用户名: 密码: 验证码:
多酸型变色材料的性能调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变色材料的种类十分丰富,由于多金属氧酸盐在变色领域展示出广阔的发展前景,从而受到了越来越多的关注。本论文工作以多金属氧酸盐为电致变色活性组分通过交替沉积自组装技术与溶胶-凝胶技术制备变色材料。
     利用交替沉积自组装技术,将Dawson型钨磷酸和聚乙烯醇组装到膜中,得到了具有既可光致变色又可电致变色的双模式变色复合膜。这种双模式变色复合膜无论是在紫外光激发还是在电激发下都能产生由无色变为蓝色的现象,而且着色后的薄膜在可见光照射下,或是通过施加正电压,均可以使其褪色。复合膜的着色和褪色过程可重复多次,而几乎没有吸光度的损失。通过FT-IR谱和X-射线光电子能谱等测试手段研究复合膜的组成和结构。采用紫外-可见光谱分析该复合膜的光致变色性质。采用光谱电化学方法考察薄膜电致变色性质。通过原子力显微镜手段表征复合膜的表面形貌。
     采用交替沉积自组装方法,制备了含有多金属氧酸盐阴离子(P2W18)与聚紫精阳离子(PXV)的电致变色复合膜。该复合膜能产生从无色到蓝色到蓝紫色的多颜色电致变色效果,即实现了宽幅的可调变光学吸收功能。循环伏安和光谱电化学表明,这两种材料复合到膜中后,均保留了各自的电致变色特点,而且都对电致变色光反差产生贡献。此外,该复合膜修饰电极在pH=1-5.5的范围内十分稳定,其氧化还原峰位置与溶液pH呈线性关系,说明该复合膜还具有pH传感性质。
     基于考虑“构效关系”的分子设计思想,系统的考察了膜结构对含有多金属氧酸盐(P2W18)和聚电解质(PAH)薄膜的电致变色性质的影响。经过光谱电化学和原子力显微镜等研究显示,组分的浓度和氯化钠的浓度,对复合膜的结构产生了巨大的影响。采用较高的多金属氧酸盐和聚电解质的浓度或者聚电解质中含有较高氯化钠的浓度制备出的薄膜,具有较厚的和较紧密的膜结构。这样的结构能增加多金属氧酸盐在薄膜中的吸附量所以提高了薄膜的电致变色光反差;但是由于紧密的结构阻碍了离子在膜中的传递,因而降低了电致变色的响应速度。因此,可以通过调控复合膜的制备过程,力求实现在分子水平上调节复合膜的电致变色性质。
     使用溶胶-凝胶方法,制备了一种含有十二钼磷酸的气致变色硅胶传感材料。该气致变色材料的制作过程非常简单,而且这种负载了多酸的硅胶材料能够在室温下检测一些具有还原性的气体(例如:H_2S和SO_2)而无需任何能量消耗。这种钼磷酸-硅胶材料在与H_2S气体接触后,其颜色由黄色迅速变为深绿色,该气致变色反应复合一级反应动力学。与SO_2气体相比较,该材料对H_2S气体具有更强的敏感度,这是由于H_2S气体的还原性更强导致的。
Chromogenic materials have attracted much attention due to the applications in large area glazing, information displays, switch devices and optical storage. In this paper, we focus on the preparation of chromogenic materials based on polyoxometalates by layer-by-layer assembly and sol-gel technology.
     We successfully prepared PVA–POM multilayer films with concurrent photochromism and electrochromism by layer-by-layer self-assembly technique. The composite films can be photochromic and electrochromic from transparent to deep blue by either irradiation with UV light or electrochemical induce, and the photochromism and electrochromism is reversible. The layered nanocomposite films were studied by UV–vis absorption, cyclic voltammetry, chronoamperometry, X-ray photoelectron spectra and atomic force microscopy.
     We present our exploration in the development of a“dual electrochrome”composite film fabricated from the tungstophosphate (P2W18) and poly(hexyl viologen) (PXV) by a layer-by-layer self-assembly method. The polyanion and polycation species in the multilayer film are both cathodically coloring electrochromic material. The resulting“dual electrochrome”film could display color changes from colorless to blue to violet, achieving a breadth of gray-scale control with adjustable absorption. The high contrast, extended color range, suitable response time, and low operation potential of the electrochromic film should be promising to meet the requirement for developing flexible displays and electrochromic devices. Furthermore, the P2W18/PXV multilayer film modified ITO electrode is pH sensitive, showing a promising multifunctional application.
     We investigated the effects of film structure on the electrochromic performance of LbL films assembled from inorganic nanoparticle tungstophosphate (P2W18) and weak polyelectrolyte poly(allylamine hydrochloride) (PAH). The influences of film structure on the electrochromic properties of the multilayer were investigated through varying fabrication conditions. Spectroelectrochemical and electrochromic characterizations of assembled films reveal that high concentration of polycation, anion and salt produces thicker and denser film structure, leading to high optical contrast and color efficiency whereas slow response times. Among the three parameters discussed above, salt concentration has the strongest influence on the electrochromic multilayer structure. By adjusting multilayer structure properly, dramatic changes of the optical contrast and response time can be realized.
     We report the preparation and characterization of a gasochromic silica sensing material containing POM. The fabrication procedure of the gasochromic monolithic pieces is very simple. In addition, the advantage of the POM-SiO2 material is that it is capable of detecting some reducing gases (H_2S and SO_2) at room temperature without any power consumption. The gasochromic material exhibits higher sensitivity to H_2S than to SO_2. The gasochromic response is strongly correlated to the reducing ability of the gas.
引文
[1]孙艳.溶胶一凝胶法制备电致变色材料的研究[D]:[硕士学位论文].长春:长春光学精密机械学院,2001.
    [2] Yang Y A, Cao Y W, Loo B H, et al. Microstructures of Electrochromic MoO3 Thin Films Colored by Injection of Different Cations[J]. J Phys Chem B, 1998, 102(47): 9392–9396.
    [3] Yous B, Robin S, Donnadieu A, et al. Chemical vapor deposition of tungsten oxides: A comparative study by X–ray photoelectron spectroscopy, X–ray diffraction and reflection high energy electron diffraction[J]. Mater Res Bull, 1984, 19(10): 1349–1354.
    [4] Shen P K, Tseung A C C. Study of electrodeposited tungsten trioxide thin films[J]. J Mater Chem, 1992, 2(11): 1141–1147.
    [5] Santato C, Odziemkowski M, Ulmann M, et al. Crystallographically Oriented Mesoporous WO3 Films: Synthesis, Characterization, and Applications[J]. J Am Chem Soc, 2001, 123(43): 10639–10649.
    [6] Bellac D L, Azens A, Granqvist C G. Angular selective transmittance through electrochromic tungsten oxide films made by oblique angle sputtering[J]. Appl Phys Lett, 1995, 66(14): 1715–1716.
    [7] Deb S K. Opportunities and challenges in science and technology of WO3 for electrochromic and related applications[J]. Solar Energy Materials and Solar Cells, 2008, 92(2): 245–258.
    [8] Granqvist C G. Electrochrmoic tungsten oxide films: review of progress 1993–1998[J]. Energy Mater Sol Cells, 2000, 60(30): 201–262.
    [9] Yoo S J, Lim J W, Sung Y. Fast switchable electrochromic properties of tungsten oxide nanowire bundles[J], Appl Phys Lett, 2007, 90(17): 173126.
    [10] Lee S, Deshpande R, Parilla P A. Crystalline WO3 Nanoparticles for Highly Improved Electrochromic Applications[J]. Adv Mater, 2006, 18(6): 763–766.
    [11] Wang J, Khoo E, Lee P S. Synthesis, Assembly, and Electrochromic Properties of Uniform Crystalline WO3 Nanorods[J]. J Phys Chem C, 2008, 112 (37): 14306–14312.
    [12] Y Nah, A Ghicov, D Kim, et al. TiO2–WO3 Composite Nanotubes by Alloy Anodization: Growth and Enhanced Electrochromic Properties[J]. J AM CHEM SOC, 2008, 130(48): 16154–16155.
    [13] Delongchamp D M, Hammond P T. Multiple–Color Electrochromism from Layer–by–Layer–Assembled Polyaniline/Prussian Blue Nanocomposite Thin Films[J]. Chem Mater, 2004, 16(23): 4799–4805.
    [14] Delongchamp D M, Hammond P T. High–Contrast Electrochromism and Controllable Dissolution of Assembled Prussian Blue/Polymer Nanocomposites[J]. Adv Funct Mater, 2004, 14(3): 224–232.
    [15] Faiswal A, Colins J, Agricole B, et al. Layer–by–layer self–assembly of Prussian blue colloids[J]. JColloid Interface Sci, 2003, 261(2): 330–335.
    [16] Baioni A P, Vidotti M, Fiorito P A, et al. Synthesis and Characterization of Copper Hexacyanoferrate Nanoparticles for Building Up Long–Term Stability Electrochromic Electrodes[J]. Langmuir, 2007, 23(12): 6796–6800.
    [17] Deng J, Song N, Zhou Q, et al. Electrically–Driven Chiroptical Switches Based on Axially Dissymmetric 1,1’–Binaphthyl and Electrochromic Viologens: Synthesis and Optical Properties[J]. Org Lett, 2007, 9(26): 5393–5396.
    [18] Deng J, Zhou Q, Chen C, et al. Synthesis and redox–driven chiroptically switching properties of viologen–containing optically active polymer with main–chain axial chirality[J]. Macromolecules, 2008, 41(21): 7805–7811.
    [19] Sun X W, Wang J X. Fast Switching Electrochromic Display Using a Viologen–Modified ZnO Nanowire Array Electrode[J]. Nano Lett, 2008, 8(7): 1884–1889.
    [20] Choi S Y, Mamak M, Coombs N, et al. Electrochromic Performance of Viologen–Modified Periodic Mesoporous Nanocrystalline Anatase Electrodes[J]. Nano Lett, 2004, 4(7): 1231–1235.
    [21] Ko H C, Kim S, Lee H, et al. Multicolored Electrochromism of a Poly{1,4–bis[2–(3,4–ethylenedioxy)thienyl]benzene} Derivative Bearing Viologen Functional Groups[J]. Adv Funct Mater, 2005, 15(6): 905–909.
    [22] Cho S I, Kwon W J, Choi S, et al. Nanotube–Based Ultrafast Electrochromic Device[J]. Adv Mater, 2005, 17(2): 171–175.
    [23] Fei J, Lim K G, Palmore G T R. Polymer Composite with Three Electrochromic States[J]. Chem Mater, 2008, 20(12): 3832–3839.
    [24] Green J M, Faulkner L R. Reversible Oxidation and Rereduction of Entire Thin Films of Transition–Metal Phthalocyanines[J]. J Am Chem Soc, 1983, 105(10): 2950–2955.
    [25] Trombach N, Hild O, Schlettwein D D. Synthesis and electropolymerisation of pyrrol–l–yl substituted phthalocyanines [J]. J Mater Chem, 2002, 12(4): 879–885.
    [26] He T, Yao J. Photochromism in composite and hybrid materials based on transition–metal oxides and polyoxometalates[J]. Progress in Materials Science, 2006, 51(6): 810–879.
    [27] He T, Yao J. Photochromism of molybdenum oxide[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2003, 4(2): 125–143.
    [28] He T, Ma Y, Cao Y, et al. Enhancement Effect of Gold Nanoparticles on the UV–Light Photochromism of Molybdenum Trioxide Thin Films[J]. Langmuir, 2001, 17(26): 8024–8027.
    [29] He T, Ma Y, Cao Y, et al. Improved photochromism of WO3 thin films by addition of Au nanoparticles[J]. Phys Chem Chem Phys, 2002, 4(9): 1637–1639.
    [30] Wang Z C, Hu X F, Ulf H. Peroxo sol–gel preparation: photochromic/electrochromic properties of Mo–Ti oxide gels and thin films[J]. J Mater Chem, 2000, 10(10): 2396–2400.
    [31] He T, Ma Y, Cao Y A, et al. Photochromism of WO3 Colloids Combined with TiO2 Nanoparticles[J]. J Phys Chem B, 2002, 106(49): 12670–12676.
    [32] Ohko Y, Tatsuma T, Fujii T. Multicolour photochromism of TiO2 films loaded with silver nanoparticles[J]. Nature Materials, 2003, 2(1): 29–31.
    [33] Hirshberg Y, Fischer E. Photochromism and reversible multiple internal transitions in some spiropyrans at low temperatures. Part I[J]. J Chem Soc, 1954, 297–303.
    [34] Irie M, Fukaminato T, Sasaki T, et al. Organic chemistry: A digital fluorescent molecular photoswitch[J]. Nature, 2002, 420(6917): 759–760.
    [35] Morimoto M, Irie M. Photochromism of diarylethene single crystals: crystal structures and photochromic performance[J]. Chem Commun, 2005, 3895–3905.
    [36] Higashiguchi K, Matsuda K, Tanifuji N, et al. Full–Color Photochromism of a Fused Dithienylethene Trimer[J]. J Am Chem Soc, 2005, 127(25): 8922–8923.
    [37] Wittwer V, Datz M, Ell J, et al. Gasochromic windows [J]. Solar Energy Materials & Solar Cells, 2004, 84(1-4): 305–314.
    [38] Hsu W, Chan C, Peng C, et al. Hydrogen sensing characteristics of an electrodeposited WO3 thin film gasochromic sensor activated by Pt catalyst[J]. Thin Solid Films, 2007, 516(2–4): 407–411.
    [39] Chen H, Xu N, Deng S, et al. Gasochromic effect and relative mechanism of WO3 nanowire films Nanotechnology, 2007, 18(20): 205701–205706.
    [40] H Shanak, H Schmitt, J Nowoczin, et al. Effect of O2 partial pressure and thickness on the gasochromic properties of sputtered V2O5 films[J]. J Mater Sci, 2005, 40: 3467–3474.
    [41] Okumu J. In situ measurements of thickness changes and mechanical stress upon gasochromic switching of thin MoOx films[J]. J Appl Phys, 2004, 95(12): 7632–7636.
    [42] Lampert C M. Chromogenic Smart Materials[J]. Materials Today, 2004, 3: 28–35.
    [43] Georg A, Georg A, Graf W, et al. Switchable windows with tungsten oxide[J]. Vacuum, 2008, 82: 730–735.
    [44]王恩波,胡长文,许林.多酸化学导论[M].北京:化学工业出版社, 1998. 1.
    [45] Pope M T.杂多和同多金属氧酸盐[M].王恩波等译.长春:吉林大学出版社, 1991.
    [46] Pope M T, Müller A. Polyoxometalate Chemistry[M]. Kluwer: Dordrecht, 2001. 1–10.
    [47] Hill C L (Guest Editor). Chem Rev, 1998, 98(1): 1–390.
    [48] Berzelius. [J]. J Pogg Ann, 1826, 6: 369.
    [49] Pauling L. J Am Chem Soc, 1929, 5: 2868.
    [50] Keggin. [J]. J F Proc R Soc, 1934, 144A: 75.
    [51]游效曾,孟庆金,韩万书.配位化学进展[M].北京:高等教育出版社,2000.170.
    [52] Yamase T. Photo– and Electrochromism of Polyoxometalates and Related Materials[J]. Chem Rev, 1998, 98: 307–325.
    [53] Tell B, Wagner S. Electrochemichromic cells based on phosphotungstic acid[J]. Appl Phys Lett, 1978, 33(9): 837–838.
    [54] Tell B, Wudl F. Electrochromic effects in solid phosphotungstic acid and phosphomolybdic acid[J]. J Appl Phys, 1979, 50(7): 5944–5946.
    [55] ?tangar U L, Orel B, Hutchins M G. Proceedings of SPIE–The International Society for Optical Engineering[J]. 1994, 2255: 261–272.
    [56] Byker H J, Hill C L. United States Patent, 1995, Patent Number: 5471337.
    [57] Byker H J, Hill C L. United States Patent, 1997, Patent Number: 5671082.
    [58] Zhang X M, Shan B Z, Bai Z P, et al. Electrochromism and X–ray Crystal Structure of a Mixed–Valence Charge–Transfer Complex [(CH3)2NC6H4NH(CH3)2]4[(C4H9)4N]SiMo12O40[J]. Chem Mater, 1997, 9(12): 2687–2689.
    [59] You X Z, Shan B Z, Zhang X M, et al. Absorption spectra of an electrochromic window based on molybdovanadophosphoric acid, Prussian Blue and a solid polymer electrolyte[J]. J Appl Electrochem, 1997, 27: 1297–1299.
    [60] Pan B H, Lee J Y. Immobilisation of phosphomolybdic (PM) acid by Nafion and the electrochromism of the resulting PM–Nafion films[J]. J Mater Chem, 1997, 7(2): 187–191.
    [61] Moriguchi I, Fendler J H. Characterization and Electrochromic Properties of Ultrathin Films Self–Assembled from Poly(diallyldimethylammonium) Chloride and Sodium Decatungstate[J]. Chem Mater, 1998, 10(8): 2205–2211.
    [62] He T, Ma Y, Yao J N, et al. Preparation and electrochromism of alkylammonium molybdate thin films[J]. J Non–Cryst Solids, 2003, 315: 7–12.
    [63] Liu S Q, Kurth D G, M?hwald H, et al. A Thin–Film Electrochromic Device Based on a Polyoxometalate Cluster[J]. Adv Mater, 2002, 14(3): 225–228.
    [64] Liu S Q, M?hwald H, Volkmer D, et al. Polyoxometalate–Based Electro– and Photochromic Dual–Mode Devices[J]. Langmuir, 2006, 22(5): 1949–1951.
    [65] Zhang T R, Liu S Q, Kurth D G, et al. Organized Nanostructured Complexes of Polyoxometalates and Surfactants that Exhibit Photoluminescence and Electrochromism[J]. Adv Funct Mater, 2009, 19: 642–652.
    [66] Clemente–León M, Coronado E, Gómez–García C J, et al. Polyoxometalate Monolayers in Langmuir–Blodgett Films[J]. Chem Eur J, 2005, 11(13): 3979–3987.
    [67] Gao G G, Xu L, Wang W J, et al. Electrochromic ultra–thin films based on cerium polyoxometalate[J]. J Mater Chem, 2004, 14(13): 2024–2029.
    [68] Gao G G, Xu L, Wang W J, et al. Electrochromic and pH–Sensitive Multilayer Films Based on Nickel–Substituted Dawson–Type Polyoxometalate[J]. J Electrochem Soc, 2005, 152(7): H102–H106.
    [69] Gao G G, Xu L, Wang W J, et al. Electrochromic multilayer films based on trilacunary Dawson–type polyoxometalate[J]. Electrochim Acta, 2005, 50(5): 1101–1106.
    [70] Gao G G, Xu L, Wang W J, et al. Electrochromic Multilayer Films of Tunable Color by Combination of Copper or Iron Complex and Monolacunary Dawson–Type Polyoxometalate[J]. J Phys Chem B, 2005, 109(18): 8948–8953.
    [71] CouéV, Dessapt R, Bujoli-Doeuff M, et al. Synthesis and characterization of two new photochromic organic–inorganic hybrid materials based on isopolyoxomolybdate (HDBU)3(NH4)[β-Mo8O26]·H2O and (HDBU)4[δ-Mo8O26][J]. J Soli Stat Chem, 2006, 179: 3615–3627.
    [72] Ohasi Y, Yanagi K, Sasada Y, et al. Bull Chem Soc Jpn, 1982, 55: 1254.
    [73] Isobe M, Marumo F, Yamase T, et al. Acta Crystallogr, 1978, B34: 2728
    [74] Bharadwaj P K, Ohashi Y, Sasada Y, et al. Acta Crystallogr, 1986, C42: 545.
    [75] Toraya H, Marumo F, Yamase T, Acta Crystallogr, 1984, B40: 145.
    [76] Román P, Gutiérrez–Zorrilla J M, Esteban–Calderón C, et al. Polyhedron, 1985, 4: 1046.
    [77] Román P, Gutiérrez–Zorrilla J M, Martínez–Ripoll M, et al. Polyhedron, 1986, 5: 1799.
    [78] Román P, Gonzalez–Aguado M E, Esteban– Calderón C, et al. Kristallogr, 1983, 165: 271.
    [79] Román P, Gutiérrez–Zorrilla J M, Martínez–Ripoll M, et al. J Crystallogr Spectrosc Res, 1987, 17: 109.
    [80] Román P, Gutiérrez–Zorrilla J M, Luque A, et al. Kristallogr, 1988, 184: 175.
    [81] Román P, Gutiérrez–Zorrilla J M, Martínez–Ripoll M, et al. Kristallogr, 1985, 173: 169.
    [82] Bi L H, He Q Z, Jia Q, et al. Synthesis, properties and crystal structure of a novel organic–inorganic salt of 12–silicomolybdate, (C2H5NO2)3.5H4SiMo12O40·8.5H2O[J]. J Mol Struct, 2001, 597(1–3): 81–88.
    [83] Han Z B, Wang E B, Luan G Y, et al. Synthesis, properties and structural characterization of an intermolecular photosensitive complex: (HGly–Gly)3PMo12O40·4H2O[J]. J Mater Chem, 2002, 12(4): 1169–1173.
    [84] Adams R, Klemperer W G, Liu R–S. Synthesis and X–ray structure of a formylated octamolybdate cluster [(HCO)2(Mo8O28)]6–[J]. J Chem Soc Chem Commun, 1979, 6: 256–257.
    [85] McCarron III E M, Harlow R L. Synthesis and structure of Na4[Mo8O24(OCH3)4]·8MeOH: A novel isopolymolybdate that decomposes with the loss of formaldehyde[J]. J Am Chem Soc, 1983, 105(19): 6179–6181.
    [86] McCarron III E M, Whitney J F Chose D B. Oxy–methoxy compounds of hexavalent molybdenum[J]. Inorg Chem, 1984, 23(21): 3275–3280.
    [87] Kamenar B, Korpar–Colig B, Penavic M, et al. Synthesis and characterization of octamolybdates containing co–ordinatively bound salicylideneiminato and methioninato (MetO) ligands. Crystal structures of [NH3Pr]2[Mo8O22(OH)4(OC6H4CH=NPr–2)2]·6MeOH and [Hmorph]4[Mo8O24(OH)2(MetO)2]·4H2O (morph = morpholine)[J]. J Chem Soc, Dalton Trans, 1990, 1125–1130.
    [88] Inoue M, Yamase T. Bull Chem Soc Jpn, 1995, 68: 3055.
    [89] Inoue M, Yamase T. Bull Chem Soc Jpn, 1996, 69: 2863.
    [90] Jiang M, Wang E B, Wei G, et al. A novel photochromic multilayer based on preyssler’s cluster[J]. New J Chem, 2003, 27(9): 1291–1293.
    [91] Jiang M, Wang E B, Wei G, et al. Photochromic inorganic–organic multilayer films based on polyoxometalates and poly(ethylenimine)[J]. J Colloid Interf Sci, 2004, 275(2): 596–600.
    [92] Zhang T, Feng W, Fu Y, et al. Self–assembled organic–inorganic composite superlattice thin films incorporating photo– and electro–chemically active phosphomolybdate anion[J]. J Mater Chem, 2002, 12(5): 1453–1458.
    [93] Zhang G, Yang W, Yao J, et al. Thermally Enhanced Visible–Light Photochromism ofPhosphomolybdic Acid–Polyvinylpyrrolidone Hybrid Films[J]. Adv Funct Mater, 2005, 15(8): 1255–1259.
    [94] Zhang G, Chen Z, He T, et al. Construction of Self–Assembled Ultrathin Polyoxometalate 1,10–Decanediamine Photochromic Films[J]. J Phys Chem B, 2004, 108(22): 6944–6948.
    [95] Jiang M, Jiao T, Liu M. Photochromic Langmuir–Blodgett Films Based on Polyoxomolybdate and Gemini Amphiphiles[J]. New J Chem, 2008, 32(6): 959–965.
    [96] Qi W, Li H, Wu L. Stable Photochromism and Controllable Reduction Properties of Surfactant–Encapsulated Polyoxometalate/Silica Hybrid Films[J]. J Phys Chem B, 2008, 112(28): 8257–8263.
    [97] Poulos A S, Constantin D, Davidson P, et al. Photochromic Hybrid Organic–Inorganic Liquid–Crystalline Materials Built from Nonionic Surfactants and Polyoxometalates: Elaboration and Structural Study[J]. Langmuir, 2008, 24(12): 6285–6291.
    [98] Decher G, Maclennan J, Reibel J, et al. Highly–ordered ultrathin LC multilayer films on solid substrates[J]. Adv Mater, 1991, 3(12): 617–619.
    [99]兰阳.多金属氧酸盐/layer–by–layer复合纳米结构多层膜的构筑与表征[D]:[博士学位论文].长春:东北师范大学,2006.
    [100]陈欢.分步自组装法构筑功能化多层超薄膜[D]:[博士学位论文].长春:吉林大学,2006.
    [101] Wang B Q, Rusling J F. Voltammetric Sensor for Chemical Toxicity Using [Ru(bpy)2poly(4–vinylpyridine)10Cl)]+ as Catalyst in Ultrathin Films. DNA Damage from Methylating Agents and an Enzyme–Generated Epoxide[J]. Anal Chem, 2003, 75(16): 4229–4235.
    [102] Sun J Q, Sun Y P, Wang Z Q, et al. Ionic self–assembly of glucose oxidase with polycation bearing Os complex[J]. Macromol Chem Phys, 2001, 202(1): 111–116.
    [103] Clark S L, M F Montague, Hammond P T. Ionic Effects of Sodium Chloride on the Templated Deposition of Polyelectrolytes Using Layer–by–Layer Ionic Assembly[J]. Macromolecules, 1997, 30(23): 7237–7244.
    [104] Gao L, Wang E, Kang Z, et al. Layer–by–Layer Assembly of Polyoxometalates into Microcapsules[J]. J Phys Chem B, 2005, 109(35): 16587–16592.
    [105] Balachandra A M, Dai J H, Bruening M L. Enhancing the Anion–Transport Selectivity of Multilayer Polyelectrolyte Membranes by Templating with Cu2+[J]. Macromolecules, 2002, 35(8): 3171–3178.
    [106] Zhang H, Fu Y, Wang D, et al. Hydrogen–Bonding–Directed Layer–by–Layer Assembly of Dendrimer and Poly(4–vinylpyridine) and Micropore Formation by Post–Base Treatment[J]. Langmuir, 2003, 19(20): 8497–8502.
    [107] Wang Y, Tang Z Y, Correa–Duarte M A, et al. Multicolor Luminescence Patterning by Photoactivation of Semiconductor Nanoparticle Films[J]. J Am Chem Soc, 2003, 125(10): 2830–2831.
    [108] Zhang X Y, Zhu Y X, Granick S. Softened Hydrophobic Attraction between Macroscopic Surfaces in Relative Motion [J]. J Am Chem Soc, 2001, 123(27): 6736–6727.
    [109] Kotov N A, Dekany I, Fendler J H. Layer–by–layer self–assembly of polyelectrolyte–semiconductor nanoparticle composite films[J]. J Phys Chem, 1995, 99(35): 13065–13069.
    [110] Ingersoll D, Kulesza P J, Faulkner L R. Polyoxometalate–Based Layered Composite Films on Electrodes[J]. J Electrochem Soc, 1994, 141(1): 140–147.
    [111] Keller S W, Kim H, Mallouk T E. Layer–by–Layer Assembly of Intercalation Compounds and Heterostructures on Surfaces: Toward Molecular "Beaker" Epitaxy[J]. J Am Chem Soc, 1994, 116(19): 8817–8818.
    [112] Ichinose I, Tagawa H, Mizuki S, et al. Formation Process of Ultrathin Multilayer Films of Molybdenum Oxide by Alternate Adsorption of Octamolybdate and Linear Polycations[J]. Langmuir, 1998, 14(1): 187–192.
    [113] Caruso F, Kurth D G, Volkmer D, et al. Ultrathin Molybdenum Polyoxometalate?Polyelectrolyte Multilayer Films[J]. Langmuir, 1998, 14 (13): 3462–3465.
    [114] Kurth D G, Volkmer D, Ruttorf M, et al. Ultrathin Composite Films Incorporating the Nanoporous Isopolyoxomolybdate“Keplerate”(NH4)42[Mo132O372(CH3COO)30(H2O)72][J]. Chem Mater, 2000, 12(10): 2829–2831.
    [115] Liu S, Kurth D G, Bredenk?tter B. The Structure of Self–Assembled Multilayers with Polyoxometalate Nanoclusters[J]. J AM CHEM SOC, 2002, 124: 12279–12287.
    [116] Wang B, Vyas R N, Shaik S. Preparation Parameter Development for Layer–by–Layer Assembly of Keggin–type Polyoxometalates[J]. Langmuir, 2008, 23(22): 11120–11126.
    [117] Jiang M, Wang E, Wang X, et al. Self–assembly of lacunary Dawson type polyoxometalates and poly(allylamine hydrochloride) multilayer films: photoluminescent and electrochemical behavior[J]. Appl Surf Sci, 2005, 242(1-2): 199–206.
    [118] Ma H, Peng J, Zhou B, et al. Luminescent multilayer film based on mixed–addenda polyoxometalates and polyethyleneimine by layer–by–layer assembly[J]. Appl Surf Sci, 2004, 233(1-4): 14–19.
    [119] Sousa F L, Ferreira A C, Ferreira R A S, et al. Lanthanopolyoxotungstoborates: Synthesis, Characterization, and Layer–by–Layer Assembly of Europium Photoluminescent Nanostructured Films[J]. J Nanosci Nanotech, 2004, 4(1–2): 214–220.
    [120] Wang Y, Wang X, Hu C, et al. Layer–by–Layer Self–Assembled Ultrathin Multilayer Films of Lanthanide Polyoxometalates and Poly(allylamine Hydrochloride) and Their Photoluminescent Properties[J]. J Colloid Interf Sci, 2002, 249(2): 307–315.
    [121] Xu L, Zhang H, Wang E, et al. Photoluminescent multilayer films based on polyoxometalates[J]. J Mater Chem, 2002, 12(3): 654–657.
    [122] Li C, Wang X, Ma H, et al. Fabrication and Electrochemical Behavior of Vanadium–Substituted Keggin–Type Polyoxometalates Multilayer Films on 4–Aminobenzoic Acid Modified Glassy Carbon Electrodes[J]. Electroanalysis, 2008, 20(10): 1110–1115.
    [123] Jiang K, Zhang H, Shannon C, et al. Preparation and characterization of polyoxometalate/protein ultrathin films grown on electrode surfaces using layer–by–layer assembly[J]. Langmuir, 2008, 24(7): 3584–3589.
    [124] Shen Y, Liu J, Jiang J, et al. Fabrication of Metalloporphyrin–Polyoxometalyte Hybrid Film byLayer–by–Layer Method and Its Catalysis for Dioxygen Reduction[J]. Electroanalysis, 2002, 14(22): 1557–1563.
    [125] Cheng L, Cox J A. Nanocomposite Multilayer Film of a Ruthenium Metallodendrimer and a Dawson–Type Polyoxometalate as a Bifunctional Electrocatalyst[J]. Chem Mater, 2002, 14(1): 6–8.
    [126] Fay N, Dempsey E, McCormac T. Assembly, electrochemical characterisation and electrocatalytic ability of multilayer films based on [Fe(bpy)3]2+, and the Dawson heteropolyanion, [P2W18O62]6–[J]. J Electroanal Chem, 2005, 574(2): 359–366.
    [127] Chen C, Song Y, Wang L, et al. A Novel Sensor Based on Layer–by–Layer Hybridized Phosphomolybdate and Poly(ferrocenylsilane) on a Cysteamine Modified Gold Electrode[J]. Electroanalysis, 2008, 20(23): 2543–2548.
    [128] Liu S, Kurth D G, Volkmer D. Polyoxometalates as pH–sensitive probes in self–assembled multilayers[J]. CHEM COMMUN, 2002, 976–977.
    [129] Liu S, Volkmer D, Kurth D G. Smart Polyoxometalate–Based Nitrogen Monoxide Sensors[J]. Anal Chem, 2004, 76(15): 4579–4582.
    [130] Xu L, Wang E, Li Z, et al. Preparation and nonlinear optical properties of ultrathin composite films containing both a polyoxometalate anion and a binuclear phthalocyanine[J]. New J Chem, 2002, 26(6): 782–786.
    [131] Feng Y, Han Z, Peng J, et al. Fabrication and characterization of multilayer films based on Keggin–type polyoxometalate and chitosan[J]. Materials Letters, 2006, 60 (13–14): 1588–1593.
    [132] Ma H, Peng J, Han Z, et al. A novel biological active multilayer film based on polyoxometalate with pendant support–ligand[J]. J Solid State Chem, 2005, 178(12): 3735–3739.
    [133] Nagaoka Y, Shiratori S, Einaga Y. Photo–Control of Adhesion Properties by Detachment of the Outermost Layer in Layer–by–Layer Assembled Multilayer Films of Preyssler–Type Polyoxometalate and Polyethyleneimine[J]. Chem Mater, 2008, 20(12): 4004–4010.
    [134]谭兴臣.溶胶–凝胶法制备纳米氧化锌薄膜及性能分析[D]:[博士学位论文].长春:吉林大学,2006.
    [135]李艳彩.TiO2溶胶–凝胶膜电极和贵金属纳米粒子多层膜的组装及分析应用[D]:[博士学位论文].长春:吉林大学,2007.
    [136] Judeinstein P, Schmidt H. Polymetalates Based Organic–Inorganic Nanocomposites[J]. J Sol–Gel Sci Techn, 1994, 3: 189–197.
    [137] Zhang T R, Feng W, Lu R, et al. Synthesis and characterization of polymetalate based photochromic inorganic–organic nanocomposites[J]. Thin Solid Films, 2002, 402(1-2): 237–241.
    [138] Sato H, Norisuye T, Takemori T, et al. Effects of solvent on microstructure and proton conductivity of organic–inorganic hybrid membranes[J]. Polymer, 2007, 48(19): 5681–5687.
    [139] Uma T, Nogami M. Heteropolyacid in glass electrolytes for the development of H2/O2 fuel cells[J]. Electrochimica Acta, 2007, 52(24): 6895–6900.
    [140] Aparicio M, Mosa J, Etienne M. Proton–conducting methacrylate–silica sol–gel membranescontaining tungstophosphoric acid[J]. J Power Sour, 2005, 145(2): 231–236.
    [141] Song W, Chen X, Jiang Y, et al. Fabrication of a chemically modified electrode containing 12–molybdophosphoric acid by the sol–gel technique and its application as an amperometric detector for iodate[J]. Anal Chimi Acta, 1999, 394(1): 73–80.
    [142] Wang P, Yuan Y, Han Z, et al. Sol–gel–derived graphite organosilicate composite electrodes bulk–modified with Keggin–typeα–germanomolybdic acid[J]. J Mater Chem, 2001, 11(2): 549–553.
    [143] Hungerford G, Green M, Suhling K. Optical spectroscopy following the incorporation of a rare–earth containing (Eu) polyoxometalate into a sol–gel derived media[J]. Phys Chem Chem Phys, 2007, 9(45): 6012–6015.
    [144] Guo Y, Wang Y, Hu C, et al. Microporous polyoxometalates POMs/SiO2: Synthesis and photocatalytic degradation of aqueous organocholorine pesticides[J]. Chem Mater, 2000, 12(11): 3501–3508.
    [145] Guo Y, Yang Y, Hu C. Preparation, characterization and photochemical properties of ordered macroporous hybrid silica materials based on monovacant Keggin–type polyoxometalates[J]. J Mater Chem, 2002, 12(10): 3046–3052.
    [146] Xu L, Wang Y, Yang X, et al. Preparation of mesoporous polyoxometalate–tantalum pentoxide composite catalyst and its application for biodiesel production by esterification and transesterification[J]. Green Chemistry, 2008, 10(7): 746–755.
    [147] Li L, Wu Q, Guo Y, et al. Nanosize and bimodal porous polyoxotungstate–anatase TiO2 composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible–light excitation[J]. Microp Mesop Mater, 2005, 87(1): 1–9.
    [148]杨宇.多金属氧酸盐–二氧化钛杂化孔材料的制备、表征与光催化性能研究[D]:[博士学位论文].长春:东北师范大学,2005.
    [1] Ko H C, Kim S, Lee H, et al. Multicolored Electrochromism of a Poly{1,4–bis[2–(3,4–ethylenedioxy)thienyl]benzene} Derivative Bearing Viologen Functional Groups[J]. Adv Funct Mater, 2005, 15(6): 905–909.
    [2] Fei J, Lim K G, Palmore G T R. Polymer Composite with Three Electrochromic States[J]. Chem Mater, 2008, 20(12): 3832–3839.
    [3] He T, Ma Y, Cao Y, et al. Improved photochromism of WO3 thin films by addition of Au nanoparticles[J]. Phys Chem Chem Phys, 2002, 4(9): 1637–1639.
    [4] Faiswal A, Colins J, Agricole B, et al. Layer–by–layer self–assembly of Prussian blue colloids[J]. J Colloid Interface Sci, 2003, 261(2): 330–335.
    [5] Peters A, Branda N R, Electrochromism in Photochromic Dithienylcyclopentenes[J]. J Am Chem Soc, 2003, 125(12): 3404–3405.
    [6] Miki S, Noda R, Fukunishi K, Photo– and electro–chromism of a 1,4–anthraquinone derivative. A multi–mode responsive molecule[J]. Chem Commun, 1997, 10: 925–926.
    [7] Liu S Q, Kurth D G, M?hwald H, et al. A Thin-Film Electrochromic Device Based on a Polyoxometalate Cluster[J]. Adv Mater, 2002, 14: 225–228.
    [8] He T, Ma Y, Yao J N, et al. Preparation and electrochromism of alkylammonium molybdate thin films[J]. J Non-Cryst Solids, 2003, 315: 7–12.
    [9] Moriguchi I, Fendler J H. Characterization and Electrochromic Properties of Ultrathin Films Self-Assembled from Poly(diallyldimethylammonium) Chloride and Sodium Decatungstate[J]. Chem Mater, 1998, 10: 2205–2211.
    [10] Jiang M, Wang E B, Wei G, et al. A novel photochromic multilayer based on preyssler’s cluster[J]. New J Chem, 2003, 27: 1291–1293.
    [11] Zhang G, Chen Z, He T, et al. Construction of Self-Assembled Ultrathin Polyoxometalate 1,10-Decanediamine Photochromic Films[J]. J Phys Chem B, 2004, 108: 6944–6948.
    [12] Liu S Q, M?hwald H, Volkmer D, et al. Polyoxometalate-Based Electro- and Photochromic Dual-Mode Devices[J]. Langmuir, 2006, 22: 1949–1951.
    [13] Finke R G, Droege M W, Domaille P J. Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two-dimensional 183W NMR, and properties of P2W18M4(H2O)2O6810- and P4W30M4(H2O)2O11216- (M = Co, Cu, Zn)[J]. Inorg Chem, 1987, 26(23): 3886–3896.
    [14] Gao G G, Xu L, Wang W J, et al. Electrochromic and pH-Sensitive Multilayer Films Based on Nickel-Substituted Dawson-Type Polyoxometalate[J]. J Electrochem Soc, 2005, 152: H102–H106.
    [15] Zhang T, Feng W, Fu Y, et al. Self-assembled organic–inorganic composite superlattice thin filmsincorporating photo- and electro-chemically active phosphomolybdate anion[J]. J Mater Chem, 2002, 12: 1453–1458.
    [16] Gong J, Li X D, Shao C L, et al. Photochromic and thermal properties of poly(vinyl alcohol)/H6P2W18O62 hybrid membranes[J]. Mater Chem Phys, 2003, 79: 87–93.
    [17] Yang G C, Pan Y, Gao F M, et al. A novel photochromic PVA fiber aggregates contained H4SiW12O40[J]. Mater Lett, 2004, 59: 450–455.
    [18] Sadakane M, Steckhan E. Electrochemical Properties of Polyoxometalates as Electrocatalysis[J]. Chem Rev, 1998, 98: 219–237.
    [19] Moriguchi I, Fendler J H. Characterization and Electrochromic Properties of Ultrathin Films Self-Assembled from Poly(diallyldimethylammonium) Chloride and Sodium Decatungstate[J]. Chem Mater, 1998, 10: 2205–2211.
    [20] Gao G G, Xu L, Wang W J, et al. Electrochromic ultra-thin films based on cerium polyoxometalate[J]. J Mater Chem, 2004, 14: 2024–2029.
    [1] Sun X W, Wang J X. Fast Switching Electrochromic Display Using a Viologen–Modified ZnO Nanowire Array Electrode[J]. Nano Lett, 2008, 8(7): 1884–1889.
    [2] DeLongchamp M D, Hammond P T. Multiple–color electrochromism from layer–by–layer–assembled polyaniline/Prussian Blue nanocomposite thin films[J]. Chem Mater, 2004, 16(23): 4799–4805.
    [3] Argun A A, Aubert P -H, Thompson B C, et al. Multicolored electrochromisin in polymers: Structures and devices[J]. Chem Mater, 2004, 16(23): 4401–4412.
    [4] Dyer A L, Grenier C R G, Reynolds J R. A poly(3,4–alkylenedioxythiophene) electrochromic variable optical attenuator with near–infrared reflectivity tuned independently of the visible region[J]. Adv Funct Mater, 2007, 17(9): 1480–1486.
    [5] Choi K, Yoo S J, Sung Y E, et al. High contrast ratio and rapid switching organic polymeric electrochromic thin films based on triarylamine derivatives from layer–by–layer assembly[J]. Chem Mater, 2006, 18(25): 5823–5825.
    [6] Deng J, Song N, Zhou Q, et al. Electrically–driven chiroptical switches based on axially dissymmetric 1,1′–binaphthyl and electrochromic viologens: Synthesis and optical properties[J]. Org Lett, 2007, 9(26): 5393–5396.
    [7] Xue B, Peng J, Xin Z F, et al. High contrast and fast switching speed multi–hue electrochromic films containing transition metal ion–doped nanomaterials[J]. Nanotechnology, 2006, 17(21): 5306–5313.
    [8] DeLongchamp M D, Hammond P T. High–contrast electrochromism and controllable dissolution of assembled prussian blue/polymer nanocomposites[J]. Adv Funct Mater, 2004, 14(3): 224–232.
    [9] DeLongchamp M D, Kastantin M, Hammond P T. High–contrast electrochromism from layer–by–layer polymer films[J]. Chem Mater, 2003, 15: 1575.
    [10] Moriguchi I, Fendler J H. Characterization and Electrochromic Properties of Ultrathin Films Self–Assembled from Poly(diallyldimethylammonium) Chloride and Sodium Decatungstate[J]. Chem Mater, 1998, 10: 2205–2211.
    [11] Finke R G, Droege M W, Domaille P J. Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two–dimensional 183W NMR, and properties of P2W18M4(H2O)2O6810– and P4W30M4(H2O)2O11216– (M = Co, Cu, Zn)[J]. Inorg Chem, 1987, 26(23): 3886–3896.
    [12] Laurent D, Schlenoff J B. Multilayer assemblies of redox polyelectrolytes[J]. Langmiuir, 1997, 13(6), 1552–1557.
    [13] Yamase T. Photo– and Electrochromism of Polyoxometalates and Related Materials[J]. Chem Rev, 1998, 98: 307–325.
    [14] Liu S Q, Kurth D G, M?hwald H, et al. A Thin–Film Electrochromic Device Based on aPolyoxometalate Cluster[J]. Adv Mater, 2002, 14: 225–228.
    [15] Jain V, Yochum H, Wang H, et al. Solid–state electrochromic devices via Ionic Self–Assembled Multilayers (ISAM) of a polyviologen[J]. Macromol Chem Phys, 2008, 209(2): 150–157.
    [16] Wang B, Vyas N R, Shaik S. Preparation parameter development for layer-by-layer assembly of keggin-type polyoxometalates[J]. Langmiuir, 2007, 23: 11120.
    [17] Cea P, Lafuente C, Urieta J S, et al. Langmuir and Langmuir-Blodgett films of a viologen derivative[J]. Langmiuir, 1998, 14: 7306-7312.
    [18] Caruso F, Kurth D G, Volkmer D, et al. Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films[J]. Langmuir, 1998, 14(13): 3462-3465.
    [19] U Voigt, W Jaeger, Findenegg G H, et al. Charge effects on the formation of multilayers containing strong polyelectrolytes[J]. J Phys Chem B, 2003, 107(22): 5273-5280.
    [20] Ma H, Dong T, Wang F, et al. A multifunctional organic-inorganic multilayer film based on tris(1,10-phenanthroline)ruthenium and polyoxometalate[J]. Electrochim Acta, 2006, 51(23): 4965-4970.
    [21] Cheng L, Dong S J. Comparative studies on electrochemical behavior and electrocatalytic properties of heteropolyanion-containing multilayer films prepared by two methods[J]. J Electroanal Chem, 2000, 481(2): 168-176.
    [22] Liu S Q, Kurth D G, Volkmer D. Polyoxometalates as pH-sensitive probes in self-assembled multilayers[J]. Chem Commun, 2002, 9: 976-977.
    [23] Gao G G, Xu L, Wang W J, et al. Electrochromic and pH–Sensitive Multilayer Films Based on Nickel–Substituted Dawson–Type Polyoxometalate[J]. J Electrochem Soc, 2005, 152(7): H102–H106.
    [24] Yagi M, Sone K, Yamada M, et al. Preparation and multicolor electrochromic performance of a WO3/tris-(2,2′-bipyridine)ruthenium(II)/polymer hybrid film[J]. Chemistry-A European Journal, 2005, 11(2): 767-775.
    [25] Xue B, Peng J, Xin Z F, et al. High-contrast electrochromic multilayer films of molybdenum-doped hexagonal tungsten bronze (Mo0.05-HTB)[J]. J Mater Chem, 2005, 15(45): 4793-4798.
    [1] Moriguchi I, Fendler J H. Characterization and Electrochromic Properties of Ultrathin Films Self-Assembled from Poly(diallyldimethylammonium) Chloride and Sodium Decatungstate[J]. Chem Mater, 1998, 10: 2205-2211.
    [2] Liu S Q, Kurth D G, M?hwald H, et al. A Thin-Film Electrochromic Device Based on a Polyoxometalate Cluster[J]. Adv Mater, 2002, 14: 225-228.
    [3] Gao G G, Xu L, Wang W J, et al. Electrochromic ultra-thin films based on cerium polyoxometalate[J]. J Mater Chem, 2004, 14: 2024-2029.
    [4] Gao G G, Xu L, Wang W J, et al. Electrochromic and pH-Sensitive Multilayer Films Based on Nickel-Substituted Dawson-Type Polyoxometalate[J]. J Electrochem Soc, 2005, 152: H102-H106.
    [5] Gao G G, Xu L, Wang W J, et al., Electrochromic multilayer films based on trilacunary Dawson-type polyoxometalate[J]. Electrochim Acta, 2005, 50: 1101-1106.
    [6] Finke R G, Droege M W, Domaille P J. Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two–dimensional 183W NMR, and properties of P2W18M4(H2O)2O6810– and P4W30M4(H2O)2O11216– (M = Co, Cu, Zn)[J]. Inorg Chem, 1987, 26(23): 3886–3896.
    [7] Shiratori S S, Rubner M F. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes[J]. Macromolecules, 2000, 33: 4213.
    [8] Choi J, Rubner M F. Influence of the degree of ionization on weak polyelectrolyte multilayer assembly[J]. Macromolecules, 2005, 38(1): 116-124.
    [9] Ichinose I, Tagawa H, Mizuki S, et al. Formation process of ultrathin multilayer films of molybdenum oxide by alternate adsorption of octamolybdate and linear polycations[J]. Langmuir, 1998, 14(1): 187-192.
    [10] Caruso F, Kurth D G, Volkmer D, et al. Ultrathin molybdenum polyoxometalate-polyelectrolyte multilayer films[J]. Langmuir, 1998, 14(13): 3462-3465.
    [11] Petrov A I, Antipov A A, Sukhorukov G B. Base-acid equilibria in polyelectrolyte systems: From weak polyelectrolytes to interpolyelectrolyte complexes and multilayered polyelectrolyte shells[J]. Macromolecules, 2003, 36(26): 10079-10086.
    [12] Hone D, Ji H. Polymer adsorption on rough surfaces. 1. Ideal long chain[J]. Macromolecules, 1987, 20(10): 2543-2549.
    [13] Wang B, Vyas R N, Shaik S. Preparation parameter development for layer-by-layer assembly of keggin-type polyoxometalates[J]. Langmiuir, 2007, 23(22): 11120-11126.
    [14] Cheng L, Dong S J. Comparative studies on electrochemical behavior and electrocatalytic propertiesof heteropolyanion-containing multilayer films prepared by two methods[J]. J Electroanal Chem, 2000, 481(2): 168-176.
    [15] Huang M H, Bi L H, Shen Y, et al. Nanocomposite multilayer film of preyssler-type polyoxometalates with fine tunable electrocatalytic activities[J]. J Phys Chem B, 2004, 108(28): 9780-9786.
    [16] Xi X, Dong S J. Preparation of modified electrode with molybdophosphate anion and its electrocatalysis for bromate reduction[J]. Electrochim Acta, 1995, 40(17): 2785-2790.
    [17] Voigt U, Jaeger W, Findenegg G H, et al. Charge effects on the formation of multilayers containing strong polyelectrolytes[J]. J Phys Chem B, 2003, 107(22): 5273-5280.
    [18] Netz R R, Joanny J -F, Complexation between a semiflexible polyelectrolyte and an oppositely charged sphere[J]. Macromolecules, 1999, 32(26): 9026-9040.
    [19] Jiang M, Wang E B, Wei G, et al. Photochromic inorganic-organic multilayer films based on polyoxometalates and poly(ethylenimine)[J]. J Colloid Interface Sci, 2004, 275(2): 596-600.
    [20] Jiang M, Wang E B, Wei G, et al. A novel photochromic multilayer based on preyssler's cluster[J]. New J Chem, 2003, 27(9): 1291-1293.
    [21] Liu S Q, Kurth D G, Bredenk?tter B, et al. The structure of Self-Assembled Multilayers with Polyoxometalate Nanoclusters[J]. J Am Chem Soc, 2002, 124: 12279-12287.
    [22] Laurent D, Schlenoff J B. Multilayer assemblies of redox polyelectrolytes[J]. Langmuir, 1997, 13(6): 1552-1557.
    [23] Argun A A, Aubert P -H, Thompson B C, et al. Multicolored electrochromisin in polymers: Structures and devices[J]. Chem Mater, 2004, 16(23): 4401-4412.
    [1] Sadakane M, Steckhan E. Electrochemical properties of polyoxometalates as electrocatalysts[J]. Chem Rev, 1998, 98: 219-237.
    [2] Gao G G, Xu L, Wang W J, et al. Electrochromic ultra-thin films based on cerium polyoxometalate[J]. J Mater Chem, 2004, 14(13): 2024-2029.
    [3] Gao G G, Xu L, Wang W J, et al. Electrochromic and pH-Sensitive Multilayer Films Based on Nickel-Substituted Dawson-Type Polyoxometalate[J]. J Electrochem Soc, 2005, 152(7): H102-H106.
    [4] Gao G G, Xu L, Wang W J, et al., Electrochromic multilayer films based on trilacunary Dawson-type polyoxometalate[J]. Electrochim Acta, 2005, 50(5): 1101-1106.
    [5] Ionescu R, Hoel A, Granqvist C G, et al. Ethanol and H2S gas detection in air and in reducing and oxidising ambience: Application of pattern recognition to analyse the output from temperature-modulated nanoparticulate WO3 gas sensors[J]. Sens Actuators B, 2005, 104: 124-131.
    [6] Liu Y L, Wang H, Yang Y, et al. Hydrogen sulfide sensing properties of NiFe2O4 nanopowder doped with noble metals[J]. Sens Actuators B, 2004, 102(1): 148-154.
    [7] Xu M, Li Y C, Li W, et al. Structure, photochromic, and electrochemical properties of dioctadecylamine/H3PMo12O40 Langmuir-Blodgett film[J]. J Colliod Interf Sci, 2007, 315(2): 753-760.
    [8] Harrup M K, Hill C L. Polyoxometalate catalysis of the aerobic oxidation of hydrogen sulfide to sulfur[J]. Inorg Chem, 1994, 33(24): 5448-5455.
    [9] Harrup M K, Hill C L. Thermal multi-electron transfer catalysis by polyoxometalates. Application to the practical problem of sustained, selective oxidation of hydrogen sulfide to sulfur[J]. J Mol Catal A, 1996, 106(1-2): 57-66.
    [10] Zhang G, Chen Z, He T, et al. Construction of Self-Assembled Ultrathin Polyoxometalate 1,10-Decanediamine Photochromic Films[J]. J Phys Chem B, 2004, 108(22): 6944-6948.
    [11] Guo Y H, Wang Y H, Hu C W et al. Microporous polyoxometalates POMs/SiO2: Synthesis and photocatalytic degradation of aqueous organocholorine pesticides[J]. Chem Mater, 2000, 12(11): 3501-3508.
    [12] Mastikhin V M, Kulikov S M, Nosov A V, et al. 1H and 31P MAS NMR studies of solid heteropolyacids and H3PW12O40 supported on SiO2[J]. J Mol Catal, 1990, 60(1): 65-70.
    [13] Zhang T, Feng W, Fu Y, et al. Self-assembled organic–inorganic composite superlattice thin films incorporating photo- and electro-chemically active phosphomolybdate anion[J]. J Mater Chem, 2002, 12(5): 1453–1458.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700