用户名: 密码: 验证码:
先驱体转化法制备ZrO_2改性的C/SiC复合材料及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C/SiC复合材料是一种新型高温热结构材料,在航空航天和军事领域具有潜在的应用背景,但其耐高温、抗氧化性能不足,长期使用温度不超过1650℃,1700℃以上性能显著下降。为了解决C/SiC复合材料在耐高温、抗氧化性能的缺陷,本文采用先驱体转化法(PIP),将ZrO_2引入SiC基体中,制备了ZrO_2改性的C/SiC复合材料,系统研究了ZrO_2的引入方式、ZrO_2引入后基体陶瓷的氧化和烧蚀机理以及ZrO_2的引入导致复合材料性能的变化。
     首先对作为ZrO_2先驱体的含锆化合物进行筛选,候选材料有含锆有机物:乙酰丙酮锆(Zr(AcAc)4)、正丁醇锆(Zr(OBu)4)、正丙醇锆(Zr(OPr)4)和含锆无机物:八水合氧氯化锆(ZrOCl2?8H2O)。研究发现,三种有机锆源均可溶于PCS的DVB溶液,采用Zr(OBu)4为有机锆源制备的浸渍液具有最佳的工艺性能和陶瓷产率,最佳配比为PCS:DVB:Zr(OBu)4=2:1:2,陶瓷产率为43.93%;ZrOCl2?8H2O在甲醇中溶解度较好,并且与SiC陶瓷及C/SiC复合材料具有较好的浸润性,可以用于制备浸渍液,陶瓷产率为12.3%。
     为了研究ZrO_2的引入对基体性能的影响,制备了ZrO_2改性SiC本体陶瓷。结果发现,在本体陶瓷中,ZrO_2以细碎的颗粒状存在于块状SiC之间;随着ZrO_2含量的提高,材料的孔隙率也提高,当ZrO_2含量为29wt%时,孔隙率为23.6%,密度2.16g/cm3,加压浸渍可以降低本体陶瓷的孔隙率,采用加压浸渍工艺制备的本体陶瓷ZrO_2含量为14.3wt%,而孔隙率仅为7.89%,密度达2.31g/cm3;随着ZrO_2含量的提高,本体陶瓷在1700℃下的氧化失重增大,力学性能保留率下降,与ZrO_2含量为7wt%的本体陶瓷相比,含量29wt%的本体陶瓷在1700℃的氧化失重由1.23%升至15.58%,抗弯强度保留率由59.16%降至36.84%;ZrO_2改性SiC本体陶瓷的氧化行为分为三个阶段:第一阶段,在800~1500℃,SiC的惰性氧化占主导地位,主要氧化生成SiO_2,第二阶段,1500~1600℃,SiC的活性氧化逐渐占主导地位,SiO开始生成,第三阶段,1600℃以上,SiC活性氧化占主导地位,ZrO_2的碳热还原反应开始发生,并且PCS裂解SiC进一步分解放出气体,导致SiO_2玻璃相阻氧层破裂,材料内部暴露在空气中发生进一步氧化;ZrO_2改性SiC本体陶瓷的烧蚀率随着ZrO_2含量的提高而降低,ZrO_2含量从7wt%升至29wt%,本体陶瓷的质量烧蚀率由0.0367g/s降至0.0195g/s,ZrO_2含量为7wt%的材料烧蚀后裂开,29wt%的材料线烧蚀率为0.0361mm/s,烧蚀后本体陶瓷从中心至边缘ZrO_2含量降低,ZrO_2集中在烧蚀中心凹坑处,边缘部分集中了大量的SiO_2。
     在基体研究的基础上,制备了ZrO_2改性的C/ SiC复合材料,对其结构和性能进行表征,并对其氧化和烧蚀机理进行分析。研究发现,采用前几个周期浸渍PCS/Xylene的方式可以有效保护C纤维,保护后材料的抗弯强度明显提高,ZrO_2含量为25wt%的复合材料的抗弯强度为216MPa,未经保护的复合材料仅为103MPa;ZrO_2改性的C/SiC复合材料的抗弯强度主要与孔隙率有关,ZrO_2含量较多会导致孔隙率较高,但加压浸渍可以弥补这一缺点,加压浸渍制备的复合材料ZrO_2含量为9.0wt%,孔隙率仅为4.78%,抗弯强度达292MPa;1700℃氧化条件下,ZrO_2的天然氧化性开始显现出优势,使材料整体的抗氧化性提高,ZrO_2含量61wt%、25wt%和16wt%的材料1700℃下失重率分别为29.98%、34.71%、35.07%;ZrO_2含量为61wt%的材料质量烧蚀率和线烧蚀率分别为0.0161g/s和0.0185mm/s,比未引入ZrO_2的C/SiC复合材料(质量烧蚀率和线烧蚀率分别为0.0223g/s和0.0602mm/s)有较大幅度的降低。
Carbon fibre reinforced silicon carbide(C/SiC) composites is a new type of high temperature structural material with the potential application in the aeronautic, astronautic and military fields.However,C/SiC cannot be long-term utilized above 1650℃and properties are obviously declined above 1700℃due to the shortage of high temperature endurance and oxidation resistance. In this dissertation, ZrO_2 modified C/SiC composites were designed and fabricated by precursor infiltration pyrolysis (PIP) method. Systematic investigation were studied of the induction route of ZrO_2, oxidation and ablation behavior of matrix modified by ZrO_2,and the effect of content of ZrO_2 on the properties of C/SiC composites.
     Firstly, this paper focused on the choice of precursor on candidation of zirconium-2,4-pentanedionate(Zr(AcAc)4), zirconium n-butoxide(Zr(OBu)4) and zirconium n-propoxide(Zr(OPr)4) as organical precursor, ZrOCl2?8H2O as inorganical precursor. The result revealed that the organical precursor can dissolve into PCS and divinylbenzene(DVB) mixture, and Zr(OBu)4 is the most suitable precursor with the proportion of PCS:DVB:Zr(OBu)4=2:1:2 of which the yield is 43.93%. ZrOCl2?8H2O can be utilized as precursor due to high solubility in methanol and good infiltration in SiC ceramics and C/SiC composites and the yield is 12.3%.
     For the purpose of investigating the effect of ZrO_2 additional to properties of matrix, ZrO_2 modified SiC ceramics were prepared. ZrO_2 existed in the form of thin grains among SiC blocks.With increasing content of ZrO_2, the porosity increased consistently, the porosity of ceremics with 29wt% ZrO_2 was 23.6% and density was 2.16g/cm3. Infiltration with pressure can decrease the porosity. Ceramics prepared by this method of which ZrO_2 content was 14.3wt% had porosity 23.6%, and density 2.31g/cm3. After oxidation at 1700℃, with the content of ZrO_2 increasing, weight loss increased and retention of flexural strength decreased. Compared to ceremics with 7wt% ZrO_2, weight retention of ceremics with 29wt% ZrO_2 decreased from 59.16% to 36.84%. Oxidation behavior of ZrO_2 modified SiCceramics may be divided into three steps according to the temperature gradient. Firstly, oxidation of free C and passive oxidation of SiC forming SiO_2 happened at 800℃to 1500℃. Secondly, according to the temperature rising and pressure of O_2 decreasing, active oxidation of SiC gradually became dominant which formed SiO gas at 1500℃to 1600℃. Then, above 1600℃, carbo-thermal reaction began and pyrolysis of PCS continued with gas forming, which caused the protective SiO_2 destroyed and the inner region of the ceramics was oxided. The ablation rate decreased with content of ZrO_2. when ZrO_2 increased from 7wt% to 29wt%, the mass loss rate changed from 0.0367g/s to 0.0195g/s, and the linear recession rate changed from cracked to 0361mm/s. After ablation, proportion of ZrO_2 decreased from the ablation center to edge, ZrO_2 existed mostly at the ablation center and SiO_2 at the edge.
     ZrO_2 modified C/SiC composites were fabricated on base of the ceramics, and the structure and properties were investigated, the mechanisms of oxidation and ablation were also researched. The result showed that, C fibers were efficiently protected by ways of infiltrating PCS/Xylene at the former cycles.Flexual strength was obviously improved, flexural strength of composites with 25wt% ZrO_2 was 216MPa and the one without protection was only 103MPa. Infiltration with pressure can make up this limitation. Composites fabricated with pressure had ZrO_2 content 9.0wt%, porosity 4.78% and flexural strength 292MPa. The intrinsically resistant to oxidation of ZrO_2 emerged at 1700℃, which improved the oxidation resistance of whole material. Composites with ZrO_2 61wt%,25wt% and 16wt% had weight loss of 29.98%, 34.71% and 35.07%. Compared to C/SiC composites(0.0223g/s and 0.0602mm/s), the mass loss rate and linear recession rate of 61wt% ZrO_2 composites was 0.0161g/s and 0.0185mm/s.
引文
[1] Stanley R. Levine, Elizabeth J. Opila, Michael C. Halbig, et al. Evaluation of ultra-high temperature ceramics for aeropropulsion use. Journal of the European Ceramic Society, 2002, 22: 2757-2768
    [2] Doug F. The Advanced Ceramics Industry "An Increasingly Strategic Material"[R]. 2004, USACA
    [3] T. A. JACKSON, D. R. EKLUND,A. J. FINK. High speed propulsion: Performance advantage of advanced materials. JOURNAL OF MATERIALS SCIENCE, 2004, 39: 5905 - 5913
    [4]王其坤.先驱体浸渍裂解工艺制备Cf/UHTCp/SiC复合材料及其性能研究[D].长沙:国防科技大学博士学位论文,2008
    [5] Naslain R.CVI composites[R]. In: Warren Red.Ceramic Matrix Composites.London:Chapman and Hall.1992:199-243
    [6] Eesmann T M, Sheldon B W, and Lowden R A. Vapor-phase Fabrication and Properties of Continuous-filament Ceramic Composites[J]. Science, 1991,253:1104-1109
    [7] Stanley R L, Ahmed K N, Samuel L V. Flight-vehicle material structures, and dynamics assessment and future Directions[M]. Ceramics and ceramic-matrix composites. New York: The American Society of Mechanical Engineers, 1992
    [8] E. Paquette, Glen Burnie, MD, R.Warburton, et al., Cooled CMC Scramjet Combustor Structure Development[R]. AIAA 2002-4132
    [9]陈朝辉编著.先驱体结构陶瓷[M].国防科技大学出版社,长沙,2003
    [10]张长瑞,郝元恺编著.陶瓷基复合材料-原理、工艺、性能与设计[M].国防科技大学出版社,长沙,2001.1
    [11] David E.Glass.Ceramic Matrix Composite(CMC) Thermal Protection System(TPS) and Hot Structures for Hypersonic Vehicles[R].AIAA,2682.Dayton Ohio:NASA,2008
    [12] S R Levilt. J. Mater. Sci., 1973,8:793
    [13] K M Prewo et al. J. Mater. Sci., 1980,15:463
    [14]张玉娣,周新贵,张长瑞. Cf/SiC陶瓷基复合材料的发展与应用现状[J].材料工程.2005,4:60
    [15]李国明,刘辉,迟伟东,沈曾民溶胶一凝胶法制备高含锆Cf/C复合材料的研究[J].炭素技术,2010,29(4):31~35
    [16]韩杰才,胡平,张幸红,孟松鹤.超高温材料的研究进展[J].固体火箭技术.2005,28(4):289~293
    [17] L.Scatteria,A.Riccio,G.Rufolo,et al.PRORA-USV SHS:Ultra High Temperature Ceramic Materials for Sharp Hot Structures.AIAA,2005
    [18] Srtanley R.Levine,Elizabeth J.Opila,Jonathan A.Lorincz,et al.UHTC Composites for Leading Edges.2004,NASA Glenn Research Center
    [19] Sung S. Hwang, Alexander L. Vasiliev,Nitin P. Padture. Improved processing and oxidation-resistance of ZrB2 ultra-high temperature ceramics containing SiC nanodispersoids. Materials Science and Engineering A, 2007, 464: 216-225.
    [20] Ohlhorst C W,Vaughn W L.Arc jet results on candidate high temperature coatings for NASA’s NGLT refractory composite leading edge task[R].NASA/Langley Research Center
    [21] Lee D W,Won J H,Kim K H,et al.Microstructural evolution of La-doped SiB6 high-temperature thermoelectric material during a spark plasma sintering.Materials Research Society Symposium Proceedings,2002,691:239
    [22] Zhang R,Gao L G,Jing K.Ferroelectric NaNbO3 ceramics fabricated by spark plasma sintering.J American Ceramic Society,2003,86(8):1446
    [23] Shiro Shimada. Microstructural observation of ZrO_2 scales formed by oxidation of ZrC single crystals with formation of carbon. Solid State Ionics, 1997, 101~103: 749-754.
    [24]闫联生,李贺军,崔红等.超高温抗氧化复合材料研究进展.材料导报[J], 2004, 18(12): 41-44.
    [25] K. Edamoto, Y. Shirotori, T. Sato, et al. Photoemission spectroscopy study of the oxidation of HfC(1 0 0). Applied Surface Science, 2005, 244: 174-178.
    [26] Shiro Shimada. A thermoanalytical study on the oxidation of ZrC and HfC powders with formation of carbon. Solid State Ionics, 2002, 149: 319- 326.
    [27] B. P. Das, M. Panneerselvam,K.J. Rao. A novel microwave route for the preparation of ZrC–SiC composites. Journal of Solid State Chemistry, 2003, 173: 196-202.
    [28] CourtrightE L, Prater JT,Holcomb G R, Pierre G R,RappR A.Oxidation of hafnium carbide and hafnium carbide with additions of tantalum and praseodymium[J].Oxidation Of Metals, 1991, 36(5, 6): 423-437
    [29] Bargeron B, Benson R C, Jette A N, et al. Oxidation of hafnium carbide in the temperature range 1400℃to 2060℃[J]. Journal Of The American Ceramic Society, 1993, 76(4): 1040-1046
    [30]田庭燕,张玉军,孙峰等.ZrB2-SiC复合材料抗氧化性能研究.陶瓷,2006(5): 19-21.
    [31] T.A. Parthasarathy, R.A. Rapp, M. Opeka, et al. A model for the oxidation of ZrB2,HfB_2 and TiB_2. Acta Materialia, 2007, 55: 5999-6010.
    [32] Frederic Monteverde, Stefano Guicciardi,Alida Bellosi. Advances in microstructure and mechanical properties of zirconium diboride based ceramics. Materials Science and Engineering A, 2003, 346: 310-319.
    [33] Lee J S,Chang C M,Lee Y I,et al.Spark plasma Sintering(SPS) of NASICON ceramics.J American Ceramic Society,2004,87(2):305
    [34] Ron Loehman,Dale Zschiesche.Ultra-high temperature ceramics for hypersonic vehicle applications[R].Ronald E.Loehman,Sandia National Laboratories,Ceramic Materials Dept.Albuquerque,N.Mex
    [35] Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johnson S.Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra-high temperature ceramics[J]. Journal of Materials Science, 2004, 39(19): 5925-5937
    [36] A. Sayir, Carbon Fiber Reinforced Hafnium Carbide Composite. Journal of Materials Science. 39(2004)5995-6003
    [37] S. R. Levine, E. J. Opila, R. C. Robinson, et al., Characterization of an Ultra-High Temperature Ceramic Composite. Report NASA Glenn Research Center, 2003
    [38] S. R. Levine, E. J. Opila,J. A. Lorincz, UHTC Composites for Leading Edges, In: 2004 National Space & Missile Materials Symposium (NSMMS), Seattle, Washington, 2004
    [39] Ultramet Refractory coatings, http://www.ultramet.com/ceramic_protective_ coatings.html
    [40]李翠艳,李克智,欧阳海波,李贺军.HfC改性碳/碳复合材料的烧蚀性能[J].稀有金属材料与工程,2006,35(z2):365~366
    [41]崔红,苏君明,李瑞珍,李贺军,康沫狂.添加难熔金属碳化物提高Cf/C复合材料抗烧蚀性能的研究[J].西北工业大学学报,2000,18(4):669~670
    [42]王俊山,李仲平,许正辉,张中伟,刘朗.难熔金属及其化合物与Cf/C复合材料相互作用研究[J].宇航材料工艺,2006,2:50~55
    [43] O. Yamamoto, T. Sasamoto, M. Inagaki, Antioxidation of Carbon-Carbon Composites by SiC, Concentration Gradient and Zircon overcoating. Carbon. 33(1995)359-365
    [44] J. F. Huang, X. R. Zeng, H. J. Li, ZrSiO4 gradient multilayer oxidation protection coating for SiC coated Cf/C composites. Surface and Coatings Technology. 190(2005)255-259
    [45] D. Zhu, S. R. Choi, R. C. Robinson, et al., Advanced Environmental Barrier Coatings Development for Si-Based Ceramics. Report NASA/TM-2005-213444. NASA Glenn Research Center, 2005
    [46]尹衍生,李嘉.氧化锆陶瓷及其复合材料[M].化学工业出版社.北京,2004
    [47] Jemet J F,Lamicq P J. Composite Thermo-structures: An Overview of the French Experiences[J]. In: Naslain R ed. High Temperature Ceramic Matrix Composites. Bordeaux: Woodhead, 1993: 215-229.
    [48] Tanaka T, Tamari N, Kondoh I, et al. Fabrication of three-dimensional Tyranno fibre reinforced SiC composite by the polymer precursor method[J]. Ceram.International, 1998, 24:365-370.
    [49] Ziegler G, Richter I,Suttor D. Fiber-reinforced composites with polymer-derived matrix: processing, matrix formation and properties[J]. Composites Part A, 1999, 30: 411-417
    [50]侯向辉,李贺军,刘应楼等.先进陶瓷基复合材料制备技术-CVI法现状及进展[J].硅酸盐通报,1999,(2):32~36
    [51] Byung J O, Young J L, Doo J C. Febrication of carbon/silicon carbide composites by isothermal chemical vapor infiltration, using the in situ whisker-growing and matrix-filling process [J]. Journal of the American Ceramic Society, 2001, 84(1): 245~247
    [52] Krenkel W. Ceramic Matrix Composites-Fiber Reinforced Ceramics and their Applications [M]. Weinheim: WILEY-VCH, 2008: 113~139
    [53] Shin D W, Park S S, Choa Y H, et al. Silicon/silicon carbide composites fabricated by infiltration of a silicon melt into harcoal [J]. Journal of the American Ceramic Society, 1999, 82(11): 3251~3253
    [54] Suzuki K, Kume S, Nakano K. Fabrication and characterization of 3D C/SiC composites via slurry and PCVI joint process [J]. Key Engineering Materials, 1999, 164-165: 113~116
    [55] Berbon M Z, Dietrich D R, Marshall D B, et al. Transverse thermal conductivity of thin C/SiC composites fabricated by slurry infiltration and pyrolysis [J]. Journal of the American Ceramic Society, 2001, 84(10): 2229~2234
    [56]何新波.连续纤维增强碳化硅陶瓷基复合材料研究.长沙:中南工业大学博士学位论文, 2000
    [57] K. Suzuki, S.Kume,K. Nakano. Fabrication and characterization of 3D C/SiC composites via slurry and PCVI joint process. Key Engineering Materials, 1999, 164-165: 113-116
    [58]王焆,李晨,徐博.溶胶-凝胶法的基本原理、发展及应用现状.化学工业与工程[J].2009,26(3):273~277
    [59]曹淑伟,谢征芳,王军,王浩.聚锆碳硅烷陶瓷先驱体的制备与表征[J].高分子学报,2008,6:621-625
    [60]陈曼华. PIP工艺制备陶瓷基复合材料中的交联固化研究[D].长沙:国防科技大博士学位论文,2005
    [61]陈守刚,尹衍升,周春华.氧化锆相变稳定机制的研究进展及应用[J].硅酸盐通报.2004,3:73-76
    [62]梅冰,苏勋家,侯跟良,王廷斌等.液相先驱体转化法制备ZrC粉末及合成机理[J].固体火箭技术,2008,31(3):275~278
    [63] W.L.Vaughn,H.G.Maahs,Active-to-passive transition in the oxidation of silicon carbide and silicon nitride in air[J].Am.Ceram.Soc.73(6)(1990)1540-1543
    [64] E.A.Gulbransen,K.F.Andrew,F.A.Brassart,the oxidation of silicon carbide at 1150℃to 1400℃and at 9×10~(-3) to 5×10~(-3) torr oxygen pressure[J].Electrochem.Soc.113-1(1-6)(1966)1311-1314
    [65]马彦.PIP法Cf/SiC复合材料组成、结构及性能高温演变研究[D].长沙:国防科技大博士学位论文,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700