用户名: 密码: 验证码:
持续性炎症诱发脂代谢紊乱与三七总皂苷及其活性代谢单体的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂代谢的任一环节出现异常均可出现脂代谢紊乱,表现为血脂各成分水平的异常改变和组织中脂质的异常沉积。大量流行病学调查显示,脂代谢紊乱与多种严重威胁人类健康的疾病密切相关,包括脑卒中、动脉粥样硬化和糖尿病等。既往观点认为,遗传性因素是脂代谢紊乱最重要的发病原因,其次是饮食习惯等后天因素。本室研究结果提示,持续性炎症可导致脂代谢异常,全基因组基因芯片检测结果也进一步印证了这一观点。同时,近年来国外大规模人群流行病学调查结果显示系统性红斑狼疮和风湿性关节炎等慢性炎症疾病患者出现了明显的血脂代谢紊乱,进一步说明持续性炎症刺激极可能是发生脂代谢紊乱的新的重要因素。目前国内外在此方面的研究也鲜有报道,特别是基础实验研究尚未见报道。另外,脂质的异常沉积,尤其是脂质在动脉壁下的沉积,即动脉粥样硬化的形成,对健康的危害巨大。而巨噬细胞源性泡沫细胞形成是动脉壁下的脂质沉积最重要的启动因素,为此,本研究采用体外培养泡沫细胞为模型,观察炎症刺激对泡沫细胞形成的影响。
     三七总皂苷(PNS)是三七中主要的活性成分,既往研究表明,PNS具有保护心肌、降低动脉血压、改善脂代谢紊乱及显著的抗炎能力。IH901是PNS在利用模拟生物体肠道微生态环境中反应得到的活性代谢单体。本研究通过在体实验观察了PNS作用,并在离体实验中观察了IH901的作用。
     方法
     为观察持续性炎症刺激对高脂饮食大鼠血脂代谢情况的影响,将动物分为高脂饮食、叠加炎症、PDTC和PNS组。所有动物均给予高脂饮食,叠加炎症组动物腹腔注射酵母多糖-石蜡混悬液(20mg/kg, i.p.,5天1次),PDTC和PNS组动物除按叠加炎症组处理外,分别每天给予PDTC(100mg/kg, i.p.)和PNS(120mg/kg, i.g.)。
     为探讨持续性炎症刺激对大鼠血脂代谢影响的原因,将动物分为正常对照、单纯炎症、PDTC治疗和PNS治疗组。所有动物均给予正常饮食,单纯炎症组动物腹腔注射酵母多糖-石蜡混悬液(20mg/kg, i.p.,5天1次),PDTC治疗和PNS治疗组动物除按单纯炎症组处理外,分别每天给予PDTC(100mg/kg, i.p.)和PNS(120mg/kg, i.g.)。
     为研究炎症刺激对泡沫细胞内脂质沉积的影响,将培养的泡沫细胞分为泡沫细胞、炎症刺激、PDTC和IH901组。炎症刺激组给予LPS(20mg/L)进行刺激,在炎症刺激的基础上,PDTC和IH901组分别给予相应的试剂(PDTC 25μM; IH901 25μM)。
     TNF-α采用ELISA法测定;TG、LDL、HDL、TC、CE、LPL活性使用相应的试剂盒测量;LPL、HMG-CoA还原酶、PPARα、PPARγ、CD36、ABCA1、Perilipin和LXR mRNA水平用RT-PCR法检测,LPL、perilipin和NF-κB蛋白表达水平用western blotting法测量,泡沫细胞染色采用油红O。
     结果
     1.持续性炎症能够明显加重高脂饮食动物的血脂代谢紊乱情况。叠加炎症组动物血清中TC、TG和LDL较高脂饮食组有明显升高,而HDL水平明显下降,其变化与动物体内炎症反应强度(TNF-α水平)呈平行性变化。持续性炎症能诱发正常饮食动物血脂紊乱,使TC、TG、LDL升高,HDL降低,与动物体内炎症反应强度变化平行。
     2.持续性炎症刺激能减少LPL的表达(mRNA和蛋白水平)、降低了LPL的活性,同时增加了HMG-CoA还原酶mRNA的表达,并降低了PPARα/γ的表达。
     3.同给予持续性炎症刺激动物相比,PDTC能够显著降低动物血清中的TNF-α水平,提高LPL的活性,增高LPL的表达(mRNA和蛋白水平),降低HMG-CoA还原酶mRNA的表达,增高PPARα/γ的表达。
     4. PNS能够降低TNF-α、TC、TG、LDL水平,升高HDL水平,增加LPL的表达、提高LPL的活性,同时降低HMG-CoA还原酶的表达,并增高PPARα/γ的表达。
     5.炎症刺激使泡沫细胞内的脂质沉积显著升高(TC、CE和CE/TC水平均升高),与炎症反应强度(TNF-α水平)变化平行。
     6.炎症刺激导致perilipin表达升高(mRNA和蛋白水平)及CD36、ABCA1、PPARγ和LXR mRNA表达降低。
     7. PDTC能够降低炎症刺激导致的脂质沉积增加,使CD36、ABCA1、PPARγ和LXR mRNA表达增高,perilipin表达降低(mRNA和蛋白水平)。
     8. IH 901能够显著降低炎症刺激导致的泡沫细胞内的脂质沉积增加,使ABCA1、PPARγ和LXR mRNA表达增高,CD36 mRNA、perilipin(mRNA和蛋白)表达降低。
     结论
     1.持续性炎症刺激可以通过降低LPL和增高HMG-CoA还原酶表达以诱发/加重大鼠的脂代谢紊乱,其机制与持续性炎症刺激对PPARα/γ的影响相关。
     2.炎症刺激可以引起体外培养的泡沫细胞内脂质沉积增加,其机制与炎症刺激导致perilipin表达增高和ABCA1表达降低有关。
     3.三七总皂苷口服能够明显减轻炎症刺激诱发/加重的大鼠脂代谢紊乱,机制与增高LPL和降低HMG-CoA还原酶表达有关。
     4. PNS活性代谢单体IH901能够降低炎症刺激导致的泡沫细胞内脂质沉积增多,机制与其降低perilipin表达,增高ABCA1表达和减少CD36表达有关。
Lipid metabolism is one of the most important metabolic systems in organism. The disorder of lipid metabolism included the abnormal serum lipid level and the abnormal aggregation of lipid in tissues. Epidemiological studies have shown the close correlation between the disorder of lipid metabolism and many severe diseases, including stroke, atherosclerosis, diabetes and so on. In traditional views, the disorder of lipid metabolism was mostly considered as a genetic disease, and was affected by living habits partially. However, it was found that persistent inflammation caused by Zymosan could induce the aggravation of serum lipid disorder in our recently studies, which implied that persistent inflammation might play an important role in lipid metabolism process. Meanwhile, the disorder of serum lipid level occurred in patients with chronic inflammation disease, such as rheumatic arthritis and lupus erythematosus. Besides the serum lipid level, the abnormal aggregation of lipid in tissues was a health care problem yet. Among that, the lipid aggregation under endarterium was the most danger one, because it would induce atherosclerosis. And the key point of atherosclerosis progression was the formation of foam cell. Therefore, this study was designed to explore the action of persistent inflammation in lipid metabolism in vivo and in vitro.
     Panax notoginseng saponins (PNS) are the principal ingredient extracted from the traditional Chinese herb Panax notoginseng and have extent effects on lipid metabolism and cardiovascular diseases. IH 901 is the metabolized product of the PNS by intestinal bacteria in human and rat,which was regarded as the main effective monomer of metabolized Ginsenosides in vivo. Effects of PNS and IH901 were also observed in this study.
     Methods
     1. To observe the action of persistent inflammation on lipid metabolism in hyper-fat diet rats, animals were divided into four groups including hyper-fat diet group (high fat diet), inflammation group (high fat diet + zymosan, 20 mg/kg, i.p., once every 5 days), PDTC group (high fat diet +zymosan, 20 mg/kg, i.p., once every 5 days + PDTC, 100 mg/kg, i.p., daily) and PNS group (high fat diet + zymosan, 20 mg/kg, i.p., once every 5 days + PNS 120 mg/kg, i.g., daily).
     2. To study the effect of persistent inflammation on lipid metabolism in normal rats, animals were divided into four groups including control group (normal diet), simple-inflammation group (normal diet + zymosan, 20 mg/kg, i.p., once every 5 days), PDTC group (normal diet + zymosan, 20 mg/kg, i.p., once every 5 days + PDTC, 100 mg/kg, i.p., daily) and PNS group (normal diet + zymosan, 20 mg/kg, i.p., once every 5 days + PNS 120 mg/kg, i.g., daily).
     3. To explore the action of inflammation on the formation of foam cell, cells were divided into four groups as control, inflammation group, PDTC group and IH901 group. Rat’s peritoneal macrophages were incubated with ox-LDL for 48h as foam cell group. LPS (20mg/L) was added into the medium as inflammation stimuli in inflammation group. Besides LPS, PDTC (25μM) and IH901 (25μM) were given in PDTC and IH901 groups respectively.
     4. TNF-αlevel was measured with ELISA technique.
     5. The foam cells were stained by oil red-O after immobilization.
     6. The level of TG, LDL, HDL, TC, CE and LPL activity were measured using commercial kits.
     7. The expression of HMG-CoA reductase, PPARα/γ, CD36, ABCA1, PPARγand LXR mRNA were measured by RT-PCR.
     8. The protein level of LPL, perilipin and NF-κB were measured with western blotting.
     Results
     1. Persistent inflammation could induce and aggravate the lipid metabolism disorder in normal rats and hyper-fat diet rats respectively. Compared with control group and hyper-fat diet group, the serum TNF-α, TC, TG and LDL levels increased significantly, and the level of HDL decreased noticeably.
     2. Persistent inflammation reduced the LPL activity, the expression of LPL and its mRNA, PPARα/γmRNA and up-regulated the expression of HMG-CoA reductase significantly.
     3. In PDTC and PDTC therapy group, the levels of TNF-α, TC, TG, LDL, the expression of HMG-CoA reductase were decreased and the HDL level, the expression of PPARα/γmRNA, LPL (mRNA and protein), the activity of LPL were increased by comparison of that in inflammation group and simple-inflammation group respectively.
     4. The treatment of PNS (i.g.) could improve the lipid metabolism disorder caused by inflammation. In PNS and PNS therapy group, the levels of TNF-α, TC, TG, LDL, the expression of HMG-CoA reductase were decreased and the HDL level, the expression of PPARα/γmRNA, LPL (mRNA and protein), the activity of LPL were increased by comparison of that in inflammation group and simple-inflammation group respectively.
     5. The inflammation could increase the lipid aggregation in foam cells. The levels of TC, CE, CE/TC ratio and TNF-αincreased significantly compared with foam cell group.
     6. Inflammation reduced the expression of CD36, ABCA1, PPARγand LXR mRNA and increased the expression of perilipin (mRNA and protein) significantly.
     7. The treatment of PDTC could up-regulate the expression of CD36, ABCA1, PPARγand LXR mRNA and down-regulate the expression of perilipin (mRNA and protein) significantly.
     8. The treatment of IH901 could up-regulate the expression of ABCA1, PPARγand LXR mRNA and down-regulate the expression of CD36 mRNA, perilipin (mRNA and protein) noticeably. The levels of TC, CE, CE/TC ratio and TNF-αdecreased significantly compared withinflammation group.
     Conclusion
     1. Persistent inflammation could induce and aggravate serum lipid metabolism disorder in rats through down-regulating the expression of LPL and up-regulated the expression of HMG-CoA reductase. PPARα/γwere involved in the mechanism of that.
     2. Inflammation could increase lipid aggregation in foam cells in vitro, which might be related with the increased expression of perilipin and the decreased expression of ABCA1.
     3. The treatment of PNS could ameliorate the lipid metabolism disorder induced by persistent inflammation via up-regulating the expression of LPL and down-regulated the expression of HMG-CoA reductase.
     4. The metabolite monomer of PNS, IH901 could reduce the excessive lipid aggregation in foam cells caused by inflammation stimulation. The mechanism might be related with the decreased expression of perilipin, the increased expression of ABCA1 and the decreased expression of CD36.
引文
1.赵水平.临床血脂学. 2006
    2. Kurth T, Everett BM, Buring JE, et al. Lipid levels and the risk of ischemic stroke in women.Neurology. 2007, 68(8):556-62.
    3. Chapman MJ. Metabolic syndrome and type 2 diabetes: lipid and physiological consequences. Diab Vasc Dis Res. 2007; Suppl 3:S5-8.
    4.贾乙.动脉粥样硬化血脂异常的炎症免疫机制及三七皂苷对其影响. 2005.硕士学位论文
    5.张翼冠.炎症免疫因素诱发动脉粥样硬化过程中关键基因筛选、鉴定及三七总皂苷的调控作用. 2007.博士学位论文
    6. Cardoso CR, Signorelli FV, Papi JA, et al. Prevalence and factors associated with dyslipoproteinemias in Brazilian systemic lupus erythematosus patients. Rheumatol Int. 2008; 28(4):323-7
    7. Dursunoglu D, Evrengül H, Polat B, et al. Lp(a) lipoprotein and lipids in patients with rheumatoid arthritis: serum levels and relationship to inflammation. Rheumatol Int. 2005; 25(4):241-5
    8.胡兵,汪俊军,姚茹冰等.类风湿关节炎患者脂质水平异常特征.医学研究生学报. 2007, 20:1041-4
    9.释栋,孟焕新,徐莉等.牙周炎患者的血脂、血糖水平分析.中华口腔医学杂志. 2006, 41:401-402
    10.胡兵,汪俊军,姚茹冰等.类风湿关节炎患者脂质水平异常特征.医学研究生学报. 2007, 20:1041-4
    11.杜强,王勤涛,朱浩等.牙周炎和高脂血症动物模型的建立及其相关性初步分析.牙体牙髓牙周病杂志. 2006, 16:246-9
    12. Li SH, Chu Y. Anti-infalmmatory effects of total saponins of Panax notoginseng. Zhongguo Yao Li Xue Bao 1999; 20: 551-4
    13.刘雅,李晓辉.三七总皂苷对动脉粥样硬化形成中炎症免疫因子的影响.中草药, 2005, 36:728-30.
    14.袁志兵,李晓辉,李淑慧等.三七总皂苷对动脉粥样硬化斑块稳定性的影响.中国天然药物, 2006, 4:62-5.
    15. Yi Jia, Xiao-hui Li. Effects of PNS on the formation of atherosclerosis in rabbits. Acta Pharmacologica Sinica. 2006, Supplement 1:145
    16.樊继山,李晓辉,李淑慧.三七皂苷对泡沫细胞形成的影响及其信号机制.中草药, 2007,38(6): 893-5
    17.何翠瑶李晓辉何雪峰.三七皂苷单体不同配伍对单核-内皮细胞、黏附作用的影响.中医杂志, 2007,48(4): 354-6,361
    18.何雪峰,李晓辉,李淑惠,何翠瑶.三七总皂苷对家兔实验性动脉粥样硬化的预防作用.中国药房, 2007,18(6): 408-10
    19.何雪峰,李晓辉.三七总皂苷对小鼠巨噬细胞源性泡沫细胞形成的影响。中国药房, 2007,30(18): 2323-5
    20.樊继山,李晓辉,李淑慧,等.大鼠动脉粥样硬化病变组织致炎-抗炎因子抗体芯片分析.第三军医大学学报.2007,29(3):210-2
    21.张翼冠,李晓辉,樊继山,等,三七总皂苷通过抗炎和调血脂作用抑制大鼠动脉粥样硬化形成,现代生物医学进展,2007,7:1621-4.
    22.贺小琼,张丽芬,陈平,李时涛.三七提取物防治大鼠高脂血症作用研究.云南中医中药杂志, 2004, 25:32-3.
    23. Kang KA, L im HY, Kim SU, et al. Induction of apoptosis by gingseng saponin metabolite in U937 human monocytic leukemia cell. J Food Biochem, 2005, 29: 27-40.
    24. Jung SH, Woo MS, Kim SY, Kim WK, Hyun JW, Kim EJ, Kim DH, Kim HS. Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells. Int J Cancer. 2006;118:490-7
    25. Yoon SH, Han EJ, Sung JH, Chung SH. Anti-diabetic effects of compound K versus metformin versus compound K-metformin combination therapy in diabetic db/db mice. Biol Pharm Bull. 2007; 30:2196-200.
    26. Shin YW, Kim DH. Antip ruritic effect of ginsenoside Rb1 and compound K in scratching behavior mouse models. J Pharmacol Sci, 2005, 99:83-8.
    1.陈海龙,关凤林,吴咸中等.非细菌性多器官功能不全综合征的动物模型,中国急救医学,1997, 17(2):1-4
    2.陈凯,张雁芳,王倩等.高胆固醇饲养兔鹌鹑和大鼠诱发高血脂和动脉粥样硬化的特征.解放军药学学报, 2001,17(3):117-124
    3.杜强,王勤涛,朱浩等.牙周炎和高脂血症动物模型的建立及其相关性初步分析.牙体牙髓牙周病杂志. 2006, 16:246-9
    4.张翼冠,李晓辉,樊继山等.炎症促进大鼠动脉粥样硬化初期内皮功能病变机制研究. 2007, 7:1461-3
    5. Pul Inil Kunni LT, Abrahani A, Varghese J, et al. Evidence for rapid“metabolic switching”through lipoproteinlipase occupation of endothelial-binding sites. J Mol Cell Cardiol, 2003, 35:1093-103
    6. Henderson HE, Kastelein JJ, Zwinderman AH, et al. Lipoprotein lipase activity is decreased in a large cohort of patients with coronary artery disease and is associated with changes in lipids and lipoproteins. J Lipid Res 1999; 40: 735-43
    7. Kusunoki M, Hara T, Tsutsumi K, et al. The lipoprotein lipase activator, NO- 1886, suppresses fat accumulation and insulin resistance in high-fat fed rats. Diabetologia 2000; 43: 875-80
    8. Zhao SP, Dong SZ. Effect of tumor necrosis factor alpha on cholesterol efflux in adipocytes. Clin Chim Acta. 2008, 389:67-71.
    9. Zhou M, Wu R, Dong W, et al. Endotoxin downregulates peroxisome proliferator-activated receptor-gamma via the increase in TNF-alpha release. Am J Physiol Regul Integr Comp Physiol. 2008. 294:R84-92
    10. Memon RA, Grunfeld C, Moser AH, et al. Tumor necrosis factor mediates the effects of endotoxin on cholesterol and triglyceride metabolism in mice. Endocrinology. 1993, 132:2246-53
    11. Skarnes R.C., F.S.Rosen, M.J. Shear. Inactivation of endotoxin by a humoral component. II. Interaction of endotoxin with serum and plasma. J. Exp. Med. 1958, 108:685–99.
    12. Ulevitch R.J., A.R. Johnston, D.B. Weinstein. New function for high density lipoproteins. Their participation in intravascular reactions of bacteriallipopolysaccharides. J. Clin. Invest. 1979, 64:1516–24.
    13. Munford R.S., C.L. Hall, J.M. Lipton, et al. Biological activity, lipoprotein-binding behavior, and in vivo disposition of extracted and native forms of Salmonella typhimurium lipopolysaccharides. J. Clin. Invest. 1982, 70:877–88.
    14. Harris H.W., C. Grunfeld, K.R. Feingold, et al. Human very low density lipoproteins and chylomicrons can protect against endotoxin-induced death in mice. J. Clin. Invest. 1990, 86:696–702.
    15. Eichbaum E.B., H.W. Harris, J.P. Kane, et al. Chylomicrons can inhibit endotoxin activity in vitro. J. Surg. Res. 1991, 51: 413–6.
    16. Harris H.W., E.B. Eichbaum, J.P. Kane, et al. Detection of endotoxin in triglyceride-rich lipoproteins in vitro. J. Lab. Clin. Med. 1991, 118:186–93.
    17. Emancipator K., G. Csako, R. J. Elin. In vitro inactivation of bacterial endotoxin by human lipoproteins and apolipoproteins. Infect. Immun. 1992, 60:596–601.
    18. Netea M.G., N. de Bont, P.N. Demacker, et al. Lipoprotein(a) inhibits lipopolysaccharide-induced tumor necrosis factor alpha production by human mononuclear cells. Infect. Immun. 1998, 66:2365–7.
    19. Parker T. S., D.M. Levine, J.C. Chang, et al. Reconstituted high-density lipoprotein neutralizes gram-negative bacterial lipopolysaccharides in human whole blood. Infect. Immun. 1995, 63:253–8.
    20. Grunfeld C., M. Marshall, J.K. Shigenaga, et al. Lipoproteins inhibit macrophage activation by lipoteichoic acid. J. Lipid Res. 1999, 40:245–52.
    21. Levels J.H., P.R. Abraham, A. van den Ende, et al. Distribution and kinetics of lipoprotein-bound endotoxin. Infect. Immun. 2001, 69:2821–8.
    22. Levels J.H., P.R. Abraham, E. P. van Barreveld, et al. Distribution and kinetics of lipoprotein bound lipoteichoic acid. Infect. Immun. 2003, 71:3280–4.
    23. Kitchens R.L., P.A. Thompson. Impact of sepsis induced changes in plasma on LPS interactions with monocytes and plasma lipoproteins: roles of soluble CD14, LBP, and acute phase lipoproteins. J. Endotoxin Res. 2003. 9:113–8.
    24. Kitchens R.L., P.A. Thompson, R.S. Munford, et al. Acute inflammation and infection maintain circulating phospholipid levels and enhance lipopolysaccharide binding to plasma lipoproteins. J. Lipid Res. 2003, 44:2339–48.
    25. Read T.E., C. Grunfeld, Z. Kumwenda, et al. Triglyceride-rich lipoproteins improve survival when given after endotoxin in rats. Surgery. 1995, 117:62–7.
    26. Read T.E., C. Grunfeld, Z.L. Kumwenda, et al. Triglyceride-rich lipoproteins prevent septic death in rats. J. Exp. Med. 1995, 182:267–72.
    27.金晶,刘耕陶. NF-κB的研究进展.国外医学药学分册. 2000, 27(3):133-7.
    28. Bruck R, Schey R, Aeed H, et al. A protective effect of pyrrolidine dithiocar bamate in a fat model of liver cirrhosis. Liver Int, 2004, 24(2):169-76
    29.李日焕,钟鸣,杜诗库等.田七花对家兔实验性动脉粥样硬化的预防作用.右江民族医学院学报, 1988, 10:14.
    30.贺小琼,熊祥玲,王珊珊等.三七芦荟混合物调节动物血糖血脂作用研究.云南中医中药杂志, 2004, 25:40-1.
    31.贺小琼,张丽芬,陈平,李时涛.三七提取物防治大鼠高脂血症作用研究.云南中医中药杂志, 2004, 25:32-3.
    32.吕萍,陈海峰.三七叶苷降脂作用的实验研究.中国生化药物杂志, 2004, 25:235-6.
    33.李韬,曲德英,雷菠等.三七粉对家兔实验性动脉粥样硬化的影响.中医研究, 2006, 19:17-9
    34. Li SH, Chu Y. Anti-infalmmatory effects of total saponins of Panax notoginseng. Zhongguo Yao Li Xue Bao 1999; 20: 551-4
    35.刘雅,李晓辉.三七总皂苷对动脉粥样硬化形成中炎症免疫因子的影响.中草药, 2005, 36:728-30.
    36.袁志兵,李晓辉,李淑慧等.三七总皂苷对动脉粥样硬化斑块稳定性的影响.中国天然药物, 2006, 4:62-5. 37.释栋,孟焕新,徐莉等.牙周炎患者的血脂、血糖水平分析.中华口腔医学杂志. 2006, 41:401-402
    38.胡兵,汪俊军,姚茹冰等.类风湿关节炎患者脂质水平异常特征.医学研究生学报. 2007, 20:1041-4
    39.郝岱峰,柴家科,吴焱秋.烫伤大鼠创面脓毒症发生后肝组织中脂代谢相关基因表达水平的变化.中华烧伤杂志. 2006, 22:250-3
    40.赵水平.临床血脂学. 2006. 130-1
    41. Podrez EA, Febbraio M, Sheibani N, et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest, 2000, 105:1095-108
    42. Febbraio M, Hajjar DP, Silverstein RL. CD36: a class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest, 2001, 108:785-91
    43. Nozaki S, Kashiwagi H, Yamashita S, et al. Reduced uptake of oxidized low density lipoproteins in monocyte-derived macrophages from CD36 deficient subjects. J Clin Invest, 1995, 96:1859-65
    44. Febbraio M, Abumrad NA, Hajjar DP, et al. A null mutation in murine CD36 reveals an important role in fatty acid and lipoprotein metabolism. J Biol Chem, 1999, 274:19055-62
    45. Febbraio M, Guy E, Silverstein RL. Stem cell transplantation reveals that absence of macrophage CD36 is protective against atherosclerosis. Arterioscler Thromb Vasc Biol, 2004, 24:2333-8.
    46. Kashiwagi H, Tomiyama Y, Kosugi Y, et al. Identification of the molecular defects in a subject with type I CD36 deficiency. Blood, 1994, 83(12): 3545-52.
    47. Nicholson A., Pearce S.F.A., Silverstein R. Oxidized LDL binds to CD36 on human monocyte-derived macrophages and transfected cell lines. Evidence implicating the lipid moiety of the lipoprotein as the binding site. Arterioscler Thromb Vasc Biol, 1995, 15:269-75
    48. Moore KJ, Rose ED, Fitzgerald ML, et al. The role of PPAR-gamma in macrophage differentiation and cholesterol uptake. Nat Med, 2001, 7:41-7.
    49. Fabien Forcheron, Liliana Legedz, Guiletta Chinetti, etc. Genes of cholesterol metabolism in human atheroma: overexpression of perilipin and genes promoting cholesterol storage and repression of ABCA1 expression. Arterioscler. Thromb. Vasc. Biol. 2005, 25;1711-7
    50. Zhao B, Fisher BJ, St Clair RW, Rudel LL, Ghosh S. Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J Lipid Res. 2005, 46:2114-21
    51. Ghosh Shobha ; Fisher Bernard ; Sica Domenic A , et al. The Rate Limiting Enzyme in Cholesterol Ester Removal from Lipid Core of Plaques is Regulated by Association with Ruptured Plaque-associated Protein Perilipin. Hypertension 2004; 44:542-3
    52. Dalen Knut Tomas ,Schoonjans Kristina ,Ulven Stine M ,et al. Adipose TissueExpression of the Lipid Droplet - Associating Proteins S3-12 and Perilipin Is Controlled by Peroxisome Proliferator-Activated Receptor-〔gamma〕. Diabetes. 2004, 53:1243-52
    53. Nagai So ,Shimizu Chikara ,Umetsu Masaaki ,et al. Identification of a Functional Peroxisome Proliferator-Activated Receptor Responsive Element within the Murine Perilipin Gene. Endocrinology 2004 ;145:2346-56
    54. Tansey J T ,Sztalryd C ,Gruia - Gray J ,et al. Perilipin ablation results in a lean mouse with aberrant adipocyte lipolysis ,enhanced leptin production ,and resistance to diet - induced obesity. Proc Natl Acad Sci USA. 2001, 98:6494-9.
    55. Rothblat GH, Llera-Moya M, Atger V, et al. Cell cholesterol efflux: integration of old and new observations provides new insights. J Lipid Res, 1999, 40:781-96.
    56. Acton S, Rigotti A, Katherine T, et al. Identification of scavengerreceptor SR-BI as a high density lipoprotein receptor. Science, 1996, 271:518-20
    57. Ji Y, Jian B, Wang N, et al. Scavenger receptor BI promotes high density lipoprotein-mediated cellular cholesterol efflux. J Biol Chem, 1997, 272:20982-5.
    58. Gu X, Kozarsky K, Krieger M. Scavenger receptor class B, type I-mediated [3H]cholesterol efflux to high and low density lipoproteins is dependent on lipoprotein binding to the receptor. J Biol Chem, 2000, 275:29993-30001.
    59. Wang N, Silver DL, Costet P, et al. Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1. J Biol Chem, 2000, 275:33053-33058
    60. John F, Oram. HDL apolipoproteins and ABCA1 partners in the removal of excess cellular cholesterol. Arterioscler Thromb Vasc Biol, 2003, 23:720-7.
    61.唐朝克,杨永宗. ABCA1在动脉粥样硬化发生与发展中的作用.生命的化学, 2003, 23:138-40.
    62. Joyce CW, Amar MJ, Lambert G, et al. The ATP-binding cassette transporter A1(ABCA1) modulates the development of aortic atherosclerosis in C57BL/6 mice and apoE-knockout mice. Proc Natl Acad Sci USA, 2002, 99:407-12
    63. Willy PJ, Umesono K, Ong ES, et al. LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev, 1995, 9:1033-45
    64. Repa J, Mangelsdorf D. The liver X receptor gene team: potential new players in atherosclerosis. Nature Med, 2002, 8:1243-8
    65. Steffensen KP, Gustafsson JA. Putative metabolic effects of the liver X receptor(LXR). Diabetes, 2004;53(suppl 1) S36-S42
    66. Ruan XZ, Moorhead JF, Fernando R, et al. PPAR agonists protect mesangial cells from interleukin 1β-induced intracellular lipid accumulation by activating the ABCA1 cholesterol efflux pathway. J Am Soc Nephrol, 2003, 14:593-600.
    67. Tangirala RK, Bischoff ED, Joseph SB, et al. Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci, 2002, 99:11896-901.
    68.贾乙.动脉粥样硬化血脂异常的炎症免疫机制及三七皂苷对其影响. 2005.硕士学位论文
    [1] Kurth T, Everett BM, Buring JE, Kase CS, Ridker PM, Gaziano JM. Lipid levels and the risk of ischemic stroke in women.Neurology. 2007; 68(8):556-62.
    [2]陈进,王家良,李宁秀,等.非药物干预对高脂血症患者降脂效果研究.中华流行病学杂志,2002 ,23 (2) :138-41.
    [3] Mishima Y,Kuyama A. Tada A ,et al. Relationship between serum tumor necrosis factor2alpha and insulin resistance in obese men with type 2 diabetic mellitus. Diabetes Res Clin Prect. 2001; 52:119-23
    [4] Rask-Madsen C , Dominguez H , Ihlemann T , et al. Tumor necrosis factor-alpha inhibit insulin’s stimulating effect on glucose up-take and endothelium-dependent vasodilation in human. Circulation. 2003; 108:1815-21.
    [5] Rosa JS, Flores RL, Oliver SR, Pontello AM, Zaldivar FP, Galassetti PR. Sustained IL-1alpha, IL-4, and IL-6 elevations following correction of hyperglycemia in children with type 1 diabetes mellitus.Pediatr Diabetes. 2008; 9(1):9-16.
    [6] Yang K, Xie G, Zhang Z, Wang C, Li W, Zhou W, Tang Y. Levels of serum interleukin (IL)-6, IL-1beta, tumour necrosis factor-alpha and leptin and their correlation in depression. Aust N Z J Psychiatry. 2007; 41(3):266-73.
    [7] Festa A. D’Agostino R J r ,Howard G,et al. Chronic subclinical inflammation as part of the insulin resistance syndrome : The insulin resistance atherosclerosis study ( IRAS) . Circulation, 2000; 102:42-7
    [8] Ridker PM ,Buring J E. Cook NR ,et al. C2reactive protein, the metabolic syndrome ,and risk of incident cardiovascular events :an 82year follow-up of 14719 initially healthy American women. Circulation, 2003; 107 (3):39 -47.
    [9] Venugopal SK. Devaraj S. Yuhanna I , et al. Demonstration that C-reactive protein becrease eNOS expression and bioactivity in human aortic endothelial cells. Circulation, 2002; 106:1439-41.
    [10] Kinik ST, Ozbek N, Yuce M, Yazici AC, Verdi H, Ata? FB. PAI-1 gene 4G/5G polymorphism, cytokine levels and their relations with metabolic parameters in obese children. Thromb Haemost. 2008; 99(2):352-6.
    [11] Segal KR ,Landt M , Klein S ,et al. Relationship between insulin sensitivity andplasma leptin concentration in lean and obese men. Diabetes, 1996; 45 :988-91.
    [12] .Qiao XZ, Yang YM, Xu ZR, Yang LA. Relationship between resistin level in serum and acute coronary syndrome or stable angina pectoris. J Zhejiang Univ Sci B. 2007; 8(12):875-80.
    [13] Ribot J, Rodríguez AM, Rodríguez E, Palou A. Adiponectin and Resistin Response in the Onset of Obesity in Male and Female Rats. Obesity (Silver Spring). 2008 Jan 24 [Epub ahead of print]
    [14] Beckers S, Peeters AV, Freitas FD, Mertens IL, Hendrickx JJ, Van Gaal LF, Van Hul W. Analysis of Genetic Variations in the Resistin Gene Shows No Associations With Obesity in Women. Obesity (Silver Spring). 2008 Jan 24 [Epub ahead of print]
    [15] Almehed K, d'Elia HF, Bokarewa M, Carlsten H. Role of resistin as a marker of inflammation in systemic lupus erythematosus. Arthritis Res Ther. 2008 Jan 24;10(1):R15 [Epub ahead of print]
    [16] Megia A, Vendrell J, Gutierrez C, SabatéM, Broch M, Fernández-Real JM, Simón I. Insulin sensitivity and resistin levels in gestational diabetes mellitus and after parturition. Eur J Endocrinol. 2008; 158(2):173-8.
    [17] Kim j, Kim Y-J, Fillmore,J, Chen Y, et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest, 2001; 108 :437-46.
    [18] Hundal RS, Peter KF, Mayerson AB, et al. Mechanism by which high-dose asprin improves glucose metabolism in type 2 diabetes. J Clin Invest, 2002; 109:1321-6.
    [19] Lambert G, Amar MJ , Guo G, et al . The farnesoid X receptor is an essential regulator of cholesterol homeostasis. J Biol Chem ,2003; 278 (4) : 2563-70.
    [20] Castrillo A, Joseph SB, Vaidya SA, Haberland M, Fogelman AM, Cheng G, Tontonoz P. Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol Cell. 2003 Oct;12(4):805-16
    [21] Feingold K, Kim MS , Shigenaga J , et al . Altered expression of nuclear hormone receptor s and coactivators in mouse heart duringt he acute2phase response. Am J Physiol Endocrinol Metab. 2004; 286 (2) : E201-7
    [22] Lee CH , Olson P , Evans RM. Minireview : lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors . Endocrinology , 2003; 144 (6) : 2201-7.
    [23] Wang YX , Lee CH , Tiep S , et al . Peroxisome proliferator-activated receptor deltaactivates fat metabolism to prevent obesity. Cell , 2003; 113 (2):159-70.
    [24] Aoki K, Nakajima M, Hoshi Y, Saso N, Kato S, Sugiyama Y, Sato H. Effect of aminoguanidine on lipopolysaccharide-induced changes in rat liver transporters and transcription factors. Biol Pharm Bull. 2008; 31(3):412-20.
    [25] Kitchens RL , Thompson PA. Impact of sepsis2induced changes in plasma on L PS interactions wit h monocytes and plasma lipoproteins : roles of soluble CD14 , LBP , and acute phase lipoproteins. J Endotoxin Res , 2003; 9 (2): 113-8.
    [26] Asanuma Y, Chung CP , Oeser A , et al . Increased concent ration of proat herogenic inflammatory cytokines in systemic lupus eryt hematosus : relationship to cardiovascular risk factors. J Rheumatol , 2006; 33 (3) : 539-45.
    [27] Libby P. Inflammation in at herosclerosis. Nature , 2002; 420(6917) : 868-74.
    [28] Hansson GK. Inflammation , at herosclerosis , and coronary artery disease. N Engl J Med , 2005; 352 (16) : 1685-95.
    [29] Katz MS. Therapy insight : Potential of statins for cancer chemoprevention and t herapy. Nat Clin Pract Oncol , 2005; 2 (2) :82-9
    [1]莫宁,周燕.三七总皂苷抗大鼠心肌肥大的作用及其神经机制.中国药理学通报, 2004, 20(10):1131-4.
    [2]史以菊,夏作理,杨慧英,等.三七皂甙对大鼠系膜血管微循环的影响.泰山医学院学报, 1998, 19(1):7210.
    [3]唐旭东,姜建青,姜大春,等.三七总皂苷对心肌缺血再灌注中中性粒细胞核因子-κB活化及其黏附的影响.中国药理学通报,2002, 18(5):556-60.
    [4]张海港,李晓辉.三七总皂苷对烫伤大鼠心肌细胞及红细胞膜ATP酶活性的影响.中国急救医学, 2001, 21(10):574-6.
    [5]刘雅,李晓辉.三七总皂苷对动脉粥样硬化形成中炎症免疫因子的影响.中草药, 2005, 36:728-30.
    [6]袁志兵,李晓辉,李淑慧等.三七总皂苷对动脉粥样硬化斑块稳定性的影响.中国天然药物, 2006, 4:62-5.
    [7]樊继山,李晓辉,李淑慧.三七皂苷对泡沫细胞形成的影响及其信号机制.中草药, 2007,38(6): 893-5
    [8]何翠瑶李晓辉何雪峰.三七皂苷单体不同配伍对单核-内皮细胞、黏附作用的影响.中医杂志, 2007,48(4): 354-6,361
    [9]何雪峰,李晓辉,李淑惠,何翠瑶.三七总皂苷对家兔实验性动脉粥样硬化的预防作用.中国药房, 2007,18(6): 408-10
    [10].何雪峰,李晓辉.三七总皂苷对小鼠巨噬细胞源性泡沫细胞形成的影响。中国药房, 2007,30(18): 2323-5
    [11].樊继山,李晓辉,李淑慧,等.大鼠动脉粥样硬化病变组织致炎-抗炎因子抗体芯片分析.第三军医大学学报.2007,29(3):210-2
    [12].张翼冠,李晓辉,樊继山,等,三七总皂苷通过抗炎和调血脂作用抑制大鼠动脉粥样硬化形成,现代生物医学进展,2007,7:1621-4.
    [13]余万桂,张恒文.三七总皂苷对肝纤维化小鼠TNFα及IL6活性的影响.中药药理与临床, 2005, 21(4):31-3.
    [14]余万桂,张恒文,贺尚荣,等.三七总皂苷对肝纤维化小鼠血清中转化生长因子-β1及白介素-1的影响.时珍国医国药, 2006, 17(1):54-5.
    [15]全燕,夏前明,李福祥,等.三七总皂苷对博莱霉素致大鼠肺纤维化的干预作用.西南国防医药, 2005, 15(3):235-8.
    [16]李花,邓常清,陈北阳,等.三七总皂苷对大鼠脑缺血再灌注后Caspase表达的影响.中国药理学通报, 2006, 22(2):189-93.
    [17]何蔚,朱遵平.三七总皂苷对大鼠脑梗死区ICAM-1表达和中性粒细胞浸润的影响.中药材, 2005, 28(5):403-5.
    [18]钟振国,屈泽强,王乃平,等.三七总皂苷对Alzheimer’s病大鼠模型大脑胆碱能神经病理损害的保护作用.中药材, 2005, 28(2):119-22.
    [19] Akao T, Kida H, Hatori M, et al. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseg. J Pharm Pharmacol, 1998, 50:1155-60.
    [20] Chen X, Zhou QL, Wang BX. The metabolism of ginsenoside Rb1 by intestinal bacteria. Acta Pharm Sin (药学学报), 1999, 34: 410-4.
    [21] Bae EA, Choo MK, Park EK, et al. Metabolism of ginsenoside Rc by intestinal bacteria and its related antiallergic activity. Biol Pharm Bull, 2002, 25:743-7.
    [22] Wakabayashi C, MuraKami K, Hasegawa H. An intestinal bacterial metabolite of ginseng protopanaxadiol saponins has the ability to induce apoptosis in tumor cells. Biochem Biophys Res Commun, 1998, 246: 725-30.
    [23] Kang KA, L im HY, Kim SU, et al. Induction of apoptosis by gingseng saponin metabolite in U937 human monocytic leukemia cell. J Food Biochem, 2005, 29: 27-40.
    [24] Oh SH, Lee BH. A ginseng saponin metabolite-induced apop tosis in HepG2 cells involves a mitochondria mediated pathway and its downstream caspase 8 activation and Bid cleavage. Toxicol App Pharmacol, 2004, 194: 221-9.
    [25] Choi HY, Jong HS, Park JH, et al. A novel ginseng saponin metabolite induces apop tosis and downregulates fibroblast growth factor receptor 3 in myeloma cells. Int J Oncol, 2003, 23: 1087-93.
    [26] Jung SH, Woo MS, Kim SY, Kim WK, Hyun JW, Kim EJ, Kim DH, Kim HS. Ginseng saponin metabolite suppresses phorbol ester-induced matrix metalloproteinase-9 expression through inhibition of activator protein-1 and mitogen-activated protein kinase signaling pathways in human astroglioma cells. Int J Cancer. 2006;118:490-7
    [27] Lee BH, Lee SL, Hui JH, et al. In vitro antigenotoxic activity of novel ginseng saponinmetabolites formed by intestinal bacteria. Planta Med, 1998, 64:500-3.
    [28] Han GC, Ko SK, Sung JH, Chung SH. Compound K enhances insulin secretion with beneficial metabolic effects in db/db mice. J Agric Food Chem. 2007; 55:10641-8.
    [29] Yoon SH, Han EJ, Sung JH, Chung SH. Anti-diabetic effects of compound K versus metformin versus compound K-metformin combination therapy in diabetic db/db mice. Biol Pharm Bull. 2007; 30:2196-200.
    [30] Shin YW, Bae EA, Kim SS, et al. Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. Int Immuno pharma, 2005, 5:1183 -91.
    [31] Shin YW, Kim DH. Antip ruritic effect of ginsenoside Rb1 and compound K in scratching behavior mouse models. J Pharmacol Sci, 2005, 99:83-8.
    [32] Lee JY, Shin JW, Chun S, et al. Antitumor promotional effects of a novel intestinal bacterialmetabolite derived from the protopanaxadiol-type ginsenosides in mouse skin. Carcinogenesis, 2005, 26: 359-67.
    [33] Choi K, Kim M, Ryu J, Choi C. Ginsenosides compound K and Rh(2) inhibit tumor necrosis factor-alpha-induced activation of the NF-kappaB and JNK pathways in human astroglial cells. Neurosci Lett. 2007; 421:37-41.
    [34] Lee HU, Bae EA, HanMJ , et al. Hepatop rotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury. L iver Int, 2005, 25:1069-73.
    [35] ChooMK, Park EK, HanMJ, et al. Antiallergic activity of ginseng and its ginsenosides. PlantaMed, 2003, 69:518-22.
    [36] Park EK, Shin YW, Lee HU, et al. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull, 2005, 28: 652-6.
    [37] Tohda C, Matsumoto N, Zou K, et al. Abeta(25-35)-induced memory impairment, axonal atrophy, and synaptic loss are ameliorated by M1, a metabolite of protopanaxadiol-type saponins. Neurop sychopharmacology, 2004, 29:860-8
    [38] KarikuraM, Miyase T, Tanizawa H, et al. Studies on absorption, distribution, excretion and metabolism of ginseng saponinis. V II. Comparison of decomposition models of ginsenoside-Rb1 and Rb2 in the digestive tract of rats. Chem Pharm Bull, 1991, 39:2357-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700