多功能材料提供新的方向。
     3、利用1,2,4-三氮唑(Hfcz)、Keggin型多酸阴离子和不同过渡金属离子构筑的八种化合物。[Zn(Hfcz)(H_2O)_3](H_3fcz)(SiMo_(12)O_(40))·3H_2O (13) [Cd_2(Hfcz)_6(H_2O)_2](SiMo_(12)O_(40))·H_2O (14) [Co_2(Hfcz)_2(SiW_(12)O_(40))](H_3fcz)_2(SiW_(12)O_(40))·10H_2O (15) [Ni_2(Hfcz)_4(H_2O)_2](SiW_(12)O_(40))·5H_2O (16) [Ag_4(Hfcz)_2(SiMo_(12)O_(40))] (17) [Cu~ICu~II(Cu~IIfcz)_2(H_2O)_5(PMo_)10_~VIMo_2~VO_(40))]·6H_2O (18) [Cu_2~I(CuIIfcz)_2(H_2O)_2(PMo_8~VIV_3~VV_3~IVO_(42))]·6H_2O (19) [Cu_4L_4PW_(12)O_(40)]·6H_2O (20) (L = 1,3-di(1H-1,2,4-triazol-1-yl)propan-2-ol)
     化合物13-17的研究结果表明氟康唑配体与不同的过渡金属构筑不同的金属有机单元,具有不同配位模式的多阴离子通过非共价的相互作用(氢键等)和共价连接金属有机单元形成了不同维数的无机-有机杂化材料。18和19是合成多酸基开放式金属-有机骨架化合物的一种可行的方法,即合并多酸阴离子和预先设计的大阳离子。多酸阴离子的大小和配位方式对化合物的孔道及最终结构有很大的影响。20中,配体氟康唑在[PW_(12)O_(40)]3-多酸阴离子、Cu2+和三乙胺存在的条件下发生的还原反应,C-C单键断裂生成的新的原位配体。在这个框架中铜阳离子作为平面正方形四连接点,Keggin多酸阴离子作为立方体八连接点。化合物20是一个新型的基于多酸的三维(4,8)连接金属有机网络。据我们所知,它代表通过共价键最高连接的多酸体系。
     4、我们设计合成了一系列柔性含氮和有机羧酸配体,利用它们和过渡金属Zn和Cd合成了八种含有过渡金属(簇)的缠结网络化合物。得到了首例(6,8)连接自穿插、(3,12)高连接、具有新的拓扑类型的八连接自穿插以及一系列既包含聚轮烷又包含聚锁烃的拓扑特性的网络结构。研究了此类化合物反应条件与产物的关系、建筑单元与拓扑结构之间的关系和新物质结构和性能之间的关系。[Zn_(2.5)L(bdc)_(2.5)]·H_2O (21) [Zn_8(μ_3-OH)_4(oba)_6(bbi)(H_2O)_2] (22) [Zn_3(bpimb)(oba)_3] (23) [Cd_2(bimb)_2(L~1)_2] (24) [Cd(bpimb)_(0.5)(L~2)(H_2O)] (25) [Zn_5(bpib)_2(L~3)_4(OH)_2(H_2O)_2] (26)[Zn(bpib)_(0.5)(L~4)] (27) [Cd(bbi)(L~4)] (28) bbi = 1,4-bis(1H-imidazol-1-yl)butane bpimb = 1,4-bis((2-(pyridin-2-yl)-1H-imidazol-1-yl)methyl)benzene bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene bpib = 1,4-bis(2-(pyridin-2-yl)-1H-imidazol-1-yl)butane L = 1-((4'-((pyridin-3-yloxy)methyl)biphenyl-4-yl)methyl)pyridinium-3-olate H_2oba = 4,4'-oxydibenzoic acid H_2L~1 = 4-((4-(dihydroxymethyl)phenoxy)methyl)benzoic acid H_2L~2 = 4,4'-methylenebis(oxy)dibenzoic acid H_2L~3 = 3,3'-methylenebis(oxy)dibenzoic acid H_2L~4 = 4,4'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))dibenzoic acid
The aim of this thesis is the synthesis of chiral and novel porous POM based inorganic-organic hybrid compounds by using different kinds of flexible and unsymmetrical organic ligands through covalent linkage and/or molecular interaction. The study on synthetic conditions and rules for these new compounds and the exploration of relationships between structures and properties for these new compounds are also carried out.
     Twenty-eight new coordination compounds have been synthesized on the basis of hydrothermal technique and/or water solution synthesis methods and structurally characterized by elemental analyses, IR, XRPD, TG and single crystal X-ray diffractions. The thermal stabilities, fluorescent activity and et al. of these compounds have been studied.
     1. A series of chiral POM-based inorganic-organic hybrid compounds have been constructed by using the flexible bbi ligand, [V10O26]4-, [VxOy]n- chain and Cu, Co, Ni and Zn without any chiral auxiliary. [Cu(bbi)_2V_(10)O_(26)][Cu(bbi)]_2·H_2O (1a) [Cu(bbi)_2V_(10)O_(26)][Cu(bbi)]_2·H_2O (1b) [Ni_2(bbi)_2(H_2O)4V_4O_(12)]·2H_2O (2a) [Ni_2(bbi)_2(H_2O)4V_4O_(12)]·2H_2O (2b) [Co(bbi)(H_2O)V_2O_6] (3a) [Co(bbi)(H_2O)V_2O_6] (3b) [Zn-2(bbi)_2(V_3O_9)(OH)]·H_2O (4) [Zn_2(bbi)_2(V_4O_(12))] (5) [Zn(bbi)(V_2O_6)] (6) bbi = 1,4-bis(1H-imidazol-1-yl)butane
     The various conformations of achiral ligand, helical vanadate chains and polyoxometalate with cage structure, which benefit the formation of chiral polyoxometalate-based compounds. The non-covalent interactions, such as the hydrogen bond interactions and Cu–O interactions, may play crucial roles in the process of the chirality preservation and spontaneous resolution when the chirality is extended into the homochiral 3D networks. The successful isolation of these species not only produces intriguing examples of enantiomerically pure architectures but may also provide a rational strategy for synthesis of chiral POM-based compounds by using achiral ligands and POM helical units.
     2. A series of supramolecular isomers have been obtained by using (Mo8O26)4-, flexible bbi ligand, Cu(NO3)2 and Et3N at different pH values under hydrothermal conditions. [H_2bbi][Cu~II(bbi)_2(β-Mo_8O_(26))] (7) [Cu~II(bbi)_2(H_2O)(β-Mo_8O_(26))0.5] (8) [Cu~II(bbi)_2(α-Mo_8O_(26))][Cu~I(bbi)]_2 (9) [Cu~IICu~I(bbi)_3(α-Mo_8O_(26))][CuI(bbi)] (10) [Cu~I(bbi)]_2[Cu_2~I(bbi)_2(δ-Mo_8O_(26))_(0.5)][α-Mo_8O_(26)]_(0.5) (11) [Cu~I(bbi)][Cu~I(bbi)(θ-Mo_8O_(26))_(0.5)] (12)
     We believed that various copper-organic units which are formed by bbi ligands combined with CuII/CuI cations, octamolybdates with different types and coordination modes, and the nonbonding interactions between polyanions and copper-organic units are important for the formation of the different structures. With step by step increase of the amount of organic amine, we have achieved the transformation of CuII ions into CuI ones in different degrees in POMs-based MOFs for the first time. The function of organic amine may be not only as a reducer but also as a buffering agent to reduce the crystallization speed, which is in favor of forming the similar products (such as supramolecular isomers). The successful isolation of these species maybe will provide a calculable clue for the supramolecular isomerism in POMs-based MOFs, which may help to understand the structure-property relationship of POMsbased MOFs. Further research is ongoing to prepare novel supramolecular isomers and explore their valuable properties. More importantly, the combination of these three important research fields, namely, in situ synthesization, supramolecular isomerism, and polyoxometalate chemistry, opens up new possibilities in pursuit of multifunctional materials.
     3. We have designed and synthesized eight compounds based on Keggin POM, Hfcz and different transition metal under hydrothermal conditions. [Zn(Hfcz)(H_2O)_3](H_3fcz)(SiMo_(12)O_(40))·3H_2O (13) [Cd_2(Hfcz)_6(H_2O)_2](SiMo_(12)O_(40))·H_2O (14) [Co_2(Hfcz)_2(SiW_(12)O_(40))](H_3fcz)_2(SiW_(12)O_(40))·10H_2O (15) [Ni_2(Hfcz)_4(H_2O)_2](SiW_(12)O_(40))·5H_2O (16) [Ag_4(Hfcz)_2(SiMo_(12)O_(40))] (17) [Cu~ICu~II(Cu~IIfcz)_2(H_2O)_5(PMo_)10_~VIMo_2~VO_(40))]·6H_2O (18) [Cu_2~I(CuIIfcz)_2(H_2O)_2(PMo_8~VIV_3~VV_3~IVO_(42))]·6H_2O (19) [Cu_4L_4PW_(12)O_(40)]·6H_2O (20) (L = 1,3-di(1H-1,2,4-triazol-1-yl)propan-2-ol)
     The results of 13-17 indicate that differentmetal ions can form various metal–organic units and different metal–organic units, and polyanions with different coordination modes are linked to each other through non-covalent interactions and/or covalent connections to obtain different dimensionalities of compounds. For 18 and 19, we have developed a rational approach to the synthesis of POM-based open MOFs by combination of POMs and deliberately designed macrocations. Polyanions with different sizes and coordination modes have great influences on the ultimate structures of compounds. Compound 20 is a new type of (4,8)-connected 3D POM-based MOF using an in situ-generated ligand by C–C bond cleavage and reduction reaction under the presence of [PW12O40]3- polyanions, Cu2+ ions and Et3N in hydrothermal conditions, in which copper cations act as square planar four-connected nodes and Keggin polyanions act as cubical eight-connected nodes. To our knowledge, it represents the highest connected topological network via covalent linkages for the polyoxometalate systems.
     4. We have designed and synthesized a series of new N-donor and carboxylate ligands. And eight entangled net compounds with Zn or Cd metal (clusters) have been synthesized on the basis of these new ligands. An unprecedented (6,8)-connected self-penetrating network, a (3,12)-connected 3D MOF, an 8-connected self-penetrating network with the new topological type and a series of interesting topological nets showing polyrotaxane- and polycatenane-like motifs have been constructed. The study on synthetic conditions and rules for these new compounds, topological analyses, interaction of adjacent molecules, influence on the ultimate structures from ligand’s conformation and auxiliary ligand, and the exploration of relationships between structures and properties for these new compounds are also carried out. [Zn_(2.5)L(bdc)_(2.5)]·H_2O (21) [Zn_8(μ_3-OH)_4(oba)_6(bbi)(H_2O)_2] (22) [Zn_3(bpimb)(oba)_3] (23) [Cd_2(bimb)_2(L~1)_2] (24) [Cd(bpimb)_(0.5)(L~2)(H_2O)] (25) [Zn_5(bpib)_2(L~3)_4(OH)_2(H_2O)_2] (26)[Zn(bpib)_(0.5)(L~4)] (27) [Cd(bbi)(L~4)] (28) bbi = 1,4-bis(1H-imidazol-1-yl)butane bpimb = 1,4-bis((2-(pyridin-2-yl)-1H-imidazol-1-yl)methyl)benzene bimb = 1,4-bis((1H-imidazol-1-yl)methyl)benzene bpib = 1,4-bis(2-(pyridin-2-yl)-1H-imidazol-1-yl)butane L = 1-((4'-((pyridin-3-yloxy)methyl)biphenyl-4-yl)methyl)pyridinium-3-olate H2oba = 4,4'-oxydibenzoic acid H_2L~1 = 4-((4-(dihydroxymethyl)phenoxy)methyl)benzoic acid H_2L~2 = 4,4'-methylenebis(oxy)dibenzoic acid H_2L~3 = 3,3'-methylenebis(oxy)dibenzoic acid H_2L~4 = 4,4'-(2,2'-oxybis(ethane-2,1-diyl)bis(oxy))dibenzoic acid
引文
[1] Pope M T. Heteropoly and Isopoly Oxometalates [M]. Springer-Verlag: Berlin, 1983, 1-10.
    [2] Pope M T, Müller A. Polyoxometalate Chemistry [M]. Kluwer, Dordrecht, 2001, 1-10.
    [3] Wang E B, Hu C W, Xu L. Concise of Polyoxometalate Chemistry [M]. Beijing: Chemical Industrial Publishing Company, 1998, 4.
    [4] Berzelius [J]. J Pogg Ann, 1826, 6: 369–380.
    [5] Pauling L. [J]. J Am Chem Soc, 1929, 5: 2868–2880.
    [6] Keggin J F. [J]. Proc R Soc, 1934, 144A, 75–100.
    [7] Anderson J S. [J]. Nature, 1937, 140: 850–850.
    [8] Dawson B. [J]. Acta Crystallogr, 1953, 6: 113–126.
    [9] Waugh J C T, Schoemaker D P. [J]. Acta Crystallogr, 1954, 7: 438–441.
    [10] Tsay Y H, Silverton J V. Z. Krist. [J]. 1973, 137: 256.
    [11] Lindqvist I. Ark. Kemi. [J]. 1950, 2: 325–341.
    [12] Pope M T, Müller A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines [J]. Angew Chem Int Ed Engl, 1991, 30: 34–48.
    [13]鲁晓明,朱慧菊,刘顺诚. [(C4H9)4N]2[(OC14H8O)2Mo4O10(OCH3)2]的合成和晶体结构[J].高等学校化学学报, 1996, 17(2): 183–186.
    [14] Barkigia K M, RajkovicBlazer L M, Pope M T, et al. Molybdoarsinate heteropoly complexes. Structure of the hydrogen tetramolybdodimethylarsinate anion by x-ray and neutron diffraction [J]. Inorg Chem, 1980, 19(9): 2531–2537.
    [15] Thompson M R, Day C S, Day V W, et al. Substitutive intramolecular carbonyl insertion in a carbomolybdate cluster: formation of a polycentric, conformationally flexible anion binding cavity [J]. J Am Chem Soc, 1980, 102(18): 5971–5973.
    [16] Hsieh T C, Zubieta J. Synthesis and characterization of a tetranuclear oxomolybdate containing coordinatively bound diazenido units. [Mo4O8(OCH3)2(NNC6H5)4]2-: A versatile precursor for the synthesis of complexes with the [Mo(NNC6H5)2]2+ unit [J]. Inorg Chem, 1985, 24(9): 1287–1288.
    [17] Liu S, Sun X, Zubieta J. Synthesis and structural characterization of a thiolate coordination complex of a mixed-valence Mo(V)/Mo(VI) polyoxomolybdate, [Mo10O28(SCH2CH2O)2(HOCH3)2]4-, and of its decomposition product [Mo4O6(SCH2CH2O)5]2- [J]. J Am Chem Soc, 1988, 110(10): 3324–3326.
    [18] Chilou V, Gouzerh P, Jeannin Y, et al. [M4O12{MeC(NH2)NO}2]2- (M = Mo or W), a tetranuclear complex with a small 4-acetamidoximate ligand as an unprecedented bridge [J]. J Chem Soc Chem Commun, 1987, 1469–1450.
    [19] Proust A, Gouzerh P, Robert F. Molybdenum oxo nitrosyl complexes.1.Defect Lindqvist compounds of the type [Mo5O13(OR)4(NO)]3- (R = CH3, C2H5). Solid-state interactions with alkali-metal cations [J]. Inorg Chem, 1993, 32: 5291–5298.
    [20] Gouzerh P, Jeannin Y, Proust A, et al. Two novel polyoxometalates containing the [MoNO]3+ unit: [Mo5Na(NO)O13(OCH3)4]2- and [Mo6(NO)O18]3- [J]. Angew Chem Int Ed Engl, 1989, 28: 1363–1364.
    [21] Proust A, Gouzerh P, Robert F. Organometallic oxides: Lacunary Lindqvist-type polyanion-supported cyclopentadienylrhodium complex fragments [J]. Angew Chem Int Ed Engl, 1993, 32: 115–116.
    [22] Proust A, Thouvenot R, Robert F, et al. Molybdenum oxo nitrosyl complexes. 2. Molybdenum-95 NMR studies of defect and complete Lindqvist-type derivatives. Crystal and molecular structure of (n-Bu4N)2[Mo6O17(OCH3)(NO)] [J]. Inorg Chem, 1993, 32: 5299–5304.
    [23] Bank S, Liu S, Shaikh S N, et al. Molybdenum-95 NMR studies of (aryldiazenido) and (organohydrazido) molybdates. Crystal and molecular structure of [n-Bu4N]3[Mo6O18(NNC6F5)] [J]. Inorg Chem, 1988, 27: 3535–3543.
    [24] Proust A, Thouvenot R, Herson P. Revisiting the synthesis of [Mo6(η5-C5Me5)O18]-. X-Ray structural analysis, UV-visible, electrochemical and multinuclear NMR characterization [J]. J Chem Soc Dalton Trans, 1999, 51–56.
    [25] Kwen H, Young V G Jr, Maatta E A. A diazoalkane derivative of a polyoxometalate: preparation and structure of [Mo6O18(NNC(C6H4OCH3)CH3)]2- [J]. Angew Chem Int Ed, 1999, 38: 1145–1146.
    [26] Du Y, Rheingold A L, Maatta E A. Activation parameters for triplet delta-hydrogen abstraction by o-tert-butylbenzophenones: no tunneling but an entropy-controlled inductive effect in the isoelectronic anilinium ion [J]. J Am Chem Soc, 1992, 114: 346–348.
    [27] Proust A, Thouvenot R, Chaussade M, et al. Phenylimido derivatives of [Mo6O19]2- : syntheses, X-ray structures, vibrational, electrochemical, 95Mo and 14N NMR studies [J]. Inorg Chim Acta, 1994, 224: 81–95.
    [28] Clegg W, Errington R J, Fraser K A, et al. Polyoxometalates: from platonic solids to anti-retroviral activity [M]. (Eds.: Pope M T, Müller A), Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994, 113.
    [29] Strong J B, Yap G P A, Ostrander R, et al. A new class of functionalized polyoxometalates: synthetic, structural, spectroscopic, and electrochemical studies of organoimido derivatives of [Mo6O19]2- [J]. J Am Chem Soc, 2000, 122: 639–649.
    [30] Stark J L, Young V G Jr, Maatta E A. A functionalized polyoxometalate bearing a ferrocenylimido ligand: preparation and structure of [(FcN)Mo6O18]2- [J]. Angew Chem Int Ed Engl, 1995, 34: 2547–2548.
    [31] Stark J L, Rheingold A L, Maatta E A, et al. Polyoxometalate clusters as building blocks: preparation and structure of bis(hexamolybdate)complexes covalently bridged by organodiimido ligands [J]. J Chem Soc Chem Commun, 1995, 1165–1166.
    [32] Clegg W, Errington R J, Fraser K, et al. Functionalisation of [Mo6O19]2– with aromatic amines: synthesis and structure of a hexamolybdate building block with linear difunctionality [J]. J Chem Soc Chem Commun, 1995, 455–456.
    [33] Wei Y, Xu B, Barnes C L, et al. An efficient and convenient reaction protocol to organoimido derivatives of polyoxometalates [J]. J Am Chem Soc, 2001, 123: 4083–4084.
    [34] Roesner R A, McGrath S C, Brockman J T, et al. Mono-and di-functional aromatic amines with p-alkoxy substituents as novel arylimido ligands for the hexamolybdate ion [J]. Inorg Chim Acta, 2003, 342: 37–47.
    [35] Anna Proust, RenéThouvenot, Pierre Gouzerh. Functionalization of polyoxometalates: towards advanced applications in catalysis and materials science [J]. Chem Commun, 2008, 1837–1852.
    [36] Du Y, Rheingold A L. Maatta E A. A polyoxometalate incorporating an organoimido ligand:preparation and structure of [Mo5O18(MoNC6H4CH3)]2- [J]. J Am Chem Soc, 1992, 114: 345–346.
    [37] Strong J B, Haggerty B S, Rheingold A L, et al. A superoctahedral complex derived from a polyoxometalate: The hexakis(arylimido)hexamolybdate anion [Mo6(NAr)6O13H]- [J]. Chem Commun, 1997, 1137–1138.
    [38] Gouzerh P, Proust A. Main-group element, organic, and organometallic derivatives of polyoxometalates [J]. Chem Rev, 1998, 98: 77–111.
    [39] Peng Z H. Rational synthesis of covalently bonded organic-inorganic hybrids [J]. Angew Chem Int Ed, 2004, 43: 930–935
    [40] Hao J, Xia Y, Wang L S, et al. Unprecedented replacement of bridging oxygen atoms in polyoxometalates with organic imido ligands [J]. Angew Chem Int Ed, 2008, 47: 2626–2230.
    [41] Yan L K, Su Z M, Guan W, et al. Why does disubstituted hexamolybdate with arylimido prefer to form an orthogonal derivative? Analysis of stability, bonding character, and electronic properties on molybdate derivatives by density functional theory (DFT) study [J]. J Phys Chem B, 2004, 108: 17337–17343.
    [42] Yan L K, Yang G C, Guan, W, et al. Density functional theory study on the first hyperpolarizabilities of organoimido derivatives of hexamolybdates [J]. J Phys Chem B, 2005, 109: 22332–22336.
    [43] Yang G C, Guan W, Yan L K, et al. Theoretical study on the electronic spectrum and the origin of remarkably large third-order nonlinear optical properties of organoimide derivatives of hexamolybdates [J]. J Phys Chem B, 2006, 110: 23092–23098.
    [44] Li Q, Wei Y, Hao J, et al. Unexpected C=C bond formation via doubly dehydrogenative coupling of two saturated sp3 C-H bonds activated with a polymolybdate [J]. J Am Chem Soc, 2007, 123(17): 4083–4084.
    [45] Hasenknopf B, Delmont R, Herson P, et al. Anderson-type heteropolymolybdates containing tris(alkoxo) ligands: synthesis and structural characterization [J]. Eur J Inorg Chem, 2002, 1081–1087.
    [46] Marcoux P R, Hasenknopf B, Vaissermann J. Developing remote metal binding sites in heteropolymolybdates [J]. Eur J Inorg Chem, 2003, 2406–2412.
    [47] Song Y F, Long D L, Cronin L. Noncovalently connected frameworks with nanoscale channels assembled from a tethered polyoxometalate–pyrene hybrid [J]. Angew Chem Int Ed, 2007, 46: 1–6.
    [48] Li C J. Organic reactions in aqueous media-with a focus on carbon-carbon bond formation [J]. Chem Rev, 1993, 93: 2023–2035.
    [49] Lindstr?m U M. Stereoselective organic reactions in water [J]. Chem Rev, 2002, 102: 2751–2772.
    [50] Zha Z G, Hui A L, Zhou Y Q, et al. A recyclable electrochemical allylation in water [J]. Org Lett, 2005, 7: 1903–1905.
    [51] Liu G B, Zhao H Y, Yang H J, et al. Preparation of 2-Aryl-2H-benzotriazoles by zinc-mediated reductive cyclization of o-nitrophenylazophenols in aqueous media without the use of organic solvents [J]. Adv Synth Catal, 2007, 349: 1637–1640.
    [52] Inoue M, Yamase T. Synthesis and crystal structures ofγ-type octamolybdates coordinated by chiral lysines [J]. Bull Chem Soc Jpn, 1995, 68: 3055–3063.
    [53]Kortz U, Savelieff M G, Abou F Y, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV functionalized by amino acids [J]. Angew Chem Int Ed, 2002, 41: 4070–4073.
    [54] Cindri? M, Novak T K, Kraljevi? S, et al. Structural and antitumor activity study ofγ-octamolybdates containing aminoacids and peptides [J]. Inorg Chim Acta, 2006, 359: 1673–1680.
    [55]Mahata G, Biradha K. Hydrogen bonding adducts of octamolybdate anions containing coordinately bound pyridiniumoxides [J]. Inorg Chim Acta, 2007, 360: 281–285.
    [56] Gao G G, Xu L, Qu X S, et al. New approach to the synthesis of an organopolymolybdate polymer in aqueous media by linkage of multicarboxylic ligands [J]. Inorg Chem, 2008, 47: 3402–3407.
    [57] Gili P, Lorenzo-Luis P A, Mederos A, et al. Rosa carballo crystal structures of two new heptamolybdates and of a pyrazole incorporating a g-octamolybdate anion [J]. Inorg Chim Acta, 1999, 295: 106–114.
    [58] Wu C D, Lu C Z, Chen S M, et al. Synthesis and characterization of two new polyoxomolybdate compounds: [Cu(imi)2(H2O)4][Himi]2[(imi)2Mo8O26] and [Himi]3[H3O][SiMo12O40]·H2O [J]. Polyhedron, 2002, 22: 3091–3095.
    [59] Gao G G, Li F Y, Xu L, et al. CO2 coordination by inorganic polyoxoanion in water [J]. J Am Chem Soc, 2008, 130: 10838–10839.
    [60] Zheng S T, Zhang H; Yang G Y. Designed synthesis of POM-organic frameworks from {Ni6PW9} building blocks under hydrothermal conditions [J]. Angew Chem Int Ed, 2008, 47: 3909–3913
    [61] Kortz U, Savelieff M G, Abou Ghali F Y, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV functionalized by amino acids [J]. Angew Chem Int Ed, 2002, 41: 4070–4073.
    [62] Piepenbrink M, Triller M U, Gorman N H J, et al. Bridging the gap between polyoxometalates and classic coordination compounds: A novel type of hexavanadate complex [J]. Angew Chem Int Ed Engl, 2002, 41: 2523–2525.
    [63] Bino A, Ardon M, Lee D, et al. Synthesis and structure of [Fe13O4F24(OMe)12]5-: The first open-shell keggin ion [J]. J Am Chem Soc, 2002, 124: 4578–4579.
    [64] Davis M E. New vistas in zeolite and molecular sieve catalysis [J]. Acc Chem Res, 1993, 26: 111–115.
    [65] Neeraj S, Natarajan S, Rao C N R. A novel open-framework zinc phosphate with intersecting helical channels [J]. Chem Commun, 1999, 165-166.
    [66] Sullens T A, Jensen R A, Shvareva T Y, et al. Cation-cation interactions between uranyl cations in a polar open-framework uranyl periodate [J]. J Am Chem Soc, 2004, 126: 2676-2677.
    [67] Bareyt S, Piligkos S, Hasenknopf B, et al. Highly efficient peptide bond formation to functionalized wells-dawson-type polyoxotungstates [J]. Angew Chem Int Ed, 2003, 42: 3404-3406.
    [68] An H Y, Xiao D R, Wang E B, et al. A series of new polyoxoanion-based inorganic-organic hybrids: (C6NO2H5)[(H2O)4(C6NO2H5)Ln(CrMo6H6O24)]·4H2O (Ln = Ce, Pr, La and Nd) with a chiral layer structure [J]. New J Chem, 2005, 667-672.
    [69] Judd D A, Nettles J H, Nevins N, et al. Polyoxometalate HIV-1 protease inhibitors. A new modeof protease inhibition [J]. J Am Chem Soc, 2001, 123: 886-897.
    [70] Wood J W. J Inorg Nucl Chem, 1960, 14: 129.
    [71] Acerete R, Carrio J S. Synthesis and X-ray crystal structure determination of a novel chiral heteropolyanion: The“3:1”octadecatungstohexaphosphate [J]. J Am Chem Soc, 1990, 112: 9386-9387.
    [72] Soghomonian V, Chen Q, Haushalter R C, et al. An inorganic double helix: hydrothermal synthesis, structure, and magnetism of chiral [(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]?4H2O [J]. Science, 1993, 259: 1596-1599.
    [73] Shi Z, Feng S, Gao S, et al. Inorganic-organic hybrid materials constructed from [(VO2)2(HPO4)] helical chains and [M(4,4’-bpy)2]2+ (M=Co, Ni) fragments [J]. Angew Chem Int Ed Engl, 2000, 39: 2325-2327.
    [74] Xin F, Pope M T. Lone-pair-induced chirality in polyoxotungstate structures: TinII derivatives of a-type XW9O34 (X = P, Si). Interaction with amino acids [J]. J Am Chem Soc, 1996, 118: 7731-7736.
    [75] Sadakane M, Dickman M H, Pope M T. Chiral polyoxotungstates. 1. stereoselective interaction of amino acids with enantiomers of [CeIII (α1-P2W17O61)(H2O)x]7-. The structure of DL-[Ce2(H2O)8(P2W17O61)2]14- [J]. Inorg Chem, 2001, 40: 2715-2719.
    [76] Fang X K, Anderson T M, Hill C L. Enantiomerically pure polytungstates: Chirality transfer through zirconium coordination centers to nanosized inorganic clusters [J]. Angew Chem Int Ed, 2005, 44: 3540-3544.
    [77] An H Y, Wang E B, Xiao D R. Chiral 3D architectures with helical channels constructed from polyoxometalate clusters a copper–amino acid complexes [J]. Angew Chem Int Ed, 2006, 118: 918-922.
    [78] Tan H Q, Li Y G, Zhang Z M. Chiral polyoxometalate-induced enantiomerically 3D architectures: A new route for synthesis of high-dimensional chiral compounds [J]. J Am Chem Soc, 2007, 129: 10066-10067.
    [79] Hussain F, Kortz U. Polyoxoanions functionalized by diorganotin groups: the tetrameric, chiral tungstoarsenate(III), [{Sn(CH3)2(H2O)}2{Sn(CH3)2}As-3(alpha-AsW9O33)4]21- [J]. Chem Commun, 2005, 1191-1193.
    [80] Hou, Y, Fang, X, Hill C L. Breaking symmetry: Spontaneous resolution of a polyoxometalate [J]. Chem Eur J, 2007, 13: 9442-9447.
    [81] Khan M I, Meyer L M, Haushalter R C, et al. Giant voids in the hydrothermally synthesized microporous square pyramidal-tetrahedral framework vanadium phosphates[HN(CH2CH2)3NH]K-1.35[V5O9(PO4)2]·H2O and Cs3[V5O9(PO4)2]·xH2O [J]. Chem Mater, 1996, 8: 43-53.
    [82] Soghomonian V, Chen Q, Haushalter R C, et al. Vanadium phosphate framework solid constructed of octahedra, square pyramids, and tetrahedra with a cavity diameter of 18.4 ? [J]. Angew Chem Int Ed Engl, 1993, 32: 610-612.
    [83] Khan M I. Novel extended solids composed of transition metal oxide cluster [J]. J Solid State Chem, 2000, 152: 105-112.
    [84] Khan M I, Yohannes E, Doedens R J. A novel series of materials composed of arrays of vanadium oxide container molecules- {V18O42(X)} (X = H2O, Cl-, Br-): Synthesis and characterization of [M2(H2N(CH2)2NH2)5] [{M(H2N(CH2)2NH2)2}2V18O42(X)]·9H2O (M=Zn, Cd) [J]. Inorg Chem, 2003, 42: 3125-3129.
    [85] Khan M I, Yohannes E, Doedens R J. Metal oxide based framework materials composed of polyoxovanadate clusters: Synthesis and X-ray crystal structures of [M3V18O42(H2O)12(XO4)]·24H2O (M = Fe, Co; X = V, S) [J]. Angew Chem Int Ed Engl, 1999, 38: 1292-1294.
    [86] Pan C L, Xu J Q, Li G H, et al. A two-dimensional framework of novel vanadium clusters bridged by [Ni(en)2]2+:K{VIV12VV6O42Cl[Ni(en)2]3}·8H2O [J]. Dalton Trans, 2003, 517-518.
    [87] Tripathi A, Hughbanks T, Clearfield A. The first framework solid composed of vanadosilicate clusters [J]. J Am Chem Soc, 2003, 125: 10528-10529.
    [88] Liu S X, Xie L H, Gao B. An organic–inorganic hybrid material constructed from a three-dimensional coordination complex cationic framework and entrapped hexadecavanadate clusters [J]. Chem Commun, 2005, 5023–5025.
    [89] Hagrman D, Hagrman P J, Zubieta J. Organic-inorganic hybrid materials: From“simple”coordination polymers to organodiamine-templated molybdenum oxides [J]. Angew Chem Int Ed Engl, 1999, 38: 2638-2684.
    [90] Hagrman D, Hagrman P J, Zubieta J. Solid-state coordination chemistry: The self-assembly of microporous organic-Inorganic hybrid frameworks constructed from tetrapyridylporphyrin and bimetallic oxide chains or oxide clusters [J]. Angew Chem Int Ed Engl, 1999, 38: 3165-3168.
    [91] Zheng L M, Wang Y S, Wang X Q, et al. Anion-directed crystallization of coordination polymers: Syntheses and characterization of Cu4(2-pzc)4(H2O)8(Mo8O26)·2H2O and Cu3(2-pzc)4(H2O)2(V10O28H4)·6.5H2O (2-pzc = 2-Pyrazinecarboxylate) [J]. Inorg Chem, 2001, 40: 1380-1385.
    [92] Inman C, Knaust J M, Keller S W. A polyoxometallate-templated coordination polymer: synthesis and crystal structure of [Cu3(4,4-bipy)5(MeCN)2][PW12O40]·2C6H5CN [J]. Chem Commun, 2002, 156-157.
    [93] Li Y G, Dai L M, Wang Y H. A new molybdenum-oxide-based organic–inorganic hybrid frameworktemplated by double-Keggin anions [J]. Chem Commun, 2007, 2593-2595.
    [94] Férey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalate-based solid with unusually large pore volumes and surface area [J]. Science, 2005, 309: 2040-2042.
    [95] Sun C Y, Liu S X, Liang D D. Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates [J]. J Am Chem Soc, 2009, 131: 1883–1888.
    [96] Wei M L, He C, Hua W J. A large protonated water cluster H+(H2O)27 in a 3D metal-organic framework [J]. J Am Chem Soc, 2006, 128: 13318-13319.
    [97] Uchida S, Mizuno N. Zeotype ionic crystal of Cs5[Cr3O(OOCH)6(H2O)3][α-CoW12O40] 7.5H2O with shape-selective adsorption of water [J]. J Am Chem Soc, 2004, 126: 1602 -1603.
    [98] Jiang C J, Lesbani A, Kawamoto R. Channel-selective independent sorption and collection of hydrophilic and hydrophobic molecules by Cs5[Cr3O(OOCH)6(H2O)3][α-SiW12O40] ionic crystal [J]. J Am Chem Soc, 2006, 128: 14240-14241.
    [99] Ockwig N W, Delgado-Friedrichs O, O’Keeffe M, et al. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks [J]. Acc Chem Res, 2005, 38: 176-182.
    [100] Wang X L, Qin C, Wang E B, et al. Self-assembly of nanometer-scale[Cu24I10L12]14+ cages and ball-shaped Keggin clusters into a (4,12)-connected 3D framework with photoluminescent and electrochemical properties [J]. Angew Chem Int Ed, 2006, 45: 7411-7414.
    [101] Tao J, Zhang X M, Tong M L, et al. A novel polycatenated double-layered hybrid organic-inorganic material constructed from [Zn2(tp)(4,4-bpy)]n2n+ layers and V4O124– pillars [J]. J Chem Soc DaltonTrans, 2001, 770-771.
    [102] Liao J H, Juang J S, Lai Y C. Supermolecular architecture of a polypseudo-rotaxane: [Cd(BPE)(α-Mo8O26)][Cd(BPE)(DMF)4]·2DMF (BPE=1,2-Bis(4-pyridyl)ethane, DMF=N,N-dimethylformamide) [J]. Cryst Growth Des, 2006, 6: 354-356.
    [103] Shi Z Y, Gu X J, Peng J, et al. From molecular double-ladders to an unprecedented polycatenation:a parallel catenated 3D network containing bicapped Keggin polyoxometalate clusters [J]. Eur J Inorg Chem, 2006, 385-388.
    [104] Qu X S, Xu L, Gao G G, et al. Unprecedented eight-connected self-catenated network based on heterometallic{Cu4V4O12}clusters as nodes [J]. Inorg Chem, 2007, 46: 4775-4777.
    [105] Wang C L, Liu S X, Xie L H, et al. New 3D two-fold interpenetrating polyoxometallate compounds built up of dititanium-substituted Keggin polyoxotungstates and transitionmetals [J]. Polyhedron, 2007, 26: 3017-3022.
    [106] Wang X L, Qin C, Wang E B, et al. An unusual polyoxometalate-encapsulating 3D polyrotaxane framework formed by molecular squares threading on a twofold interpenetrated diamondoid skeleton [J]. Chem Commun, 2007, 4245-4247.
    [107] Qin C, Wang X L, Wang E B, et al. Catenation of loop-containing 2D layers with a 3D pcu skeleton into a new type of entangled framework having polyrotaxane and polycatenane character [J]. Inorg Chem, 2008, 47: 5555–5557.
    [108] Fan L L, Xiao D R, Wang E B, et al. An unprecedented fivefold interpenetrating network based on polyoxometalate building blocks [J]. Cryst Growth Des, 2007, 7: 592-594.
    [109] Zhang Z M, Li Y G, Wang E B, et al. Synthesis, characterization, and crystal structures of two novel high-nuclear nickel-substituted dimeric polyoxometalates [J]. Inorg Chem, 2006, 45: 4313-4315.
    [110] Zheng S T, Yuan D Q, Jia H P, et al. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: I. from isolated cluster to 1-D chain [J]. Chem Commun, 2007, 1858–1860.
    [111] Zhao J W, Zhang J, Zheng S T, et al. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: First (3,6)- connected framework constructed from sandwich-type polyoxometalate building blocks containing a novel {Cu8} cluster [J]. Chem Commun, 2007, 570-572.
    [112] Zhao J W, Wang C M, Zhang J, et al. Combination of lacunary polyoxometalatesand high-nuclear transition metal clusters under hydrothermal conditions: IX. A series of novel polyoxotungstates sandwiched by octa-copper clusters [J]. Chem Eur J, 2008, 14: 9223–9239.
    [113]游效增,孟庆金,韩万书。配位化学进展, 1.绪论,高等教育出版社, 2000, p9.
    [114] Müller A, Krickemeyer E, Rohlfing P R, et al. Template-controlled formation of cluster shells or a type of molecular recognition: Synthesis of [HV22O54(ClO4)]6- and [H2V18O44(N3)]5- [J]. Angew Chem Int Ed, 1991, 30: 1674-1677.
    [115] Sessler J L, Andrievsky A, Gale P A, et al. Feedback kalman-yakubovich lemma and its applications to adaptive control [J]. Angew Chem Int Ed Engl, 1996, 35: 2782-2785.
    [116]Yang X, Knobler C B, Hawthorne M F. [12]Mercuracarborand-4, the first representative of a new class of rigid macrocyclic electrophiles: The chloride ion complex of a charge-reversed analogue of [12]crown-4 [J]. Angew Chem Int Ed Engl, 1991, 30: 1507-1508.
    [117] Ishii Y, Takenaka Y, Konishi K. Porous organic–inorganic assemblies constructed from Keggin polyoxometalate anions and calix[4]arene–Na+ complexes: Structures and guest-sorption profiles [J]. Angew Chem Int Ed, 2004, 43: 2702–2705.
    [118] Li Y, Hao N, Wang E, Yuan M, et al. New high-dimensional networks based on polyoxometalate and crown ether building blocks [J]. Inorg Chem, 2003, 42: 2729-2735.
    [119] Shivaish V, Das S K. Inclusion of a Cu2+ ion by a large-cavity crown ether dibenzo-24-Crown-8 through supramolecular interactions [J]. Inorg Chem, 2005, 44: 7313-7315.
    [120] Tomoyuki A, Daigoro E, Shin-Ichiro N, et al. Directing organic–inorganic hybrid molecular-assemblies of polyoxometalate crown-ether complexes with supramolecular cations [J]. Coord Chem Rev, 2007, 251: 2547–2561.
    [1] (a) Prins L J, Huskens J, Jong F D, et al. Complete asymmetric induction of supramolecular chirality in a hydrogen-bonded assembly [J]. Nature, 1999, 398: 498-502. (b) Chin J, Lee S S, Lee K J, et al. A metal complex that binds-amino acids with high and predictable stereospecificity [J]. Nature, 1999, 401: 254-257.
    [2] (a) Bu X H, Liu H, Du M, et al. New mononuclear, cyclic tetranuclear, and 1-D helical-chain Cu(II) complexes formed by metal-assisted hydrolysis of 3,6-Di-2-pyridyl-1,2,4,5-tetrazine (DPTZ): crystal structures and magnetic properties [J]. Inorg Chem, 2002, 41: 1855-1861. (b) Wang X L, Qin C, Wang E B, et al. Interlocked and interdigitated architectures from self-assembly of long flexible ligands and cadmium salts [J]. Angew Chem Int Ed, 2004, 43: 5036-5040. (c) Cui Y, Ngo H L, White P S, et al. Homochiral 3D lanthanide coordination networks with an unprecedented 4966 topology [J]. Chem Commun, 2002, 1666-1667.
    [3] (a) Chen X M, Liu G F. Double-stranded helices and molecular zippers assembled from single-stranded coordination polymers directed by supramolecular interactions [J]. Chem Eur J, 2002, 8: 4811-4817. (b) Xiong R G, You X Z, Abrahams B F, et al. Enantioseparation of racemic organic molecules by a zeolite analogue [J]. Angew Chem Int Ed, 2001, 40: 4422-4425.
    [4] (a) Pope M T. Heteropoly and Isopoly Oxometalates, Springer, Berlin, 1983. (b) Hill C L. Introduction: polyoxometalates multicomponent molecular vehicles to probe fundamental issues and practical problems [J]. Chem Rev, 1998, 98: 1-2. (c) Fukaya K, Yamase T. Alkali-metal-controlled self-assembly of crown-shaped ring complexes of Lanthanide/[-AsW9O33]9-: [K{Eu(H2O)2(-AsW9O33)}6]35- and [Cs{Eu(H2O)2(AsW9O33)}4]23- [J]. Angew Chem Int Ed, 2003, 42: 654-657. (d) Wu C D, Lu C Z, Zhuang H H, et al. Hydrothermal assembly of a novel three-dimensional framework formed by [GdMo12O42]9- anions and nine coordinated GdIII cations [J]. J Am Chem Soc, 2002, 124: 3836-3837. (e) Khan M I, Yohannes E, Doedens R J. [M3V18O42(H2O)12(XO4)]24·H2O (M=Fe, Co; X=V, S): Metal oxide based framework materials composed of polyoxovanadate clusters [J]. Angew Chem Int Ed, 1999, 38: 1292-1294. (f) Hagrman P J, Hagrman D, Zubieta J. Organic-inorganic hybrid materials: From simple coordination polymers to organodiamine-templated molybdenum oxides [J]. Angew Chem Int Ed, 1999, 38: 2638-2684. (g) Burkholder E, Zubieta J. Solid state coordination chemistry. Construction of 2D networks and 3D frameworks from phosphomolybdate clusters and binuclear Cu(II) complexes. The syntheses and structures of [{Cu2(tpypyz)(H2O)2}(Mo5O15)(HOPO3)2].nH2O [n = 2, 3; tpypyz = tetra(2-pyridyl)pyrazine] [J]. Chem Commun, 2001, 2056-2057.
    [5] (a) Müller A, Shah S Q N, B?gge H, et al. Molecular growth from a Mo176 to a Mo248 cluster [J]. Nature, 1999, 397: 48-50. (b) K?gerler P, Cronin L. Polyoxometalate nanostructures, superclusters, and colloids: from functional clusters to chemical aesthetics [J]. Angew Chem Int Ed, 2005, 44: 844-846. (c) Xu L, Lu M, Xu B B, et al. Towards main-chain-polyoxometalate-containing hybrid polymers: A highly efficient approach to bifunctionalized organoimido derivatives of hexamolybdates [J]. Angew Chem Int Ed, 2002, 41: 4129-4132.
    [6] (a) Müller A, Peters F, Pope M T, et al. Polyoxometalates: very large clusters nanoscale magnets [J]. Chem Rev, 1998, 239-271. (b) Judd D A J, Nettles H, Nevins N, et al. Polyoxometalate HIV-1 protease inhibitors. A new mode of protease inhibition [J]. J Am Chem Soc, 2001, 123: 886-897.
    [7] (a) Sullens T A, Jensen R A, Shvareva T Y, et al. Cation?cation interactions between uranyl cations in a polar open-framework uranyl periodate [J]. J Am Chem Soc, 2004, 126: 2676-2677. (b) Bareyt S, Piligkos S, Hasenknopf B, et al. Highly efficient peptide bond formation to functionalized Wells-Dawson-type polyoxotungstates [J]. Angew Chem Int Ed, 2003, 42: 3404-3406. (c) Sadakane M, Dickman M H, Pope M T. Chiral polyoxotungstates. 1. stereoselective interaction of amino acids with enantiomers of [CeIII(α1-P2W17O61)(H2O)x]7-. The structure of DL-[Ce2(H2O)8(P2W17O61)2]14- [J]. Inorg Chem, 2001, 40: 2715-2719. (d) Alizadeh M H, Holman K T, Mirzaei M, et al. Triprolinium 12-phosphomolybdate: synthesis, crystal structure and properties of [C5H10NO2]3[PMo12O40].4.5H2O [J]. Polyhedron, 2006, 25: 1567-1570. (e) Zheng S T, Zhang J, Xu J Q, et al. Hybrid inorganic–organic 1-D and 2-D frameworks {As8V14O42} clusters as building blocks [J]. J Solid State Chem, 2005, 178: 3740-3746. (f) Zheng S T, Zhang J, Yang G Y, New solids from old cluster: Syntheses and structural characterizationof [Zn(2,2’-bpy)3]2[As8V14O42(H2O)].4H2O and [Zn(2,2’-bpy)(dien)]2[As8V14O42(H2O)].2H2O [J]. J Mol Struct, 2005, 752: 25-31.
    [8] (a) Xin F B, Pope M T. Lone-pair-induced chirality in polyoxotungstate structures: Tin(II) derivatives of A-Type XW9O34n- (X = P, Si). Interaction with amino acids [J]. J Am Chem Soc, 1996, 118: 7731-7736. (b) Inoue M, Yamase T. Synthesis and crystal structures of γ-Type octamolybdates coordinated by chiral lysines [J]. Bull Chem Soc Jpn, 1995, 68: 3055-3063. (c) Inoue M, Yamase T. Crystal structure of the pentamolybdate complex coordinated by adenosine-5’-monophosphoric acid [J]. Bull Chem Soc Jpn, 1996, 69: 2863-2868. (d) Long D L, K?gerler P, Farrugia L J, et al. Linking chiral clusters with molybdate building blocks: From homochiral helical supramolecular arrays to coordination helices [J]. Chem Asian J, 2006, 1: 352-357. (e) Long D L, Burkholder E, Cronin L. Polyoxometalate clusters, nanostructures and materials: From self assembly to designer materials and devices [J]. Chem Soc Rev, 2007, 36: 105-121. (f) Streb C, Long D L, Cronin L. Engineering porosity in a chiral heteropolyoxometalate-based framework: the supramolecular effect of benzenetricarboxylic acid [J]. Chem Commun, 2007, 471-473. (g) Kortz U, Savelieff M G, Ghali F Y A, et al. Heteropolymolybdates of AsIII, SbIII, BiIII, SeIV, and TeIV functionalized by amino acids [J]. Angew Chem Int Ed, 2002, 41: 4070-4073. (h) Fang X K, Anderson T M, Hill C L. Enantiomerically pure polytungstates: Chirality transfer through zirconium coordination centers to nanosized inorganic clusters [J]. Angew Chem Int Ed, 2005, 44: 3540-3544. (i) Fang X K, Anderson T M, Hou Y, et al. Stereoisomerism in polyoxometalates: Structural and spectroscopic studies of bis(malate)-functionalized cluster systems [J]. Chem Commun, 2005, 5044-5046.
    [9] An H Y, Wang E B, Xiao D R, et al. Chiral 3D architectures with helical channels constructed from polyoxometalate clusters and copper-amino acid complexes [J]. Angew Chem Int Ed, 2006, 45: 904-908.
    [10] Tan H Q, Li Y G, Zhang Z M, et al. Chiral polyoxometalate-induced enantiomerically 3D architectures: A new route for synthesis of high-dimensional chiral compounds [J]. J Am Chem Soc, 2007, 129: 10066-10067.
    [11] (a) Bino A, Cohen S, Heitner-Wirguin C. Molecular structure of a mixed-valence isopolyvanadate [J]. Inorg Chem, 1982, 21: 429-431. (b) Hayashi Y, Miyakoshi N, Shinguchi T, et al. A stepwise growth of polyoxovanadate by reductive coupling reaction with organometallic palladium complex: Formation of [{(η3-C4H7)Pd}2V4O12]2?, [V10O26]4? and [V15O36(Cl)]4? [J]. Chem Lett, 2001: 170-171. (c) Li Y G, Lu Y, Luan G Y, et al. Hydrothermal syntheses and crystal structures of new cage-like mixed-valent polyoxovanadates [J]. Polyhedron, 2002, 2: 2601-2608.
    [12] (a) Carlucci L, Ciani G , Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry [J]. Coord Chem Rev, 2003, 246: 247-289. (b) Batten SR, Robson R. Interpenetrating nets: ordered, periodic entanglement [J]. Angew Chem Int Ed, 1998, 37: 1460-1494.
    [13] (a) Carlucci L, Ciani G, Proserpio D M. A new type of supramolecular entanglement in the silver(I) coordination polymer [Ag2(bpethy)5](BF4)2(bpethy = 1,2-bis(4-pyridyl)ethyne) [J]. Chem Commun, 1999, 449-450. (b) Du M, Jiang X J, Zhao X J. Direction of unusual mixed-ligand metal–organic frameworks: A new type of 3-D polythreading involving 1-D and 2-D structural motifs and a 2-fold interpenetrating porous network [J]. Chem Commun, 2005, 5521-5523. (c) Wang X L, Qin C, Wang E B, et al. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting [J]. Angew Chem Int Ed, 2005, 44: 5824-5827.
    [14] Peedikakkal A M P, Vittal J J. Molecular fabric structure formed by the 1D coordination polymer, [Pb(bpe)(O2CCH3)(O2CCF3)] [J]. Cryst Growth Des, 2008, 8: 375-377.
    [15] (a) Batten S R. Topology of interpenetration [J]. CrystEngComm, 2001, 67-72. (b) Blatov V A, Carlucci L, Ciani G, et al. Interpenetrating metal–organic and inorganic 3D networks: A computer-aided systematic investigation. Part I. Analysis of the Cambridge structural database [J]. CrystEngComm, 2004, 6: 378-395.
    [16] (a) Moulton B, Zaworotko M J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids [J]. Chem Rev, 2001, 101: 1629-1658. (b) Blake A J, Brooks N R, Champness N R, et al. Topological isomerism in coordination polymers [J]. Chem Commun, 2001, 1432-1433. (c) Barnett S A, Blake A J, Champness N R, et al. Structural isomerism in CuSCN coordination polymers [J]. Chem Commun, 2002, 1640-1641. (d) Huang X C, Zhang J P, Lin, Y Y, et al. Triple-stranded helices and zigzag chains of copper(I) 2-ethylimidazolate: solvent polarity-induced supramolecular isomerism [J]. Chem Commun, 2005, 2232-2234. (e) Shin D M, Lee I S, Cho D, et al. Three topological isomeric coordination polymer networks from the assembly of a rigid linear spacer and a square planar metal node: Structures, isomerism control, and solid-to-solid transformation [J]. Inorg Chem, 2003, 42: 7722-7724. (f) Chippindale A M, Cheyne S M, Hibble S J. Interpenetrating copper-silver cyanometallate networks: Polymorphs and topological isomers [J]. Angew Chem Int Ed, 2005, 44: 7942-7946. (g) Bi W H, Cao R, Sun D F, et al. Isomer separation, conformation control of flexible cyclohexanedicarboxylate ligand in cadmium complexes [J]. Chem Commun, 2004, 2104-2105. (h) Fromm K M, Doimeadios J L S, Robin A Y. Concomitant crystallization of two polymorphs - a ring and a helix: Concentration effect on supramolecular isomerism [J]. Chem Commun, 2005, 4548-4550.
    [17] Pasteur L. Ann Chim Phys, 1848, 24: 442-459.
    [18] (a) Gao E Q, Yue Y F, Bai S Q, et al. From achiral ligands to chiral coordination polymers: Spontaneous resolution, weak ferromagnetism, and topological ferrimagnetism[J]. J Am Chem Soc, 2004, 126: 1419-1429. (b) He C, Zhao Y G, Guo D, et al. Chirality transfer through helical motifs in coordination compounds [J]. Eur J Inorg Chem, 2007, 3451-3463. (c) Chen C Y, Cheng P Y, Wu H H, et al. Conformational effect of 2,6-Bis(imidazol-1-yl)pyridine on the self-assembly of 1D coordination chains: Spontaneous resolution, supramolecular isomerism, and structural transformation [J]. Inorg Chem, 2007, 46: 5691-5699.
    [1] (a) Blake A J, Brooks N R, Champness N R. Topological isomerism in coordination polymers [J]. Chem Commun, 2001, 1432-1433. (b) Barnett S A, Blake A J, Champness N R, et al. Structural isomerism in CuSCN coordination polymers [J]. Chem Commun, 2002, 1640-1641. (c) Huang X C, Zhang J P, Lin Y Y, et al. Triple-stranded helices and zigzag chains of copper(I) 2-ethylimidazolate: solvent polarity-induced supramolecular isomerism [J]. Chem Commun, 2005, 2232-2234. (d) Shin D M, Lee I S, Cho D, et al. Three topological isomeric coordination polymer networks from the assembly of a rigid linear spacer and a square planar metal node: Structures, isomerism control, and solid-to-solid transformation [J]. Inorg Chem, 2003, 42: 7722-7724. (e) Chippindale A M,Cheyne S M, Hibble S J. Interpenetrating copper-silver cyanometallate networks: Polymorphs and topological isomers [J]. Angew Chem Int Ed, 2005, 44: 7942-7946. (f) Bi W H, Cao R, Sun D F, et al. Isomer separation, conformation control of flexible cyclohexanedicarboxylate ligand in cadmium complexes [J]. Chem Commun, 2004, 2104-2105. (g) Fromm K M, Doimeadios J L S, Robin A Y. Concomitant crystallization of two polymorphs - a Ring and a helix: concentration effect on supramolecular isomerism [J]. Chem Commun, 2005, 4548-4550.
    [2] (a) Moulton B, Zaworotko M J. From molecules to crystal engineering: Supramolecular isomerism and polymorphism in network solids [J]. Chem Rev, 2001, 101: 1629-1658. (b) Zhang J P, Chen X M. Crystal engineering of binary metal imidazolate and triazolate frameworks [J]. Chem Commun, 2006, 1689-1699.
    [3] (a) Allis D G, Rarig R G Jr, Burkholder E, et al. A three-dimensional bimetallic oxide constructed from octamolybdate clusters and copper-ligand cation polymer subunits. a comment on the stability of the octamolybdate isomers [J]. J Mol Struct, 2004, 688: 11-31. (b) Bridgeman A J. The electronic structure and stability of the isomers of octamolybdate [J]. J Phys Chem A, 2002, 106: 12151-12160. (c) Allis D G, Burkholder E, Zubieta J. A new octamolybdate: Observation of the theta-isomer in [Fe(tpyprz)2]2[Mo8O26]·3.7H2O (tpyprz = tetra-2-pyridylpyrazine) [J]. Polyhedron, 2004, 23: 1145-1152. (d) Wu C D, Lu C Z, Zhuang H H, et al. Hybrid coordination polymer constructed from beta-octamolybdates linked by quinoxaline and its oxidized product benzimidazole coordinated to binuclear copper(I) fragments [J]. Inorg Chem, 2002, 41: 5636-5637. (e) Hagrman D, Zapf P J, Zubieta J. Two-dimensional network constructed from hexamolybdate, octamolybdate and [Cu3(4,7-phen)3]3+ clusters: [{Cu3(4,7-phen)3}2{Mo14O45}] [J]. Chem Commun, 1998, 1283-1284. (f) Xiao D R, Hou Y, Wang E B, et al. Hydrothermal synthesis and characterization of an unprecedented eta-type octamolybdate: [{Ni(phen)2}2(Mo8O26)] [J]. Inorg Chim Acta, 2004, 357: 2525-2531. (g) Rarig R S, Zubieta J. Hydrothermal synthesis and structural characterization of an organic-inorganic hybrid material: (H2tptz)2[delta-Mo8O26]·2H2O (tptz=2,4,6-tripyridyltriazine) [J]. Inorg Chim Acta, 2001, 312: 188-196.
    [4] (a) Chen X M, Tong M L. Solvothermal in situ metal/ligand reactions: a new bridge between coordination chemistry and organic synthetic chemistry [J]. Acc Chem Res, 2007, 40: 162-170. (b) Zhang J P, Zheng S L, Huang X C, et al. Two unprecedented 3-connected three-dimensional networks of copper(I) triazolates: In situ formation of ligands by cycloaddition of nitriles and ammonia [J]. Angew Chem Int Ed, 2004, 43: 206-209. (c) Zhang J P, Lin Y Y, Huang X C, et al. Copper(I) 1,2,4-triazolates and related complexes: studies of the solvothermal ligand reactions, network topologies, and photoluminescence properties [J]. J Am Chem Soc, 2005, 127: 5495-5506.
    [5] Huang X C, Zhang J P, Lin YY, et al. Two mixed-valence copper(I,II) imidazolate coordination polymers: Metal-valence tuning approach for new topological structures [J]. Chem Commun, 2004, 1100-1101.
    [6] (a) Shi Z Y, Gu X J, Peng J, et al. From molecular double-ladders to an unprecedented polycatenation: A parallel catenated 3D network containing bicapped Keggin polyoxometalate clusters [J]. Eur J Inorg Chem, 2006, 385-388. (b) Shi Z Y, Peng J, Gómez-García, C J, et al. Influence of metal ions on the structures of Keggin polyoxometalate-based solids: Hydrothermal syntheses, crystal structures and magnetic properties [J]. J Solid State Chem, 2006, 179: 253-265. (c) Pavani K, Ramanan A. Influence of 2-aminopyridine on the formation of molybdates under hydrothermal conditions [J]. Eur J Inorg Chem, 2005, 3080-3087. (d) Pavani K, Lofland S E, Ramanujachary K V, et al. The hydrothermal synthesis of transition metal complex templated octamolybdates [J]. Eur J Inorg Chem, 2007, 568-578.
    [7] (a) Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry [J]. Coord Chem Rev, 2003, 246: 247-289. (b) Batten S R, Robson R. Interpenetrating nets: Ordered, periodic entanglement [J]. Angew Chem Int Ed, 1998, 37: 1460-1494. (c) Carlucci L, Ciani G, Proserpio D M. Borromean links and other non-conventional links in 'polycatenated' coordination polymers: re-examination of some puzzling networks [J]. CrystEngComm, 2003, 5: 269-279. (d) Bu X H, Tong M L, Chang H C, et al. A neutral 3D copper coordination polymer showing 1D open channels and the first interpenetrating NbO-type network [J]. Angew Chem Int Ed, 2004, 43: 192-195. (e) Liang K, Zheng H, Song Y, et al. Self-assembly of interpenetrating coordination nets formed from Interpenetrating cationic and anionic three-dimensional diamondoid cluster coordination polymers [J]. Angew Chem Int Ed, 2004, 43: 5776-5779. (f) Wang X L, Qin C, Wang E B, et al. Entangled coordination networks with inherent features of polycatenation, polythreading, and polyknotting [J]. Angew Chem Int Ed, 2005, 44: 5824-5827.
    [8] (a) Wang X L, Qin C, Wang E B, et al. An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks [J]. Chem Commun, 2005, 4789-4791. (b) Wang X L, Qin C, Wang E B, et al. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes [J]. Chem Eur J, 2006, 12: 2680-2691. (c) Carlucci L, Ciani G, Proserpio D M, et al. Open network architectures from the self-assembly of AgNO3 and 5,10,15,20-tetra(4pyridyl)porphyrin H2tpyp building blocks: The exceptional self-penetrating topology of the 3D network of [Ag8ZnIItpyp7(H2O)2](NO3)8 [J]. Angew Chem Int Ed, 2003, 42: 315-317. (d) Li X, Cao R, Sun D F, et al. A novel 3-D self-penetrating topological network assembled by mixed bridging ligands [J]. Eur J InorgChem, 2004, 2228-2231. (e) Lan Y Q, Li S L, Wang X L,et al. An unprecedented (6,8)-connected self-penetrating network based on two distinct zinc clusters [J]. Chem Commun, 2007, 4863-4865. (f) Zhang J, Yao Y G, Bu X H. Comparative study of homochiral and racemic chiral metal-organic frameworks built from camphoric acid [J]. Chem Mater, 2007, 19: 5083-5089. (g) Qu X S, Xu L, Gao G G, et al. Unprecedented eight-connected self-catenated network based on heterometallic {Cu4V4O12} clusters as nodes [J]. Inorg Chem, 2007, 46: 4775-4777.
    [9] Allis D G, Rarig R G Jr, Burkholder E, et al. A three-dimensional bimetallic oxide constructed from octamolybdate clusters and copper-ligand cation polymer subunits. A comment on the stability of the octamolybdate isomers [J]. J Mol Struct, 2004, 688: 11-31.
    [10] Sun C Y, Wang E B, Xiao D R, et al. The first example of a structure containing both alpha- and beta-octamolybdates: Synthesis and structure of a new three-dimensional supramolecular network [Co(2,2'-bipy)3]4[Mo8O26]2·5H2O (2,2'-bipy=2,2'-bipyridine) [J]. J Mol Struct, 2005, 741: 149-153.
    [11] Rarig R S, Zubieta J. Hydrothermal synthesis and structural characterization of an organic-inorganic hybrid material: (H2tptz)2[delta-Mo8O26]·2H2O (tptz=2,4,6-tripyridyltriazine) [J]. Inorg Chim Acta, 2001, 312: 188-196.
    [12] (a) Bondi A. van der Waals Volumes and Radii [J]. J Phys Chem, 1964, 68: 441-451. (b) Zhang X M, Hao Z M, Wu H S. Cuprophilicity-induced cocrystallization of [Cu-2(4,4'-bpy)(CN)2]n sheets and [Cu(SCN)](n) chains into a 3-D pseudopolyrotaxane [J]. Inorg Chem, 2005, 44: 7301-7303.
    [13] Liao J H, Juang J S, Lai Y C. Supermolecular architecture of a polypseudo-rotaxane: [Cd(BPE)(alpha-Mo8O26)][Cd(BPE)(DMF)4]·2DMF (BPE=1,2-bis(4-pyridyl)ethane, DMF = N,N-dimethylformamide) [J]. Cryst Growth Des, 2006, 6: 354-356.
    [14] (a) Li S L, Lan Y Q, Ma J F, et al. Syntheses and structures of organic-inorganic hybrid compounds based on metal-fluconazole coordination polymers and the beta-Mo8O26 anion [J]. Inorg Chem, 2007, 46: 8283-8290. (b) Ramanan A, Whittingham M S. How molecules turn into solids: the case of self-assembled metal-organic frameworks [J]. Cryst Growth Des, 2006, 6: 2419-2421.
    [15] Luo J H, Hong M C, Wang R H, et al. A novel 1D ladder-like organic-inorganic hybrid compound [(Cu(biz)2]2[{Cu(biz)2}2Mo8O26] (biz = benzimidazole) [J]. Inorg Chem Commun, 2003, 6: 702-705.
    [1] (a) Hagrman D, Hagrman P J, Zubieta J. Solid-state coordination chemistry: The self-assembly of microporous organic-inorganic hybrid frameworks constructed from tetrapyridylporphyrin and bimetallic oxide chains or oxide clusters [J]. Angew Chem Int Ed, 1999, 38: 3165-3168. (b) Hagrman D, Zubieta C, Rose D J, et al. Composite solids constructed from one-dimensional coordination polymer matrices and molybdenum oxide subunits: Polyoxomolybdate clusters within [{Cu(4,4’-bpy)}4Mo8O26] and [{Ni(H2O)2(4,4’-bpy)2}2Mo8O26] and one-dimensional oxide chains in [{Cu(4,4’-bpy)}4Mo15O47]·8H2O [J]. Angew Chem Int Ed Engl, 1997, 36: 873-876. (c) Streb C, Ritchie C, Long D L, et al. Modular assembly of a functional polyoxometalate-based open framework constructed from unsupported AgI···AgI Interactions [J]. Angew Chem Int Ed, 2007, 46: 7579-7582. (d)Inman C, Knaust J M, Keller S, W. A polyoxometallate-templated coordination polymer: Synthesis and crystal structure of [Cu3(4,4'-bipy)5(MeCN)2]PW12O40·2C6H5CN [J]. Chem Commun, 2002, 156-157.
    [2] (a) Bu W M, Ye L, Yang G Y, et al. One- and two-dimensional framework materials constructed from the mixed Mo/V tetra-capped Keggin structure clusters and M(en)2 (M=Ni, Cu) complexes groups [J]. Inorg Chem Commun, 2001, 4: 1-4. (b) Liu C M, Zhang D Q, Xu C Y, et al. Two novel windmill-like tetrasupporting heteropolyoxometalates: [MoVI7MoVVIV8O40(PO4)][M(phen)2(OH)]2[M(phen)2(OEt)]2 (M=Co, Ni), Solid State Sci [J]. 2004, 6: 689-696. (c) Chen J, Lu S F, Yu R M, et al. A novel compound with an interpenetrating 2D network structure constructed by [Mo5P2O23] and Ni–4,4’-bipyridine components: its synthesis, characterization and magnetic behaviour [J]. Chem Commun, 2002, 2640-2641. (d) Wu C D, Lu C Z, Lin X, et al. Two newβ-octamolybdate supported rare earth metal complexes: [NH4]2[{Gd(DMF)7}2(β-Mo8O26)][β-Mo8O26] and [NH4][La(DMF)7(β-Mo8O26)] [J]. Inorg Chem Commun, 2002, 5: 664-666. (e) Liu C M, Zhang D Q, Xiong M, et al. A novel two-dimensional mixed molybdenum–vanadium polyoxometalate with two types of cobalt(II) complex fragments as bridges [J]. Chem Commun, 2002, 1416-1417. (f) Lin B Z, Liu S X. First hexadecavanadate compound: Hydrothermal synthesis and characterization of a three-dimensional framework [{Cu(1,2-pn)2}7{V16O38(H2O)}2]·4H2O [J]. Chem Commun, 2002, 2126-2127. (g) Uchida S, Mizuno N. Zeotype ionic crystal of Cs5[Cr3O(OOCH)6(H2O)3][α-CoW12O40]·7.5H2O with shape-selective adsorption of water [J]. J Am Chem Soc, 2004, 126: 1602-1603. (h) Zhang X M, Tong M L, Feng S H, et al. The unique dual role of zinc atoms in a mixed zinc–vanadium phosphate [Zn(phen)Zn(VO)(PO4)2] [J]. J Chem Soc Dalton Trans, 2001, 2069-2070. (i) Lu C Z, Wu C D, Zhuang H H, et al. Three polymeric frameworks constructed from discrete molybdenum oxide anions and 4,4’-bpy-bridged linear polymeric copper cations [J]. Chem Mater, 2002, 14: 2649-2655. (j) Zheng L M, Wang Y, Wang X Q, et al. Anion-directed crystallization of coordination polymers: Syntheses and characterization of Cu4(2-pzc)4(H2O)8(Mo8O26)·2H2O and Cu3(2-pzc)4(H2O)2(V10O28H4)·6.5H2O (2-pzc = 2-Pyrazinecarboxylate) [J]. Inorg Chem, 2001, 40: 1380-1385. (k) Kawamoto R, Uchida S, Mizuno N. Amphiphilic guest sorption of K2[Cr3O(OOCC2H5)6(H2O)3]2[α-SiW12O40] ionic crystal [J]. J Am Chem Soc, 2005, 127: 10560-10567.
    [3] Chen Q, Hill C L. A bivanadyl capped, highly reduced Keggin polyanion, [PMoV6MoVI6O40-(VIVO)2]5- [J]. Inorg Chem, 1996, 35: 2403-2405.
    [4] Xu Y, Zhu H G, Cai H, et al. [MoV2MoVI6VIV8O40(PO4)]5-: The first polyanion with a tetracapped Keggin structure [J]. Chem Commun, 1999, 787-788.
    [5] Xu Y, Zhu D R, Guo Z J, et al. Cation-induced assembly of the first mixed molybdenum–vanadium hexadecametal host shell cluster anions [J]. J Chem Soc Dalton Trans, 2001, 772-773.
    [6] Yang W B, Lu C Z, Zhan X P, et al. Hydrothermal synthesis of the first vanadomo-lybdenum polyoxocation with a“metal-bonded”spherical framework [J]. Inorg Chem, 2002, 41: 4621-4623.
    [7] Li Y G, Wang E B, Wang S T, et al. A highly reduced polyoxoanion with phosphorus-centered alternate layers of Mo/V oxides, [PMoV2MoVI6VIV4O40(VIVO)2]9- [J]. J Mol Struct, 2002, 611: 185-191.
    [8] Yuan M, Li Y G, Wang E B, et al. Modified polyoxometalates: Hydrothermal syntheses and crystal structures of three novel reduced and capped Keggin derivatives decorated by transition metal complexes [J]. Inorg Chem, 2003, 42: 3670-3676.
    [9] Xu Y, Xu J Q, Zhang K L, et al. Keggin unit supported transition metal complexes: Hydrothermal synthesis and characterization of [Ni(2,2-bipy)3]1.5[PW12O40Ni(2,2-bipy)2(H2O)]·0.5H2O and [Co(1,10-phen)3]1.5[PMo12O40Co(1,10-phen)2(H2O)]·0.5H2O [J]. Chem Commun, 2000, 153-154.
    [10] Liu C M, Zhang D Q, Zhu D B. Mixed molybdenum-vanadium polyoxoanion-bridged trimetallic nanocluster complexes: Hydrothermal syntheses and crystal structures of {MoVI6MoV2VIV8O40(PO4)[Co(phen)2(H2O)]2}[Co2(phen)2(OH)2(H2O)4]0.5 and {MoVI5MoV3VIV8O40(PO4)[Co(phen)(en)(H2O)]2}[Co(phen)3]·1.5H2O [J]. Cryst Growth Des, 2003, 3: 363-368.
    [11] Reinoso S, Vitoria P, Lezama L, et al. A novel organic-inorganic hybrid based on a dinuclear copper complex supported on a Keggin polyoxometalate [J]. Inorg Chem, 2003, 42: 3709-3711.
    [12] Luan G Y, Li Y G, Wang S T, et al. A newα-Keggin type polyoxometalate coordinated to four silver-complex moieties: {PW9V3O40[Ag(2,2’-bipy)]2[Ag2(2,2’-bipy)3]2} [J]. J Chem Soc Dalton Trans, 2003, 233–235.
    [13] (a) Chen W, Yuan H M, Wang J Y, et al. Synthesis, structure, and photoelectronic effects of a uranium?zinc?organic coordination polymer containing infinite metal oxide sheets [J]. J Am Chem Soc, 2003, 125: 9266-9267. (b) Majumder A, Shit S, Choudhury C R, et al. Synthesis, structure and fluorescence of two novel manganese(II) and zinc(II)-1,3,5-benzene tricarboxylate coordination polymers: Extended 3D supramolecular architectures stabilised by hydrogen bonding [J]. Inorg Chim Acta, 2005, 358: 3855-3864. (c) Ganesan S V, Natarajan S. Synthesis and structures of new pyromellitate coordination polymers with piperazine as a ligand [J]. Inorg Chem, 2004, 43: 198-205. (d) Zhang J P, Lin Y Y, Huang X C, et al. Designed assembly and structures and photoluminescence of a new class of discrete ZnII complexes of 1H-1,10-phenanthroline-2-one [J]. Eur J Inorg Chem, 2006, 3407-3412. (e) Sun D F, Cao R, Liang Y C, et al. Hydrothermal syntheses, structures and properties of terephthalate-bridged polymeric complexes with zig-zag chain and channel structures [J]. J Chem Soc Dalton Trans, 2001, 2335-2340. (f) Bourne S A, Lu J J, Moulton B, et al. Coexisting covalent and noncovalent nets: Parallel interpenetration of a puckered rectangular coordination polymer and aromatic noncovalent nets [J]. Chem Commun, 2001, 861-862.
    [14] (a) Chen C L, Goforth A M, Smith M D, et al. Non-interpenetrated square-grid coordination polymers synthesized using an extremely long N,N’-type ligand [J]. Inorg Chem, 2005, 44: 8762-8769. (b) Wei K J, Xie Y S, Ni J, et, al. Syntheses, crystal structures, and photoluminescent properties of a series of M(II) coordination polymers containing M?X2?M bridges: From 1-D chains to 2-D networks [J]. Cryst Growth Des, 2006, 6, 1341-1350.
    [15] Li S L, Lan Y Q, Ma J F, et al. Syntheses and structures of organic?inorganic hybrid compounds based on metal?fluconazole coordination polymers and theβ-Mo8O26 anion [J]. Inorg Chem, 2007, 46: 8283-8290.
    [16] Pan C L, Xu J Q, Sun Y, et al. First transition metal coordination compound supported on metal-oxygen cluster with bicapped quasi-Keggin structure: [Cu(en)2(H2O)]4[Cu(en)2]3.5 [(PMo8V6O42Cu)VVIOIV(en)(1, 10’-phen)]3 center dot 14H2O [J]. Inorg Chem Commun, 2003, 6: 233-237.
    [17] Yuan M, Li Y G, Wang E B, et al. Modified polyoxometalates: Hydrothermal syntheses and crystal structures of three novel reduced and capped Keggin derivatives decorated by transition metal complexes [J]. Inorg Chem, 2003, 42: 3670-3676.
    [18] Li Y G, Wang E B, Wang S T, et al. A highly reduced polyoxoanion with phosphorus-centered alternate layers of Mo/V oxides, [(PMo2Mo6V4O40)MoVVVIOIV((VO)OIV)2]9- [J]. J Mol Struct, 2002, 611: 185-191.
    [19] (a) Friedrichs O D, O’Keeffe M, Yaghi O M. Three-periodic nets and tilings: Regular and quasiregular nets [J]. Acta Crystallogr Sect A, 2003, 59: 22-27. (b) Ockwig N W, Delgado-Friedrichs O, O’Keeffe M, et al. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks [J]. Acc Chem Res, 2005, 38: 176-182.
    [20] Hill R J, Long D L, Champness N R, et al. New approaches to the analysis of high connectivity materials: Design frameworks based upon 4(4)- and 6(3)-subnet tectons [J]. Acc Chem Res, 2005, 38: 335-348.
    [21] Blatov V A, Peskov M V. A comparative crystallochemical analysis of binary compounds and simple anhydrous salts containing pyramidal anions LO3 (L = S, Se, Te, Cl, Br, I) [J]. Acta Crystallogr Sect B Struct Sci, 2006, 62: 457-466.
    [22] (a) Chun H, Kim D, Dybtsev D N, et al. Metal-organic replica of fluorite built with an eight-connecting tetranuclear cadmium cluster and a tetrahedral four-connecting ligand [J]. Angew Chem Int Ed, 2004, 43: 971-974. (b) Zou R Q, Zhong R Q, Du M, et al. Highly-thermostable metal-organic frameworks (MOFs) of zinc and cadmium 4,4'-(hexafluoroisopropylidene)diphthalates with a unique fluorite topology [J]. Chem Commun, 2007, 2467-2469.
    [23] (a) Borel C, Hakansson M, Ohrstrom L. Coordination bonds and strong hydrogen bonds giving a framework material based on a 4-and 8-connected net in [Ca[Co(en)(oxalato)2]2]n [J]. CrystEngComm, 2006, 8: 666-669. (b) Sra A K, Rombaut G, Lahitete F, et al. Hepta/octa cyanomolybdates with Fe2+: Influence of the valence state of Mo on the magnetic behavior [J]. New J Chem, 2000, 24: 871-876.
    [24] Reinoso S, Vitoria P, Gutiérrez-Zorrilla J M, et al. Inorganic?metalorganic hybrids based on copper(II)-monosubstituted Keggin polyanions and dinuclear copper(II)?oxalate complexes. synthesis, X-ray structural characterization, and magnetic properties [J]. Inorg Chem, 2005, 44: 9731-9742.
    [25] Li S L, Lan Y Q, Ma J F, et al. Inorganic-organic hybrid materials with different dimensions constructed from copper-fluconazole metal-organic units and Keggin polyanion clusters [J]. DaltonTrans, 2008, 2015-2025.
    [26] (a) Chen X M, Tong M L. Solvothermal in situ metal/ligand reactions: A new bridge between coordination chemistry and organic synthetic chemistry [J]. Acc Chem Res, 2007, 40: 162-170. (b) Zhang J P, Chen X M. Crystal engineering of binary metal imidazolate and triazolate frameworks [J]. Chem Commun, 2006, 1689-1699.
    [27] (a) Nlate S, Plault L, Astruc D. Synthesis of 9-and 27-armed tetrakis (diperoxotungsto)phosphate-cored dendrimers and their use as recoverable and reusable catalysts in the oxidation of alkenes, sulfides, and alcohols with hydrogen peroxide [J]. Chem Eur J, 2006, 12: 903-914. (b) Plault L, Hauseler A, Nlate S, et al. Synthesis of dendritic polyoxometalate complexes assembled by ionic bonding and their function as recoverable and reusable oxidation catalysts [J]. Angew Chem Int Ed, 2004, 43: 2924-2928. (c) Guo Y H, Wang Y H, Hu C W, et al. Microporous polyoxometalates POMs/SiO2: Synthesis and photocatalytic degradation of aqueous organocholorine pesticides [J]. Chem Mater, 2000, 12: 3501-3508.
    [1] Champness N R, Schr?der M. Extended networks formed by coordination polymers in the solid state [J]. Current Opinion in Solid State & Materials Science, 1998, 3: 419-424.
    [2] (a) Hoskins B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments [J]. J Am Chem Soc, 1989, 111: 5962-5964. (b) Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4',4'',4'''-tetracyanotetraphenylmethane]BF4.xC6H5NO2 [J]. J Am Chem Soc, 1990, 112: 1546-1554. (c) Fujita M, Kwon Y J. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium(II) and 4,4'-Bipyridine [J]. J Am Chem Soc, 1994, 116, 1151-1152. (d) Gardner G B, Venkataraman D, Moore J S, et al. Spontaneous assembly of a hinged coordination network [J]. Nature, 1995, 374: 792-795.
    [3] (a) Yaghi O M, Li G, Li H. Selective binding and removal of guests in a microporous metal-organic framework [J]. Nature, 1995, 378: 703-706. (b) Serre C, Millange F, SurbléS, et al. A route to the synthesis of trivalent transition-metal porous carboxylates with trimeric secondary building units [J]. Angew Chem Int Ed, 2004, 43: 6285-6289. (c) Dziobkowski C T, Wrobleski T J, Brown D B. Magnetic properties and Moessbauer spectra of several iron(III)-dicarboxylic acid complexes [J]. Inorg Chem, 1980, 20: 671-678. (d) Cannon R D, White R P, Chemical and physical properties of trinuclear bridged metal complexes [M]. London, 1987, Vol. 36.
    [4] (a) Mellot-Draznieks C, Dutour J, Férey G. Hybrid organic-inorganic frameworks: Routes for computational design and structure prediction [J]. Angew Chem Int Ed, 2004, 43: 6290-6296. (b) Mellot-Draznieks C, Férey G, Sch?n C, et al. Computational design and prediction of interesting not-yet-synthesized structures of inorganic materials by using building unit concepts [J]. Chem Eur J, 2002, 8: 4102-4113. (c) Mellot-Draznieks C, Newsam J M, Gorman A M, et al. De novo prediction of inorganic structures developed through automated assembly of secondary building units (AASBU Method) [J]. Angew Chem Int Ed, 2000, 39: 2270-2275. (d) Mellot-Draznieks C, Girard S, Férey G. Novel inorganic frameworks constructed from double-four-ring (D4R) units: Computational design, structures, and lattice energies of silicate, aluminophosphate, and gallophosphate candidates [J]. J Am Chem Soc, 2002, 124: 15326-15335.
    [5] Férey G, Serre C, Mellot-Draznieks C, et al. A hybrid solid with giant pores prepared by a combination of targeted chemistry, simulation, and powder diffraction [J]. Angew Chem Int Ed, 2004, 43: 6296-6031.
    [6] (a) Gable R W, Hoskins B F, Robson R. A new type of interpenetration involving enmeshed independent square grid sheets. The structure of diaquabis-(4,4’-bipyridine)zinc hexafluorosilicate [J]. J Chem Soc Chem Commun, 1990, 1677-1678. (b) MacDonald J C, Dorrestein P C, Pilley M M, et al. Design of layered crystalline materials using coordination chemistry and hydrogen bonds [J]. J Am Chem Soc, 2000, 122: 11692-11702. (c) Zheng S L, Yang J H, Yu X L, et al. Syntheses, structures, photoluminescence, and theoretical studies of d10 metal complexes of 2,2’-Dihydroxy-[1,1’]binaphthalenyl-3,3’-dicarboxylate [J]. Inorg Chem, 2004, 43: 830-838.
    [7] (a) Hoskins B F, Robson R, Slizys D A. A hexaimidazole ligand binding six octahedral metal ions to give an infinite 3D -Po-like network through which two independent 2D hydrogen-bonded networks interweave [J]. Angew Chem Int Ed Engl, 1997, 36, 2752-2755. (b) Lu J Y, Babb A M. An unprecedented interpenetrating structure with two covalently bonded open-frameworks of different dimensionality [J]. Chem Commun, 2001, 821-822. (c) Shin D M, Lee I S, Chung Y K, et al. Coordination polymers based on square planar Co(II) node and linear spacer: Solvent-dependent pseudo-polymorphism and an unprecedented interpenetrating structure containing both 2D and 3D topological isomers [J]. Chem Commun, 2003, 1036-1037.
    [8] Hill R J, Long D L, Champness N R, et al. New approaches to the analysis of high connectivity materials: Design frameworks based upon 44- and 63-subnet tectons [J]. Acc Chem Res, 2005, 38: 335-348.
    [9] (a) Ockwig N W, Delgado-Friedrichs O, O’Keeffe M, et al. Reticular chemistry: Occurrence and taxonomy of nets and grammar for the design of frameworks [J]. Acc Chem Res, 2005, 38: 176-182. (b) Zhang J, Kang Y, Zhang J, et al. Syntheses, structures and characterisation of two CuII polymers with 8-connected topologies based on highly connected SBUs [J]. Eur J Inorg Chem, 2006, 2253-2258. (c) Friedrichs O D, O’Keeffe M, Yaghi O. M. Three-periodic nets and tilings: regular and quasiregular nets [J]. Acta Crystallogr Sect A, 2003, 59: 22-27.
    [10] Friedrichs O D, O’Keeffe M, Yaghi O. M. Three-periodic nets and tilings: edge-transitive binodal structures [J]. Acta Crystallogr Sect A, 2006, 62: 350-355.
    [11] (a) Yang S Y, Long L. S, Huang R B, et al. [Zn8(SiO4)(C8H4O4)6]n: The first born of a metallosilicate–organic hybrid material family (C8H4O4 = isophthalate) [J]. Chem Commun, 2002, 472-473. (b) Yang S Y, Long L. S, Huang R B, et al. An exceptionally stable metal?organic framework constructed from the Zn8(SiO4) Core [J]. Chem Mater, 2002, 14: 3229-3231. (c) Shi Z, Li G H, Wang L, et al. Two three-dimensional metal?organic frameworks from secondary Building Units of Zn8(OH)4(CO2)12 and Zn2((OH)(CO2)3: [Zn2(OH)(btc)]2(4,4’-bipy) and Zn2(OH)(btc)(pipe) [J]. Cryst Growth Des, 2004, 4: 25-27.
    [12] (a) Hardie M J, Raston C L, Salinas A. A 3,12-connected vertice sharing adamantoid hydrogen bonded network featuring tetrameric clusters of cyclotriveratrylene [J]. Chem Commun, 2001, 1850-1851. (b) Ahmad R, Hardie M J. Building cyclotriveratrylene host molecules into network structures [J]. CrystEngComm, 2002, 4: 227-231.
    [13] (a) Wang X L, Qin C, Wang E B, et al. An unprecedented eight-connected self-penetrating network based on pentanuclear zinc cluster building blocks [J]. Chem Commun, 2005, 4789-4791. (b) Qu X, Xu L, Gao G, et al. Unprecedented eight-connected self-catenated network based on heterometallic {Cu4V4O12} clusters as nodes [J]. Inorg Chem, 2007, 46: 4775-4777. (c) Yang E C, Zhao H K, Ding B, et al. Four novel three-dimensional triazole-based zinc(II) metal?organic frameworks controlled by the spacers of dicarboxylate ligands: Hydrothermal synthesis, crystal structure, and luminescence properties [J]. Cryst Growth Des, 2007, 7: 2009-2015. (d) Li Z G, Wang G H, Jia H Q, et al. Construction of coordination networks with high connectivity: a new 8-connected self-penetrating network based on tetranuclear metal clusters [J]. CrystEngComm, 2008, 983-985. (e) Wang X L, Qin C, Wang E B, et al. Metal nuclearity modulated four-, six-, and eight-connected entangled frameworks based on mono-, bi-, and trimetallic cores as nodes [J]. Chem Eur J, 2006, 12: 2680-2691.
    [14] Carlucci L, Ciani G, Macchi P, et al. Complex interwoven polymeric frames from the self-assembly of silver(I) cations and sebaconitrile [J]. Chem Eur J, 1999, 5: 237-243.
    [15] Son S U, Kim B Y, Choi C H, et al. Unusual flexibility of 2,5-bis(4-pyridylethynyl)thiophene self-assembled with Co(NCS)2 in a novel coordination polymer [J]. Chem Commun, 2003, 2528-2529.
    [16] Montney M R, Supkowskib R M, LaDuca R L. Five-fold interpenetrated strongly hydrogen bonded rhomboid grid layers constructed from the aggregation of neutral coordination complexes with long pendant aromatic dicarboxylate and organodiimine ligands [J]. CrystEngComm, 2008, 10: 111-116.
    [17] (a) Zheng S L, Zhang J P, Chen X M, et al. Syntheses, structures, photoluminescence, and theoretical studies of a novel class of d10 metal complexes of 1H-[1,10]phenanthrolin-2-one [J]. Chem Eur J, 2003, 9: 3888-3896. (b) Kang Y, Zhang J, Li Z J, et al. Syntheses, structures, and photoluminescent properties of four d10 metal-quinolinato coordination polymers with similar rod-like SBUs [J]. Inorg Chim Acta, 2006, 359: 2201-2209. (c) Guo Z, Cao R, Li X, et al. A Series of cadmium(II) coordination polymers synthesized at different pH values [J]. Eur J Inorg Chem, 2007, 742-748.
    [18] (a) Li S L, Lan Y Q, Ma J F, et al. Structures and luminescent properties of seven coordination polymers of zinc(II) and cadmium(II) with 3,3′,4,4′-benzophenone tetracarboxylate anion and bis(imidazole) [J]. Cryst Growth Des, 2008, 8: 675-684. (b) Li S L, Lan Y Q, Ma J F, et al. Structures and luminescent properties of a series of zinc(II) and cadmium(II) 4,4′-oxydiphthalate coordination polymers with various ligands based on bis(pyridyl imidazole) under hydrothermal conditions [J]. Cryst Growth Des, 2008, 8: 1610-1616.
    [19] (a) Fang Q R, Zhu G S, Jin Z, et al. A multifunctional metal-organic open framework with a bcu topology constructed from undecanuclear clusters [J]. Angew Chem Int Ed, 2006, 45: 6126-6130. (b) Fang Q R, Zhu G S, Xue M, et al. Microporous metal-organic framework constructed from heptanuclear zinc carboxylate secondary building units [J]. Chem Eur J, 2006, 12: 3754-3758. (c) Fang Q R, Zhu G S, Jin Z, et al. A novel metal?organic framework with the diamondoid topology constructed from pentanuclear zinc?carboxylate clusters [J]. Cryst Growth Des, 2007, 7: 1035-1037.
    [20] Dittrich T, Duzhko V, Koch F, et al. Trap-limited photovoltage in ultrathin metal oxide layers [J]. J Phys Rev B, 2001, 65: 155319-155319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700