用户名: 密码: 验证码:
基于盲方法的外辐射源雷达目标探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
外辐射源雷达又称为被动相干定位(PCL)雷达,属于新体制雷达中的一种。与传统雷达不同,外辐射源雷达自身不主动发射电磁波,而是利用各种通信、广播信号(比如调频广播、电视台、GSM基站和GPS卫星等)作为照射源,被动接收目标的反射回波信号实现目标探测和成像。从结构上来说,外辐射源雷达属于双基地雷达配置,使其不易被敌方发现,具有较好的抗干扰和抗反辐射导弹能力;并且借助于超高频和甚高频的照射源特性,外辐射源雷达具有良好的反隐身和低空探测能力;同时具有便携、低成本、无需频谱分配、无电磁污染、无探测盲区等优点。因此,为了应对复杂战场环境下的目标探测问题,外辐射源雷达目标探测已成为一种有效的解决手段,具有重要的研究价值。
     本论文主要针对简易配置的外辐射源雷达目标探测系统中的若干具体问题,如直达波提纯、杂波相消、参数估计以及数据融合等问题进行深入研究,所取得的主要研究成果如下:
     1、针对复杂战场环境下,接收机周围可能存在多个照射源,照射源基本信息未知(主要是基站方向和信号波形信息),无法区分感兴趣信号和干扰信号,无法确定目标探测中各照射源和目标参数的配对关系等问题,提出利用信号特性来抑制干扰。考虑到大部分通信信号都满足循环平稳的特性,提出利用信号的循环平稳特性估计直达波的方向信息,并抑制其它基站干扰。在目标探测阶段,推导二阶循环平稳和模糊函数的等价性,提出利用二阶共轭循环平稳代替模糊函数,实现对感兴趣信号和目标参数信息的配对。
     2、针对实际工程中参考信号包含多径,常规外辐射源雷达参考通道和预警通道都需要杂波相消的问题,提出在预警通道中利用盲源分离方法直接分离直达波和目标回波信号,达到减少运算量和提高目标回波信号信噪比的目的。针对常规盲源分离不适用于外辐射源雷达中病态矩阵的问题,提出利用循环平稳特性来抑制干扰,达到增强弱目标信号的目的,在天线个数少于信号源个数的欠定情况,本方法同样适用。在信号分离阶段,针对实际混合信号中还混有噪声的问题,提出鲁棒的斜投影方法来抽取目标回波信号。
     3、考虑到OFDM信号在同步和抗干扰方面的优点,提出基于OFDM信号特性的外辐射源雷达目标探测。针对外辐射源雷达中参考信号信息可能无法直接获取的问题,提出利用信号特性来估计OFDM信号信息。具体考虑到OFDM模糊函数中的副峰是由导频的周期性造成的,并且模糊函数等价于二阶循环平稳,提出利用二阶循环平稳估计导频的周期性,从而能够确定导频的位置信息,继而实现杂波信道脉冲响应估计和直达波重构。
     4、针对目前通信广播系统大都采用OFDM调制信号,并且支持SFN结构的情况,提出基于OFDM-SFN的外辐射源雷达系统提高目标探测的可靠性。但在SFN中,多个信号从不同的方向照射到目标,极有可能造成大时延扩展。并且OFDM发射正交子载波,对载频频偏很敏感。针对这两个问题,在没有参考信号信息的情况下,提出在接收通道中利用阵列天线把大时延转化为小时延,建立新的张量接收模型,并利用联合对角化方法同时估计波束、时延和频偏三个矩阵变量,解决频域盲源分离算法在大时延扩展中估计精度不高的问题。
     5、针对OFDM-SFN中存在的大时延,提出另一种基于循环移位和空时编码的收发方式,接收端使用单天线就能对抗大时延,达到简化接收端系统配置的目的。并针对SFN多站定位中,常规定位算法存在两步估计误差的问题,提出基于OFDM信号特性的直接目标定位方法。相比常规的定位方法,本方法能够获得更高的定位精度,尤其是在目标回波信号低信噪比情况下。
Passive bistatic radar, also known as passive coherent location (PCL) radar,belongs to a new radar system. Passive bistatic radar, different from the conventionalradar, doesn’t emit electromagnetic waves, but to use a variety of communications,broadcast signals (such as FM radio, television stations, GSM base stations and GPSsatellites, etc.) as illuminators, to passively receive the reflected echo signals fromtarget for target detection and imaging. In structure, passive bistatic radar belongs to thebistatic radar configurations, it can’t easily be found by the enemy, and thus it has betteranti-jamming and anti-radiation missiles capabilities; And by means of UHF and VHFsignal characteristics, passive bistatic radar also has good anti-stealth and low-altitudedetection capabilities; Except that, it also has the advantages of portable, low-cost, nospectrum allocation, no electromagnetic pollution and no blind spot detection etc.Therefore, in order to cope with the complexity of modern battlefield environment,passive bistatic radar has become an effective way of target detection and has importantresearch significance.
     This thesis focuses on several specific issues in the passive bistatic radar targetdetection system, such as the direct wave reconstruction, clutter cancellation, parameterestimation, data fusion and so on; the main research results obtained are as follows:
     1. For a complex battlefield environment, there may be multiple illuminationsources around the receiver, the basic information of illuminator is unknown (mainlythe direction of base station and the signal waveform), can not distinguish between theinterested signals and interference signals, and can not determine the mathing betweenthe illuminator and target parameter in the target detection. Considering that most of thecommunication signal is cyclostationary, we propose a blind method to suppressinterference. Cyclostationary information of signal is made to estimate the direct signaldirection while suppressing interference from other base stations, which finally obtainrelatively accurate direct signal. In the target detection stage, we derive equivalencebetween ambiguity function and second-order cyclostationarity, and propose secondorder conjugate cyclostationary instead of ambiguity functions to achieve matchingbetween interested base station and target parameter.
     2. Considering reference signal containing the multipath, and then both thereference channel and surveillance channel require clutter cancellation in the actualprojects, we propose the blind source separation to extract the direct signal and the target echo signal directly from the sole surveillance channel, which achieve the goal ofdecreasing the computational complexity and enhancing the weak echo signal. For theconventional blind source separation not suitable for the ill-posed problem in thepassive bistatic radar, we propose to enhance the weak target by using cyclostationarity,and apply to the underdetermined case in which the number of antennas is less than thenumber of signal sources. In the signal separation stage, a robust oblique projectionmethod is given to extract the target echo signal from the mixed signals containingnoise.
     3. Taking into account the advantages of OFDM signal in synchronization andanti-jamming, we propose passive radar target detection method based on OFDM signalcharacteristics. For the problem of reference signal information in passive radar may notbe directly acquired, we propose a blind method to estimate the OFDM parameters.Taking into account the side peaks in the ambiguity function of OFDM is caused by theperiodicity of pilot signals, but also because of the equivalence between ambiguityfunction and the second-order cyclostationarity, we propose to estimate the periodicityof pilot signals, which obtain the pilot position information, then to achieve the clutterchannel impulse response estimation and reconstruct the direct signal.
     4. For the most current communication and broadcasting systems using OFDMmodulated signal, and supporting single frequency network structure, we adviseOFDM-SFN passive bistatic radar to improve target detection reliability. But in the SFN,the multiple signals from different directions to detect target, it is most likely to causethe large delay spread. Furthermore, transmitting the orthogonal subcarriers, OFDM isvery sensitive to the carrier frequency offset. For these two problems, in the case ofhaving no illuminator information, we propose to covert the large time delay into asmall delay by using the array antenna, model a new tensor receivers, and simultaneousestimate delay and Doppler frequency offset by using joint diagonalization method,which solve the poor estimation accuracy of frequency-domain blind source separationalgorithm in the large delay spread.
     5. For the large delay in OFDM-SFN, suggests another way to send and receivebased on cyclic shift and space-time coding, the receiver will be able to use a singleantenna to combat the large delay spread, which achieve the goal of simplifying thesystem configuration at the receiver. And for two-step positioning error in theconventional location algorithm for the SFN multi-station positioning, we adopt to usethe direct target location based on OFDM signal characteristics. Compared with the conventional positioning method, the proposed can achieve higher estimation accuracy,especially in the low SNR.
引文
[1]薛晓春,王雪华.隐身与反隐身技术的发展研究.现代防御技术.2004,32(2),60-65.
    [2]李金梁,李永祯,王雪松.米波极化雷达的反隐身研究.雷达科学与技术.2005,3(6),321-326,386.
    [3]黄兴,唐宏,牛超,等.无源雷达反隐身技术及其发展趋势探析.飞航导弹.2012(03),31-35.
    [4]王小谟,吴曼青,王政.未来战争中的“沉默哨兵”—外辐射源目标探测与跟踪雷达.现代军事.2000,10-12.
    [5] Kuschel H, Heckenbach J, Muller S, et al. On the potentials of passive,multistatic, low frequency radars to counter stealth and detect low flying targets.Radar Conference, Rome: IEEE,2008.1-6.
    [6] Poullin D, Flecheux M, Klein M. New capabilities for PCL system:3Dmeasurement for receiver in multidonors configuration. European RadarConference, Paris:2010.344-347.
    [7]赵洪立.基于调频广播的无源雷达系统中微弱目标检测技术的研究.西安电子科技大学,2006.
    [8]李红伟.外辐射源雷达目标定位与跟踪方法研究.西安电子科技大学,2012.
    [9] Baczyk M K, Malanowski M. Reconstruction of the Reference Signal inDVB-T-based Passive Radar. International Journal of Electronics andTelecommunications.2011,57(1),43-48.
    [10] Griffiths H D, Baker C J. Passive coherent location radar systems. Part1:Performance prediction. IEE Proceedings-Radar, Sonar and Navigation.2005,152(3),153-159.
    [11] Potter L C, Ertin E, Parker J T, et al. Sparsity and compressed sensing in radarimaging. Proceedings of the IEEE.2010,98(6),1006-1020.
    [12] Wang Q, Lu Y L, Hou C P. Evaluation of WiMAX transmissions for passiveradar applications. Microwave and Optical Technology Letters.2010,52(7),1507-1509.
    [13]王俊,赵洪立,张守宏,等.非合作连续波雷达中存在强直达波和多径杂波的运动目标检测方法.电子学报.2005,33(3),419-422.
    [14] Willis N J. Bistatic radar. SciTech Publishing,2005.
    [15] Trim R M. Technical History of the Beginnings of Radar. Electronics andPower.1986,32(11.12),830.
    [16] Griffiths H, Willis N. Klein Heidelberg--a WW2bistatic radar system that wasdecades ahead of its time.
    [17] Kuschel H, O'Hagan D. Passive radar from history to future. International RadarSymposium, Vilnius, Lithuania: IEEE,2010.1-4.
    [18] Skolnik M I. An analysis of bistatic radar. IRE Transactions on Aerospace andNavigational Electronics.1961(1),19-27.
    [19] Ewing E F. The applicability of bistatic radar to short range surveillance.International radar reference, London: IEEE,1977.53-58.
    [20] Milne K. Principles and concepts of multistatic surveillance radars.International radar conference, London: IEEE,1977.46-52.
    [21] Afendykiw M. Bistatic Passive Radar. Google Patents,1974.
    [22] Schoenenberger J G, Forrest J R. Principles of independent receivers for usewith co-operative radar transmitters. Radio and Electronic Engineer.1982,52(2),93-101.
    [23] Griffiths H D, Carter S M. Provision of moving target indication in anindependent bistatic radar receiver. Radio and Electronic Engineer.1984,54(7),336-342.
    [24] Griffiths H D, Long N. Television-based bistatic radar. Communications, Radarand Signal Processing, IEE,1986.649-657.
    [25] Griffiths H D, Garnett A J, Baker C J, et al. Bistatic radar using satellite-borneilluminators of opportunity. IEEE Radar Conference, Brighton: IEEE,1992.276-279.
    [26] Poullin D, Lesturgie M. Radar Multistatic a Emissions Non Cooperatives. IEEConference Publications (Radar), Pairs: IEEE,1994.
    [27] Howland P E. A passive metric radar using a transmitter of opportunity. Proc.International Conference on Radar, Paris: IEE,1994.251-256.
    [28] Howland P E. Target tracking using television-based bistatic radar.1999,146(3),166-174.
    [29] Sahr J D, Lind F D. The Manastash Ridge radar: A passive bistatic radar forupper atmospheric radio science. Radio Science.1997,32(6),2345-2358.
    [30] Lind F D, Sahr J D, Gidner D M. First passive radar observations of auroralE-region irregularities. Geophysical research letters.1999,26(14),2155-2158.
    [31] Meyer M G, Sahr J D. Passive coherent scatter radar interferometerimplementation, observations, and analysis. Radio science.2004,39(3).
    [32] Mcintosh J C. Passive three dimensional track of non-cooperative targetsthrough opportunistic use of global positioning system (GPS) and GLONASSsignals. Google Patents,2001.
    [33] Tsui J B. Passive ranging using global positioning system. Google Patents,2000.
    [34] Tan D, Sun H, Lu Y, et al. Passive radar using global system for mobilecommunication signal: theory, implementation and measurements. IEEProceedings-Radar, Sonar and Navigation.2005,152(3),116-123.
    [35] De Maio A, Foglia G, Pasquino N, et al. Measurement and analysis of cluttersignal from GSM/DCS-based passive radar. IEEE Radar Conference, Rome:IEEE,2008.1-6.
    [36] Wang H, Wang J, Li H. Target detection using CDMA based passive bistaticradar. Journal of Systems Engineering and Electronics.2012,23(6),858-865.
    [37] Liu P, Liu J. Analysis of passive targets detection using CDMA signal.International Workshop on VLSI Design and Video Technology, IEEE,2005.408-410.
    [38] Saini R, Cherniakov M. DTV signal ambiguity function analysis for radarapplication. IEE Proceedings-Radar, Sonar and Navigation.2005,152(3),133-142.
    [39] Poullin D. Passive detection using digital broadcasters (DAB, DVB) withCOFDM modulation. IEE Proceedings-Radar, Sonar and Navigation.2005,152(3),143-152.
    [40] Conti M, Berizzi F, Petri D, et al. High range resolution DVB-T passive radar.European Radar Conference, Paris:2010.109-112.
    [41] O'Hagan D W, Kuschel H, Heckenbach J, et al. Signal reconstruction as aneffective means of detecting targets in a DAB-based PBR. International RadarSymposium, Vilnius, Lithuania: IEEE,2010.1-4.
    [42] Guo H, Woodbridge K, Baker C J. Evaluation of WiFi beacon transmissions forwireless based passive radar. IEEE Radar Conference, Rome: IEEE,2008.1-6.
    [43] Chetty K, Smith G, Guo H, et al. Target detection in high clutter using passivebistatic WiFi radar. IEEE Radar Conferenc, Pasadena, CA: IEEE,2009.1-5.
    [44] Falcone P, Colone F, Lombardo P, et al. Range sidelobes reduction filters forWiFi-based passive bistatic radar. European Radar Conference, Rome:2009.133-136.
    [45] Falcone P, Colone F, Bongioanni C, et al. Experimental results for OFDMWiFi-based passive bistatic radar. IEEE Radar Conference, Washington, DC:IEEE,2010.516-521.
    [46] Colone F, Woodbridge K, Guo H, et al. Ambiguity function analysis of wirelessLAN transmissions for passive radar. IEEE Transactions on Aerospace andElectronic Systems.2011,47(1),240-264.
    [47] Colone F, Falcone P, Bongioanni C, et al. WiFi-based passive bistatic radar:data processing schemes and experimental results. IEEE Transactions onAerospace and Electronic Systems.2012,48(2),1061-1079.
    [48] Falcone P, Colone F, Lombardo P. Doppler frequency sidelobes level controlfor WiFi-based passive bistatic radar. IEEE Radar Conference, Kansas City, MO:IEEE,2011.435-440.
    [49] Thomas J M, Griffiths H D, Baker C J. Ambiguity function analysis of DigitalRadio Mondiale signals for HF passive bistatic radar. Electronics Letters.2006,42(25),1482-1483.
    [50] Chetty K, Woodbridge K, Guo H, et al. Passive bistatic WiMAX radar formarine surveillance. IEEE Radar Conference, Washington, DC: IEEE,2010.188-193.
    [51] Colone F, De Leo G, Paglione P, et al. Direction of arrival estimation formulti-frequency FM-based passive bistatic radar. IEEE Radar Conference,Kansas, MO: IEEE,2011.441-446.
    [52] Millet N, Klein M. Passive radar air surveillance: last results with multi-receiversystems. International Radar Symposium, Leipzig: IEEE,2011.281-285.
    [53] Olsen K E, Woodbridge K. Analysis of the performance of a multiband passivebistatic radar processing scheme. International Waveform Diversity and DesignConference, Niagara Falls, ON:2010.142-149.
    [54] Olsen K E, Woodbridge K, Andersen I A. FM based passive bistatic radar targetrange improvement-Part II. International Radar Symposium, Vilnius, Lithuania:IEEE,2010.1-8.
    [55] Schroder A, Edrich M, Wolschendorf F. Multiband experimental PCL system:concept and measurement results. International Radar Symposium, Vilnius,Lithuania: IEEE,2010.1-4.
    [56] Inggs M. Passive coherent location as cognitive radar. IEEE Aerospace andElectronic Systems Magazine.2010,25(5),12-17.
    [57] Conti M, Berizzi F, Petri D, et al. High range resolution DVB-T Passive Radar.European Radar Conference, Piscataway, NJ, USA:2010.109-112.
    [58] Kulpa K, Malanowski M. The concept of simple MIMO PCL radar. EuropeanRadar Conference, Amsterdam:2008.240-243.
    [59] Wang Q, Hou C, Lu Y. WiMAX signal generation based on MIMO-OFDMtestbed for passive radar application. IEEE Conference on Industrial Electronicsand Applications, Xi'an: IEEE,2009.2582-2587.
    [60] Berger C R, Moura J E M. Noncoherent compressive sensing with applicationto distributed radar.45th Annual Conference on Information Sciences andSystems, Baltimore, MD:2011.1-6.
    [61] Daun M, Koch W. Multistatic target tracking for non-cooperative illuminatingby DAB/DVB-T. Europe OCEANS, Aberdeen:2007.1-6.
    [62]贾玉贵.现代对空情报雷达.国防工业出版社,2004.
    [63] Bicik P. Passive radar: here comes the new generation VERA-NG. Piscataway,NJ, USA:2010.4.
    [64]王腾朝,杨靖雯,赵杭生,等.“沉默哨兵”系统及其核心技术.军事通信技术.2009,4,91-95.
    [65] Baniak J, Baker G, Cunningham A M, et al. Silent sentry passive surveillance.Aviation week and space technology.1999,7,120-125.
    [66] Brown A, Mathews B. Test Results from a Novel Passive Bistatic GPS RadarUsing a Phased Sensor Array. Proceeding of ION NTM, San Diego:2007.1-6.
    [67]左斌,赵洪立.无源探测雷达系统的现状及发展趋势浅述.中国科技信息.2009,14,52-53.
    [68]陶建义.基于外辐射源的无源雷达技术.现代电子.2002(3),5-9.
    [69]曲长文,何友.基于电视或调频广播的非合作式双(多)基地雷达及关键技术.现代雷达.2001,23(1),19-23.
    [70]鞠晓燕,陶然,王越.基于多抽样率信号处理的无源雷达MTD方法.现代雷达.2004,26(4),43-46.
    [71]王海涛.外辐射源雷达信号处理若干问题研究.西安电子科技大学,2013.
    [72]徐世友.基于直播卫星发射信号的空间目标被动探测技术.国防科学技术大学,2003.
    [73]王俊,水鹏朗,保铮,等.基于分数迟延估计的外辐射源雷达杂波相消算法.西安电子科技大学学报.2005,32(3),378-382.
    [74] Gao Z W, Tao R, Wang Y. Analysis and side peaks identification of ChineseDTTB signal ambiguity functions for passive radar. Science in China Series F:Information Sciences.2009,52(8),1409-1417.
    [75]高志文,陶然,单涛. DVB-T辐射源雷达信号模糊函数的副峰分析与抑制.电子学报.2008,36(3),505-509.
    [76]杨金禄,单涛,陶然.数字电视辐射源雷达的相参积累徙动补偿方法.电子与信息学报.2011,33(2),407-411.
    [77]高志文,陶然,王越.单频网数字电视广播辐射源雷达目标定位算法.兵工学报.2010(6),791-795.
    [78] Tao S, Miao W, Jinlu Y, et al. Research on the interference cancelation in SFNbased passive radar. International Conference on Measuring Technology andMechatronics Automation, Shangshai:2011.124-127.
    [79] Tao S, Ran T, Rong S R. A fast method for time delay, Doppler shift andDoppler rate estimation. International Conference on Radar, Shanghai: IEEE,2006.1-4.
    [80] Wan X, Shao Q, Ke H, et al. HF Passive Bistatic Surface Wave Radar Based onDRM Digital AM Broadcast. Radar Science and Technology.2009,6,2.
    [81]万显荣,张德磊,柯亨玉,等.全球性数字广播高频外辐射源雷达参考信号重构.系统工程与电子技术.2012,34(11),2231-2236.
    [82] Ozcetin A. Music, CBF and differential algebraic constant modulus algorithmsfor direction of arrival estimation in passive coherent locators. Turk J Elec Engin.2003,11(2),95-115.
    [83]万显荣.基于低频段数字广播电视信号的外辐射源雷达发展现状与趋势.雷达学报.2012,01(2),109-123.
    [84]万显荣,赵志欣,柯亨玉,等.基于DRM数字调幅广播的高频外辐射源雷达实验研究.雷达学报.2012(01),11-18.
    [85] Wang Q, Hou C, Lu Y. An Experimental Study of WiMAX-Based PassiveRadar. IEEE Transactions on Microwave Theory and Techniques.2010,58(12),3502-3510.
    [86] Griffiths H, Baker C. The signal and interference environment in passivebistatic radar. Information, Decision And Control, Adelaide: IEEE,2007.1-10.
    [87] Harms H A, Davis L M, Palmer J. Understanding the signal structure in DVB-Tsignals for passive radar detection. IEEE Radar Conference, Washington, DC:IEEE,2010.532-537.
    [88] Radmard M, Bastani M, Behnia F, et al. Cross ambiguity function analysis ofthe'8k-mode'DVB-T for passive radar application. International RadarSymposium, Vilnius, Lithuania: IEEE,2010.1-4.
    [89] Colone F, Cardinali R, Lombardo P, et al. Space-time constant modulusalgorithm for multipath removal on the reference signal exploited by passivebistatic radar. IEE Proceedings-Radar, Sonar and Navigation.2009,3(3),253-264.
    [90] Zhao D, Xu C, Zhang Y. The purification technology based on2D constantmodulus algorithm for direct waves. RADAR\&ECM.2010,30(2),5-12.
    [91] Zemmari R. Reference signal extraction for GSM passive coherent location.International Radar Symposium, Vilnius, Lithuania: IEEE,2010.1-4.
    [92] Coleman C, Yardley H. Passive bistatic radar based on target illuminations bydigital audio broadcasting. IEE Proceedings-Radar, Sonar and Navigation.2008,2(5),366-375.
    [93]朱家兵,洪一.基于复倒谱技术的无源雷达直达波提纯方法.现代雷达.2007,29(8),75-78.
    [94]吴海洲,陶然,单涛.数字电视辐射源雷达基于空域滤波的直达波获取.兵工学报.2009,30(2),226-230.
    [95] Palmer J, Palumbo S, Summers A, et al. An overview of an illuminator ofopportunity passive radar research project and its signal processing researchdirections. Digital Signal Processing.2011,21(5),593-599.
    [96]徐定杰,吕东泽,沈锋. GPS辐射源的无源雷达两级干扰抑制方法.哈尔滨工程大学学报.2012,33(3),336-341.
    [97] Kulpa K. The clean type algorithms for radar signal processing. Microwaves,Radar and Remote Sensing Symposium, Kiev:2008.152-157.
    [98] Kulpa K S, Czekala Z. Masking effect and its removal in PCL radar. IEEProceedings-Radar, Sonar and Navigation.2005,152(3),174-178.
    [99] Colone F, O'Hagan D W, Lombardo P, et al. A multistage processing algorithmfor disturbance removal and target detection in passive bistatic radar. IEEETransactions on Aerospace and Electronic Systems.2009,45(2),698-722.
    [100] Palmer J E, Searle S J. Evaluation of adaptive filter algorithms for cluttercancellation in passive bistatic radar. IEEE Radar Conference, Atlanta, GA:IEEE,2012.493-498.
    [101] Colone F, Cardinali R, Lombardo P. Cancellation of clutter and multipath inpassive radar using a sequential approach. IEEE Conference on Radar, Verona(NY), USA: IEEE,2006.7.
    [102] Masjedi M, Modarres-Hashemi M, Sadri S. Direct path and multipathcancellation in passive radars using Subband Variable Step-Size LMS algorithm.Iranian Conference on Electrical Engineering, Tehran:2011.1-5.
    [103] Lombardo P, Colone F, Bongioanni C, et al. PBR activity at INFOCOM:adaptive processing techniques and experimental results. IEEE Radar Conference,Rome: IEEE,2008.1-6.
    [104] Cardinali R, Colone F, Ferretti C, et al. Comparison of clutter and multipathcancellation techniques for passive radar. IEEE Radar Conference, Boston, MA:IEEE,2007.469-474.
    [105] Tsai P H E, Ebrahim K, Lange G, et al. Null placement in a circular antennaarray for passive coherent location systems. IEEE International RadarConference, Washington, DC, USA: IEEE,2010.1140-1143.
    [106] Luthra A. A solution to the adaptive nulling problem with a look-directionconstraint in the presence of coherent jammers. IEEE Transactions on Antennasand Propagation.1986,34(5),702-710.
    [107] Fabrizio G, Colone F, Lombardo P, et al. Adaptive beamforming forhigh-frequency over-the-horizon passive radar. IET radar, sonar\&navigation.2009,3(4),384-405.
    [108] Kihira K, Takahashi R, Hirata K, et al. An adaptive array antenna using blindextraction of signal subspace in radar. Electronics and Communications in Japan(Part I: Communications).2006,89(12),45-53.
    [109] Guner A, Temple M A, Claypoole R L. Direct-path filtering of DAB waveformfrom PCL receiver target channel. Electronics Letters.2003,39(1),118-119.
    [110] Deng J, Hwang J, Lin C, et al. Adaptive space-time beamforming technique forpassive radar system with ultra low signal to interference ratio. InternationalConference on Wireless Information Technology and Systems, Honolulu, HI:IEEE,2010.1-4.
    [111] Raout J, Santori A, Moreau E. Space-time clutter rejection and target passivedetection using the APES method. IET Signal Processing.2010,4(3),298-304.
    [112] Raout J, Santori A, Moreau E. Passive bistatic noise radar using DVB-T signals.IET radar, sonar\&navigation.2010,4(3),403-411.
    [113] Berger C R, Demissie B, Heckenbach J, et al. Signal processing for passiveradar using OFDM waveforms. IEEE Journal of Selected Topics in SignalProcessing.2010,4(1),226-238.
    [114] Meller M. Cheap Cancellation of Strong Echoes for Digital Passive and NoiseRadars. IEEE Transactions on Signal Processing.2012,60(5),2654-2659.
    [115] Baker C J, Griffiths H D, Papoutsis I. Passive coherent location radar systems.Part2: Waveform properties. IEE Proceedings-Radar, Sonar and Navigation.2005,152(3),160-168.
    [116] Tan D, Sun H, Lu Y, et al. Passive radar using global system for mobilecommunication signal: theory, implementation and measurements.2005.116-123.
    [117] Zhou C C. Application and extension of space-time adaptive processing topassive FM radar.2003.
    [118] Punchihewa A, Bhargava V K, Despins C. Blind estimation of OFDMparameters in cognitive radio networks. IEEE Transactions on WirelessCommunications.2011,10(3),733-738.
    [119] V. Naganjaneyulu P. Adaptive Channel Estimation in OFDM System UsingCyclic Prefix (Kalman Filter Approach). Int'l J. of Communications, Networkand System Sciences.2009,2(9),852-856.
    [120] Gardner W A, Napolitano A, Paura L. Cyclostationarity: Half a century ofresearch. Signal processing.2006,86(4),639-697.
    [121] Abed-Meraim K, Xiang Y, Manton J H, et al. Blind source-separation usingsecond-order cyclostationary statistics. IEEE Transactions on Signal Processing.2001,49(4),694-701.
    [122] Like E, Chakravarthy V D, Ratazzi P, et al. Signal classification in fadingchannels using cyclic spectral analysis. EURASIP Journal on WirelessCommunications and Networking.2009,2009,29.
    [123]刘洋,邱天爽.一种基于多循环频率的韧性时延与多普勒频移联合估计算法.电子学报.2011,39(10),2311-2316.
    [124] Gelli G, Izzo L, Paura L. Cyclostationarity-based signal detection and sourcelocation in non-Gaussian noise. IEEE Transactions on Communications.1996,44(3),368-376.
    [125] Yan H, Fan H H. Signal-selective DOA tracking for wideband cyclostationarysources. IEEE Transactions on Signal Processing.2007,55(5).
    [126] Xu G, Kailath T. Direction-of-arrival estimation via exploitation ofcyclostationary-a combination of temporal and spatial processing. IEEETransactions on Signal Processing.1992,40(7),1775-1786.
    [127]刘志刚,汪晋宽,薛延波.一种基于实值化技术的循环平稳DOA算法.控制与决策.2006,21(8),945-947.
    [128] Ghogho M, Swami A, Durrani T. On blind carrier recovery in time-selectivefading channels. Proc.33rd Asilomar Conference, Pacific Grove: IEEE,1999.243-247.
    [129] Gini F, Giannakis G B. Frequency offset and symbol timing recovery inflat-fading channels: a cyclostationary approach. IEEE Transactions onCommunications.1998,46(3),400-411.
    [130] Haykin S. Advances in spectrum analysis and array processing Volume3.Prentice-Hall,1991.
    [131] Daun M, Nickel U, Koch W. Tracking in multistatic passive radar systemsusing DAB/DVB-T illumination. Signal Processing.2012,92(6),1365-1386.
    [132] Huang Z, Zhou Y, Jiang W. TDOA and Doppler estimation for cyclostationarysgnals based on multi-cycle frequencies. IEEE Transactions on Aerospace andElectronic Systems.2008,44(4),1251-1264.
    [133] Cichocki A, Amari S, Others. Adaptive blind signal and image processing. JohnWiley Chichester,2002.
    [134] Delfosse N, Loubaton P. Adaptive blind separation of independent sources: adeflation approach. Signal processing.1995,45(1),59-83.
    [135] Pham D, Cardoso J. Blind separation of instantaneous mixtures of nonstationarysources. IEEE Transactions on Signal Processing.2001,49(9),1837-1848.
    [136] Van der Veen A, Talwar S, Paulraj A. Blind identification of FIR channelscarrying multiple finite alphabet signals. International Conference on Acoustics,Speech, and Signal Processing, Detroit, MI: IEEE,1995.1213-1216.
    [137]王荣博,侯朝焕,杨俊.瞬时混合盲源分离和最优波束形成的关系研究.应用声学.2011,30(4),302-305.
    [138] Xu C, Zhang X, Xu Z. Detection in present of reverberation combined withblind source separation and beamforming. International Conference on AdvancedComputer Control, Shenyang:2010.158-162.
    [139] de Moura N N, Seixas J M, Greco A V, et al. Independent component analysisfor optimal passive sonar signal detection.2007.671-678.
    [140] Lin H, Yang W. Radar target recognition using a modified fastICA algorithmplus GAs. IEEE Region10Conference, Hong Kong: IEEE,2006.1-4.
    [141] Wang S, Jin G, Jin G, et al. Method to remove the interference in reflected waveof passive radar based on the improved FastICA. International Conference onElectronic Measurement Instruments, Beijing:2009.4-27.
    [142] Godard D. Self-recovering equalization and carrier tracking in two-dimensionaldata communication systems. IEEE Transactions on Communications.1980,28(11),1867-1875.
    [143] Colone F, Cardinali R, Lombardo P, et al. Space-time constant modulusalgorithm for multipath removal on the reference signal exploited by passivebistatic radar. IET Radar, Sonar\&Navigation.2009,3(3),253-264.
    [144] Bell A J, Sejnowski T J. An information-maximization approach to blindseparation and blind deconvolution. Neural computation.1995,7(6),1129-1159.
    [145] Zhu X, Zhang X. Adaptive RLS algorithm for blind source separation using anatural gradient. Signal Processing Letters, IEEE.2002,9(12),432-435.
    [146] Belouchrani A, Cichocki A. Robust whitening procedure in blind sourceseparation context. Electronics Letters.2000,36(24),2050-2051.
    [147] Belouchrani A, Abed-Meraim K, Cardoso J F, et al. A blind source separationtechnique using second-order statistics. IEEE Transactions on Signal Processing.1997,45(2),434-444.
    [148] Zhang Z, Yi Z. Robust extraction of specific signals with temporal structure.Neurocomputing.2006,69(7-9),888-893.
    [149] Wang L, Ding H, Yin F. Combining superdirective beamforming andfrequency-domain blind source separation for highly reverberant signals.EURASIP Journal on Audio, Speech, and Music Processing.2010,2010(797962),1-13.
    [150] Amari S. Natural gradient works efficiently in learning. Neural computation.1998,10(2),251-276.
    [151] Farquharson M, O'Shea P, Ledwich G. An algorithm for estimatingtime-varying Doppler at low SNR.2005.1-6.
    [152] Peng C, Zhang X. On recursive oblique projectors. IEEE Signal ProcessingLetters.2005,12(6),433.
    [153]文春艳,孙闽红,杜正聪.基于斜投影算子的雷达有源压制干扰抑制.攀枝花学院学报.2009,4.
    [154] Vollgraf R, Schieβl I, Obermayer K. Blind Source Separation of SingleComponents from Linear Mixtures[M]. Artificial Neural Networks—ICANN2001, Dorffner G, Bischof H, Hornik K, Springer Berlin Heidelberg,2001:2130,509-514.
    [155] Li X L, Zhang X D. Sequential blind extraction adopting second-order statistics.IEEE Signal Processing Letters.2007,14(1),58-61.
    [156] Zhang X, Feng G, Xu D. Blind direction of angle and time delay estimationalgorithm for uniform linear array employing multi-invariance MUSIC. ProgressIn Electromagnetics Research Letters.2010,13,11-20.
    [157] Ginolhac G, Jourdain G."Principal component inverse" algorithm for detectionin the presence of reverberation. IEEE Journal of Oceanic Engineering.2002,27(2),310-321.
    [158] Chevalier P. On the blind implementation of the ultimate source separators forarbitrary noisy mixtures. Signal processing.1999,78(3),277-287.
    [159] Howland P E, Maksimiuk D, Reitsma G. FM radio based bistatic radar. IEEProceedings-Radar, Sonar and Navigation.2005,152(3),107-115.
    [160]张各各,王俊,刘玉春.一种基于数字电视地面广播照射源的外辐射源雷达快速杂波相消算法.电子与信息学报.2013(01),36-40.
    [161]万显荣,岑博,程丰,等.基于CMMB的外辐射源雷达信号模糊函数分析与处理.电子与信息学报.2011,33(10),2489-2493.
    [162] Michael S, Stefan A F, Gunnar F, et al. Optimum receiver design for wirelessbroad-band systems using OFDM-part Ⅰ. IEEE Transactions onCommunications.1999,47(11),1668-1677.
    [163]海莉薇,葛万成.基于PN序列的符号同步算法研究.信息技术.2011(001),14-16.
    [164] Armstrong J. Analysis of new and existing methods of reducing intercarrierinterference due to carrier frequency offset in OFDM. IEEE Transactions onCommunications.1999,47(3),365-369.
    [165] Park B, Cheon H, Ko E, et al. A blind OFDM synchronization algorithm basedon cyclic correlation. IEEE Signal Processing Letters.2004,11(2),83-85.
    [166] Qiao Y, Wang Z, Ji Y. Blind frequency offset estimation based on cyclic prefixand virtual subcarriers in CO-OFDM system. Chinese Optics Letters.2010,8(9),888-893.
    [167] Bongioanni C, Colone F, Langellotti D, et al. A new approach for DVB-Tcross-ambiguity function evaluation. European Radar Conference, Rome:2009.37-40.
    [168]高志文,陶然,王越. DTTB辐射源雷达信号模糊函数的分析及副峰识别.中国科学(F辑:信息科学).2009,11,10.
    [169] Yue R, Vorobyov S A, Gershman A B, et al. Blind spatial signature estimationvia time-varying user power loading and parallel factor analysis. IEEETransactions on Signal Processing.2005,53(5),1697-1710.
    [170] Hou-Shin C, Wen G, Daut D G. Spectrum sensing for OFDM systemsemploying pilot tones. IEEE Transactions on Wireless Communications.2009,8(12),5862-5870.
    [171] Coleri S, Ergen M, Puri A, et al. Channel estimation techniques based on pilotarrangement in OFDM systems. IEEE Transactions on Broadcasting.2002,48(3),223-229.
    [172] Haykin S. Cognitive radar: a way of the future. IEEE Signal ProcessingMagazine.2006,23(1),30-40.
    [173] Wang J, Yang Z X, Pan C Y, et al. Iterative padding subtraction of the PNsequence for the TDS-OFDM over broadcast channels. IEEE Transactions onConsumer Electronics.2005,51(4),1148-1152.
    [174] Tang S, Peng K, Gong K, et al. Robust frame synchronization for ChineseDTTB system. IEEE Transactions on Broadcasting.2008,54(1),152-158.
    [175]石峰,胡登鹏,王晨,等.一种基于PN序列加权前导的自适应OFDM符号同步算法.电子与信息学报.2011,33(5),1166-1171.
    [176] Wang Z, Ma X, Giannakis G B. OFDM or single-carrier block transmissions?IEEE Transactions on Communications.2004,52(3),380-394.
    [177]马逸新,姜永权.一种循环前缀为PN序列的OFDM信道估计算法.信息技术.2006,30(9),48-51.
    [178] Hagenauer J, Hoeher P A. A Viterbi algorithm with soft-decision outputs and itsapplications.1989.1680-1686.
    [179] Song B, Gui L, Guan Y, et al. On channel estimation and equalization inTDS-OFDM based terrestrial HDTV broadcasting system. IEEE Transactions onConsumer Electronics.2005,51(3),790-797.
    [180] Gao Z, Tao R, Ma Y, et al. DVB-T signal cross-ambiguity functionsimprovement for passive radar. International Conference On Radar, Shanghai:2006.1-4.
    [181]张各各,王俊,李进,等.平行因子在被动相干定位系统中的应用.电子与信息学报.2012,34(7),1596-1601.
    [182] Santra A, Hari K. Novel subspace methods for blind estimation of multipleCFOs in MIMO-OFDM systems. International Conference on Signal Processing,2010.1449-1452.
    [183] Araki S, Mukai R, Makino S, et al. The fundamental limitation of frequencydomain blind source separation for convolutive mixtures of speech. IEEETransactions on Speech and Audio Processing.2003,11(2),109-116.
    [184] Ikram M Z, Morgan D R. A beamforming approach to permutation alignmentfor multichannel frequency-domain blind speech separation. InternationalConference on Acoustics, Speech, and Signal Processing, Orlando, FL, USA:IEEE,2002.881-884.
    [185] Linnartz J. Delay Spread: wireless communication[EB/OL].2013.http://www.wirelesscommunication.nl/reference/chaptr03/fading/delayspr.htm.
    [186] Higher-Order Singular Value Decomposition: Theory and an Application.
    [187] Tucker L R. Some mathematical notes on three-mode factor analysis.Psychometrika.1966,31(3),279-311.
    [188] Sidiropoulos N D, Giannakis G B, Bro R. Blind PARAFAC receivers forDS-CDMA systems. IEEE Transactions on Signal Processing.2000,48(3),810-823.
    [189] de Baynast A, De Lathauwer L, Aazhang B. Blind PARAFAC receivers formultiple access-multiple antenna systems. Vehicular Technology Conference,IEEE,2003.1128-1132.
    [190] De Lathauwer L. Decompositions of a higher-order tensor in block terms—PartII: Definitions and uniqueness. SIAM J. Matrix Anal. Appl.2008,30(3),1033-1066.
    [191]张剑云,郑志东,李小波.双基地MIMO雷达收发角及多普勒频率的联合估计算法.电子与信息学报.2010(8),1843-1848.
    [192] Nion D, De Lathauwer L. A tensor-based blind ds-cdma receiver usingsimultaneous matrix diagonalization. IEEE8th Workshop on Signal ProcessingAdvances in Wireless Communications, Helsinki:2007.1-5.
    [193] De Lathauwer L, Castaing J. Tensor-based techniques for the blind separationof DS-CDMA signals. Signal Processing.2007,87(2),322-336.
    [194] Ji-Woong C, Jungwon L, Qing Z, et al. Joint ml estimation of frame timing andcarrier frequency offset for OFDM systems employing time-domain repeatedpreamble. IEEE Transactions on Wireless Communications.2010,9(1),311-317.
    [195] Dianat M, Taban M R, Tadaion A A. A new approach for target localizationusing Maximum Likelihood Estimation in MIMO radar. Canadian Conference onElectrical and Computer Engineering, Niagara Falls, ON:2011.745-748.
    [196] Yan J, Wu L. A passive location system for single frequency networks usingdigital terrestrial TV signals. European Transactions on Telecommunications.2011,22(8),487-499.
    [197] Dai L, Wang Z, Pan C, et al. Wireless Positioning Using TDS-OFDM Signals inSingle-Frequency Networks. IEEE Transactions on Broadcasting.2012,58(2),236-246.
    [198] Daun M, Berger C R. Track initialization in a multistatic DAB/DVB-T network.International Conference on Information Fusion, Cologne:2008.1-8.
    [199] Weiss A J. Direct position determination of narrowband radio frequencytransmitters. IEEE Signal Processing Letters.2004,11(5),513-516.
    [200] Amar A, Weiss A J. Direct position determination of multiple radio signals.IEEE International Conference on Acoustics, Speech, and Signal Processing,2004.81.
    [201] Alamouti S M. A simple transmit diversity technique for wirelesscommunications. IEEE Journal on Selected Areas in Communications.1998,16(8),1451-1458.
    [202] Wang J T, Song J, Wang J, et al. A general SFN structure with transmitdiversity for TDS-OFDM system. IEEE Transactions on Broadcasting.2006,52(2),245-251.
    [203] Bialkowski K S, Clarkson I V L. Passive radar signal processing in singlefrequency networks. Asilomar Conference on Signals, Systems and Computers(ASILOMAR), Pacific Grove, CA:2012.199-202.
    [204] Parviainen H, Kyosti P, Zhao X, et al. Novel radio channel models forevaluation of DVB-H broadcast systems. International Symposium on Personal,Indoor and Mobile Radio Communications,2006.1-5.
    [205] Alamouti S M. A simple transmit diversity technique for wirelesscommunications. IEEE Journal on Selected Areas in Communications.1998,16(8),1451-1458.
    [206] Telatar E. Capacity of Multi-antenna Gaussian Channels. European transactionson telecommunications.1999,10(6),585-595.
    [207] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data ratewireless communication: Performance criterion and code construction. IEEETransactions on Information Theory.1998,44(2),744-765.
    [208] Sandhu S, Paulraj A. Space-time block codes: A capacity perspective.Communications Letters, IEEE.2000,4(12),384-386.
    [209] Yang F, Peng K, Wang J, et al. Transmit diversity scheme and flexible channelestimation for TDS-OFDM system. IEEE69th Vehicular TechnologyConference, Barcelona:2009.1-5.
    [210] Eldar Y C, Kuppinger P, Bolcskei H. Block-sparse signals: Uncertaintyrelations and efficient recovery. IEEE Transactions on Signal Processing.2010,58(6),3042-3054.
    [211] Tropp J A, Gilbert A C. Signal recovery from random measurements viaorthogonal matching pursuit. IEEE Transactions on Information Theory.2007,53(12),4655-4666.
    [212] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit.SIAM journal on scientific computing.1998,20(1),33-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700