用户名: 密码: 验证码:
上颈椎损伤的有限元模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     随着社会的不断进步和交通运输业、建筑业、竞技体育等行业的快速发展,使得上颈椎损伤的发生率有逐年上升的趋势。CT三维重建技术快速发展和广泛应用,发现上颈椎损伤类型越来越复杂多样。对于上颈椎创伤的发生机制,目前仍存在较大争议,损伤发生的确切机制很多也未得到相关生物力学实验所证实。清楚地了解上颈椎创伤生物力学机制对于上颈椎创伤疾患的诊断和治疗方案的制定有重要的指导作用,故有必要对上颈椎创伤的发生机制进行研究。
     在脊柱传统生物力学实验中采用了尸体模型、动物模型、物理合成模型。尸体模型由于存在标本之间的差异性大,取材困难,实验费用昂贵等因素,使得其应用受到了严重的限制;动物模型在解剖和物理属性上与人体很大差别,对于帮助我们理解损伤机制的作用有限;物理合成模型目前存在的设计缺点和缺少解剖细节使得它们不能有效地模拟实际脊柱性能。三维有限元法是目前脊柱生物力学研究采用较多的先进应力数值分析方法。与传统实验方法比较,有限元法具有无法比拟的优势:它可根据需要产生无数个各种各样的样本,同一样本在虚拟计算中可进行无数次加载或者组合而不会被破坏;可对样本进行修改以模拟病理状态。此外,有限元法能够定量和定性地描述骨骼遭受各种外力作用下的应力分布。这些在传统的实验方法中是非常难以实现的。从临床应用角度来讲,有限元法是对人体体外尸体实验模型研究非常有价值的补充。
     研究目的:
     1.基于颈椎连续薄层CT图像建立上颈椎运动节段(C0~3)数字模型并实现三维可视化;2.建立枢椎精细三维有限元模型,探讨不同约束条件下枢椎损伤机制和骨折类型;3.探讨枢椎软骨基质不同融合程度状态对齿状突骨折类型的影响。材料与方法:
     1.选取一名32岁身高169.5cm,体重65kg,正常成年男性志愿者,颈椎CT数据采集之前,先对其行颈椎正侧、双斜和开口位X片检查以排除颈椎相关骨性疾患。采用GE 64排VCT螺旋CT扫描机选择从其外耳孔到第一胸椎上缘横断面连续薄层扫描,获得层距0.699mm,像素值为0.355 mm,512×512像素232张CT图像,以Dicom 3.0标准刻盘保存。Mimics10.01软件读入Dicom格式颈椎数据集,利用图像分割工具,设定CT分割阈值在435~3071亨氏单位,软件自动生成骨组织表面轮廓线。在此基础上经编辑、补洞和去除无关边缘杂点后,再利用区域增长工具分别生成C0~3骨性三维几何模型。调整图像对比度范围,根据CT图像软组织的对比,参考人体标本实体形态,运用软件编辑工具和断层解剖知识,勾画出C2/3椎间盘,寰齿正中关节软骨盘,寰枢外侧关节软骨盘,C2~3椎小关节软骨盘。采用同样方法构建出寰椎横韧带、前纵韧带、后纵韧带、黄韧带、棘间韧带、棘上韧带。
     2.建立区分皮质骨和松质骨枢椎精细三维有限元模型,导入Ansys10有限元分析软件对模型赋予材料物理属性,模拟枢椎伤前不同位置下的受力条件。在齿状突寰齿关节面上施加前后方向载荷,分析枢椎在三种不同约束条件下的应力、应变分布,和相对应条件下枢椎可能发生骨折的类型。
     3.建立区分枢椎松质骨软骨基质融合部的精细三维有限元模型。在齿状突寰齿关节面上施加前后方向载荷,通过分别降低枢椎松质骨软骨基质融合部位弹性模量以模拟该部位松质骨融合不同程度,探讨枢椎齿状突在两种约束条件下的应力、应变分布和枢椎可能发生的骨折类型。
     结果:
     1.①成功建立了较为精细的上颈椎运动节段三维数字模型并实现可视化。模型包括:C0-3骨性结构并区分皮质骨与松质骨、C1-3关节软骨盘、C2/3椎间盘和6种韧带结构。②以枢椎为例,导入枢椎模型至有限元分析软件Ansys10,进行体网格划分、赋材质和加载,进行有限元分析计算,初步模拟枢椎骨折生物力学实验。所得枢椎的von Mises等效应力图的应力集中带分布走向结果符合生物力学实验和临床上枢椎骨折的好发部位。证明模型的有效性。上颈椎有限元模型初步验证结果与体外生物力学实验和临床结果符合,可进一步行各种上颈椎有限元分析。
     2.当枢椎遭受前后方向剪切暴力:①双侧椎小关节约束模拟伤前枢椎于中立位,应力集中区对称位于枢椎关节突间部;②单侧椎小关节约束模拟伤前枢椎侧屈状态,最大应力集中位于约束侧关节突间部,高应力集中带经过椎体后角延伸进入椎体,对侧椎板与下关节突交界移行部位也出现应力集中;③椎体下方以及双侧小关节面约束模拟以往生物力学实验枢椎下方完全固定状态,高应力集中带位于齿状突与枢椎结合部位。
     3.枢椎有限元计算预测结果发现枢椎在两种约束条件下(双侧椎小关节约束模拟伤前枢椎于中立位,椎体下方以及双侧小关节面约束模拟以往生物力学实验枢椎下方完全固定状态),枢椎软骨基质的融合程度对枢椎高应力集中带分布无明显影响,最大von Mises等效应力值改变亦不明显。
     结论:
     1. MIMICS软件基于薄层CT图像建立上颈椎有限元模型提供了一个更为快捷精确的方法,所建模型逼真,几何相似性好。为研究上颈椎的生物力学性状创造了条件。
     2.①伤前颈椎侧屈状态可能是导致不对称性Hangman骨折的一个非常重要因素;②枢椎骨折的生物力学研究实验中,除加载暴力的方向外,标本不同约束固定方式直接影响枢椎骨折类型的复制。
     3.枢椎体内软骨基质融合程度对齿状突骨折类型无明显影响。
Background:
     With the development of our society and the increasing modern traffic and transportation, modern architecture and compete sports,patients with upper cervical spine injury increased year by year. Rapid development of the CT three-dimensional reconstruction technique and widespread application on clinic, more and more upper cervical injury patterns were found not only complex but also very variable. Traumatic mechanisms of the upper cervical spine are still unclear and heated discussed at present, many authors propose the possible injury mechanisms, however, identify biomechanical proofs are still not available until now. Distinctly understand the traumatic mechanisms of the upper cervical spine could greatly help and guide the clinician exactly diagnosis upper cervical injuries and determine the appropriated treatment plan. Thus, it is great necessary to study the traumatic mechanisms of the upper cervical spine.
     In the traditional spinal biomechanical research, cadaveric model, animal model and physical model were utilized.Biological variability,difficulty, and costs associated with numerous tests tend to be the limiting factors of the human cadaveric model.Animal models are much easier to be harvested. But their structural functions differ from humnans, which are limited in understanding the traumatic mechanisms. Physical models, because of their lack of biofidelity in terms of geometric and structural properties, are limited in the issues and questions that they can address. Three-dimensional finite element method, an advanced stress numerical analysis method, is utilized in human spinal biomechanical research at present. Compared to the traditional biomechanical research methods, they have great advantages: they can provide numerous samples according to the researchers’demand; they are also repeatable and can vary any parameter and quantify the effects secondary to the change of that particular variable on the final outcome in the parametric studies. They can depict the stress distribution in the skeletons not only in quantity but also in quantity when skeletons received various violence, which is extremely difficult achieved by the traditional biomechanical research methods. From the view of clinical application, finite element method is an important and a great valuable supplementary for human cadaveric biomechanical experimental research.
     Objective:
     1. To reconstruct and visualize the three-dimensional digital model of the upper cervical spinal motion segment (C0~3) based on continuous lamellar spiral CT images of upper cervical spine segments.
     2. To construct detail axis 3D finite element model and to explore the injury mechanism and types of fracture under different boundary conditions.
     3. To explore the influence of the ossification degree of the subdental synchondrosis to the fracture types of the dens.
     Methods:
     1. A 32-year-old, weighted 65kg, height 169.5cm, healthy male volunteer was chosen according to the average Chinese people stander. Before his cervical vertebrae CT data obtained, appropriated radiographic studies were performed, including stander anterior-posterior, open mouth, bilateral and bioblique position radiographs with the head in the neutral position, to exclude the skeletal pathologies of the cervical spine. From external auditory foramen to the first thoracic vertebra segment, 232 dicom format CT images with a slice interval of 0.699mm,pixel width of 0.355mm and a 512×512 voxel slice density were obtained using GE Light Speed VCT scanner (GE Medical Systems, America. Scan conditions: 120 kV, 297.75 mAs. Slice interval: 0.699mm). Cervical CT data was imported into MIMICS 10.01 software (Materialise, Belgium), using image segmentation edit tools and setting the segmentation CT threshold at 435~3074 HU, MIMICS software automatically generated the mask of the bones. Base on the mask, using the edit tools to edit the mask, fill the holes and remove the uncorrelated noises of the mask, then utilizing the region growing tool automatically generate each individual three-dimension bony structure of the upper cervical spine segment. Adjust the contrast of the images, according to the different contrast between the soft tissue and bony structures in CT images, utilize the edit tool of the software and anatomy knowledge to generate the disc between C2/3, facet joint articular cartilage of C1-3, articular cartilage opereulums of the median and lateral atlantoaxial joint. Ligamentum transversum atlantis, anterior longitudinal ligament, posterior longitudinal ligament, flaval ligament, interspinous ligament and supraspinous ligament were reconstructed with the same method.
     2. The cortical and the trabecular bone three-dimensional finite element models of the axis were very well constructed from the cervical spine CT data using MIMICS 10.01 software (Materialise, Belgium), and then imported into Ansys 10.0 software (ANSYS, Inc. Pennsylvania, America) for remenshing, material assignment and model analysis to simulate the axis injury situation. Theoretical stress distribution of the axis was calculated by applying anterior-posterior direction shearing force on the anterior articular surface of dens under three boundary conditions to explore the possible fracture types under the corresponding conditions.
     3. Detailed three-dimensional of the axis finite element model was reconstructed based on a normal adult volunteer’s upper cervical spine continuous lamellar spiral CT images. By altering the trabecular bone’s Yong’s module of the cartilage matrix ossification region, anterior-posterior direction shearing force was applied on the anterior articular surface of dens under tow boundary conditions and theoretical stress distribution of the axis was calculated to explore the stress distributions and predict the possible fracture types.
     Results:
     1. Successfully reconstructed the three-dimensional digital model of the upper cervical spinal motion segment. The model included C0-3 bony structures and distinguished the cortical and cancellous bone, cartilaginous opereulums from C1 to C3, disc of C2/3 and 6 types of ligaments. The three-dimensional mode1 was built with good fidelity and geometric similarity. The initial finite analysis results of the mode1 were matched to the results of the biomechanical studies and clinical findings. This model could be used for further finite element analysis of the biomechanical studies of the upper cervical spine.
     2. When the axis received anterior-posterior shearing force ,①bilateral inferior articular facets nodes of the axis were completely constrainted to simulate the axis in neutral position pretrauma, high stress concentrated at bilateral pars interarticularis ;②one inferior articular facet nodes were completely constrainted to simulate the axis lateral bending pretramu, high stress was mainly distributed at one side of the pars interarticularis and the junction site of the inferior facet and laminae of the axis;③completely constrainted the inferior aspect nodes of the axis as the previous biomechanical studies, high stress concentration was located at the junction of the dens with the vertebral body.
     3. Under the two boundary conditions (bilateral inferior articular facets nodes of the axis were completely constrainted to simulate the axis in neutral position pretrauma; completely constrainted the inferior aspect nodes of the axis as the previous biomechanical studies), finite element analysis results demonstrated that the ossification degree of the subdental synchondrosis did not obviously influence the high stress distributions nor the maxium von Mises equivalent stress.
     Conclusions:
     1. Mimics software provided a more quick and accurate method to establish three-dimensional digital model of the upper cervical spinal motion, and facilitated further research the behaviors of the upper cervical spine.
     2.①Lateral bending of the cervical spine pretrauma may possibly be an very important factor to induce asymmetry Hangman’s fracture;②Besides the direction of the violence, different restrictions of the cadaveric sample might directly impact the reproduction of the axis fracture types in the axis fracture biomechanical studies.
     3. The degree ossification of the subdental synchondrosis did not impact the fracture type of the dens.
引文
[1]. Panjabi M, Dvorak J, Duranceau J, et al. Three-dimensional movements of the upper cervical spine[J]. Spine, 1988,13(7):726-730.
    [2].张华,贾连顺.上颈椎损伤的诊断和治疗进展[J].骨与关节损伤杂志,2000,15(1):73-75.
    [3].贾连顺,袁文主译. Charles R. Clark主编.颈椎外科学[M].第4版.山东:山东科学技术出版社.2006:73.
    [4]. Panjabi MM. Cervical spine models for biomechanical research[J].Spine,1998,23(24):2684- 2700.
    [5]. Yoganandan N, Kumaresan S, Voo L, et al. Finite element applications in human cervical spine modeling[J]. Spine,1996,21(15):1824-1834.
    [6]. Doherty BJ, Heggeness MH, Esses SI. A biomechanical study of odontoid fractures and fracture fixation[J]. Spine, 1993,18(2):178-184.
    [7]. Panjabi MM, Duranceau JS, Oxland TR, et al. Multidirectional instabilities of traumatic cervical spine injuries in a porcine model[J]. Spine, 1989,14(10):1111-1115.
    [8]. Crisco JJ, Panjabi MM, Wang E, et al. The injured canine cervical spine after six months of healing. An in vitro three-dimensional study[J]. Spine, 1990,15(10):1047-1052.
    [9]. McAfee PC, Farey ID, Sutterlin CE, et al.The effect of spinal implant rigidity on vertebral bone density. A canine model [J]. Spine,1991,16(6 Suppl):S190-197.
    [10]. Panjabi MM, Pelker R, Crisco JJ, et al. Biomechanics of healing of posterior cervical spinal injuries in a canine model[J]. Spine,1988,13(7):803-807.
    [11]. Zdeblick TA, Wilson D, Cooke ME, et al. Anterior cervical discectomy and fusion. A comparison of techniques in an animal model[J]. Spine, 1992,17(10 Suppl):S418-426.
    [12]. Yoganandan N, Sances A Jr, Pintar F. Biomechanical evaluation of the axial compressive responses of the human cadaveric and manikin necks[J]. J Biomech Eng,1989,111(3):250-255.
    [13].郭世绂.临床骨科解剖学[M].天津:天津科学技术出版社,1986:67-74.
    [14]. Abrahams PH,Hutchings RH,Marks Jr SC.麦克明彩色人体解剖图谱[M].第4版.北京:人民卫生出版社,2002:77-79.
    [15]. Brekelmans WAM,Rybicki EF,Burdeaux BD.A new method analysis the mechanical behavior of skeletal parts[J].Acta Ortho Scand,1972,43:301-305.
    [16]. Saito T, Yamamuro T, Shikata J, et al. Analysis and prevention of spinal column deformity following cervical laminectomy. I. Pathogenetic analysis of postlaminectomy deformities. [J]. Spine, 1991,16(5):494-502.
    [17]. Zhang H, Bai J. Development and validation of a finite element model of the occipito-atlantoaxial complex under physiologic loads[J]. Spine, 2007,32(9):968-974.
    [18]. Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics[J]. Spine, 2004,29(4):376-385.
    [19]. Zhang QH, Teo EC, Ng HW, et al. Finite element analysis of moment-rotation relationships for human cervical spine[J]. J Biomech,2006,39(1):189-193.
    [20]. Teo EC, Paul JP, Evans JH. Finite element stress analysis of a cadaver second cervical vertebra[J]. Med Biol Eng Comput, 1994,32(2):236-238.
    [21]. Teo EC, Ng HW. First cervical vertebra (atlas) fracture mechanism studies using finite element method[J]. J Biomech, 2001,34(1):13-21.
    [22]. Ng HW, Teo EC. Nonlinear finite-element analysis of the lower cervical spine (C4-C6) under axial loading[J]. J Spinal Disord, 2001,14(3):201-210.
    [23]. Li XF, Dai LY, Lu H, et al. A systematic review of the management of hangman's fractures. Eur Spine, 2006,15(3):257-269.
    [24]. Hadley MN, Sonntag VK, Grahm TW, et al. Axis fractures resulting from motor vehicle accidents. The need for occupant restraints. Spine, 1986,11(9):861-864.
    [25]. Greene KA, Dickman CA, Marciano FF, et al. Acute axis fractures. Analysis of management and outcome in 340 consecutive cases. Spine, 1997,22(16):1843-1852.
    [26]. Effendi B, Roy D, Cornish B, et al. Fractures of the ring of the axis. A classification based on the analysis of 131 cases.J Bone Joint Surg Br, 1981,63-B(3):319-327.
    [27]. Burke JT, Harris JH Jr. Acute injuries of the axis vertebra. Skeletal Radiol, 1989,18(5):335- 346.
    [28]. Samaha C, Lazennec JY, Laporte C, et al. Hangman's fracture: the relationship between asymmetry and instability. J Bone Joint Surg Br, 2000,82(7):1046-1052.
    [29].Teo EC, Paul JP, Evans JH, et al. Experimental investigation of failure load and fracture patterns of C2 (axis). J Biomech, 2001,34(8):1005-1010.
    [30].张美超,张志凌,夏虹,等.枢椎齿状突骨折的有限元分析[J].中国临床解剖学杂志,2005,23(1):96-99.
    [31]. Sasso R, Doherty BJ, Crawford MJ, et al. Biomechanics of odontoid fracture fixation. Comparison of the one- and two-screw technique. Spine, 1993,18(14):1950-1953.
    [32]. Althoff B. Fracture of the odontoid process. An experimental and clinical study. Acta Orthop Scand Suppl, 1979,177:1-95.
    [33].贾连顺,李国. Hangman骨折[J].中华骨科杂志,2004,24(5):317-320.
    [34]. Blockey NJ, Purser DW. Fractures of the odontoid process of the axis [J]. J Bone Joint Surg Br, 1956, 38-B(4):794-817.
    [35]. Amling M, Hahn M, Wening VJ, et al. The microarchitecture of the axis as the predisposing factor for fracture of the base of the odontoid process. A histomorphometric analysis of twenty-two autopsy specimens [J]. J Bone Joint Surg Am, 1994,76(12):1840-1846.
    [36]. Zhang QH, Teo EC, Ng HW. Development and validation of a C0-C7 FE complex for biomechanical study [J]. J Biomech Eng, 2005,127(5):729-735.
    [37]. Blauth M, Schmidt U, Otte D, et al. Fractures of the odontoid process in small children: biomechanical analysis and report of three cases[J]. Eur Spine J, 1996,5(1):63-70.
    [38]. Amyes EW, Anderson FM. Fracture of the odontoid process; report of sixty-three cases [J]. AMA Arch Surg, 1956,72(3):377-393.
    [39]. Graham RS, Oberlander EK, Stewart JE, et al. Validation and use of a finite element model of C-2 for determination of stress and fracture patterns of anterior odontoid loads [J]. JNeurosurg, 2000,93(1 Suppl): 117-125.
    [40]. Puttlitz CM,Goel VK,Clark CR, et al.Pathomechanisms of failures of the odontoid[J].Spine, 2000, 25(22): 2868-2876.
    [41].Heggeness MH, Doherty BJ.The trabecular anatomy of the axis.Spine,1993,18(14):1945- 1949.
    [1]. Leone A, Cerase A, Colosimo C, et al. Occipital condylar fractures: a review[J]. Radiology, 2000,216(3):635-644.
    [2]. Alcelik I, Manik KS, Sian PS, et al. Occipital condylar fractures. Review of the literature and case report[J]. J Bone Joint Surg Br, 2006,88(5):665-669.
    [3]. Spencer JA, Yeakley JW, Kaufman HH. Fracture of the occipital condyle[J]. Neurosurgery, 1984,15(1):101-103.
    [4]. Richards PJ. Case report--fracture of the occipital condyle[J]. Injury, 2003,34(5):394.
    [5]. Falavigna A, da Silva FM, Hennemann AS. Occipital condyle fracture associated with Jefferson's fracture and injury of lower cranial nerves: case report[J]. Arq Neuropsiquiatr, 2002,60(4):1038-1041.
    [6]. Desai SS, Coumas JM, Danylevich A, et al. Fracture of the occipital condyle: case report and review of the literature[J]. J Trauma, 1990,30(2):240-241.
    [7]. Valaskatzis EP, Hammer AJ. Fracture of the occipital condyle. A case report[J]. S Afr Med J, 1990,77(1):47-48.
    [8]. Curri D, Cervellini P, Zanusso M, et al. Isolated fracture of occipital condyle. Case report[J]. J Neurosurg Sci, 1988,32(4):157-159.
    [9]. Harding-Smith J, MacIntosh PK, Sherbon KJ. Fracture of the occipital condyle. A case report and review of the literature[J]. J Bone Joint Surg Am, 1981,63(7):1170-1171.
    [10]. Anderson PA, Montesano PX. Morphology and treatment of occipital condyle fractures[J]. Spine, 1988,13(7):731-736.
    [11]. Gusmao SS, Silveira RL, Arantes A.Surgical treatment of the occipital condyle fracture: case report[J]. Arq Neuropsiquiatr, 2001,59(1):134-137.
    [12]. Young WF, Rosenwasser RH, Getch C, et al. Diagnosis and management of occipital condyle fractures[J]. Neurosurgery, 1994,34(2):257-60; discussion 260-261.
    [13]. Levine AM, Edwards CC. Treatment of injuries in the C1-C2 complex[J]. Orthop Clin NorthAm, 1986,17(1):31-44.
    [14]. Levine AM, Edwards CC. Fractures of the atlas[J]. J Bone Joint Surg Am, 1991,73(5):680-691.
    [15]. Oda T, Panjabi MM, Crisco JJ 3rd, et al. Multidirectional instabilities of experimental burst fractures of the atlas[J]. Spine, 1992,17(11):1285-1290.
    [16]. Oda T, Panjabi MM, Crisco JJ 3rd, et al. Experimental study of atlas injuries. II. Relevance to clinical diagnosis and treatment[J]. Spine, 1991,16(10 Suppl):S466-473.
    [17]. Panjabi MM, Oda T, Crisco JJ 3rd, et al. Experimental study of atlas injuries. I. Biomechanical analysis of their mechanisms and fracture patterns[J]. Spine, 1991,16(10 Suppl):S460-465.
    [18]. Segal LS, Grimm JO, Stauffer ES. Non-union of fractures of the atlas[J]. J Bone Joint Surg Am, 1987,69(9):1423-1434.
    [19]. Sherk HH, Nicholson JT. Fractures of the atlas[J]. J Bone Joint Surg Am, 1970,52(5):1017- 1024.
    [20]. Deliganis AV, Baxter AB, Hanson JA, et al. Radiologic spectrum of craniocervical distraction injuries[J]. Radiographics, 2000,20 Spec No:S237-250.
    [21]. Kershner MS, Goodman GA, Perlmutter GS. Computed tomography in the diagnosis of an atlas fracture[J]. AJR Am J Roentgenol, 1977,128(4):688-689.
    [22].李家顺,贾连顺.当代颈椎外科学[M].上海:上海科学技术文献出版社.1997,80-88.
    [23]. Bani A, Gilsbach JM. Atlantooccipital distraction: a diagnostic and therapeutic dilemma: report of two cases[J]. Spine, 2003,28(5):E95-97.
    [24]. Montane I, Eismont FJ, Green BA.Traumatic occipitoatlantal dislocation[J].Spine 1991, 16(2): 112-116.
    [25]. Papadopoulos SM, Dickman CA, Sonntag VK, et al. Traumatic atlantooccipital dislocation with survival[J]. Neurosurgery, 1991,28(4):574-579.
    [26].王健,倪斌.寰枕关节损伤的诊断及治疗进展[J].中国脊柱脊髓杂志,2005,15:565-567.
    [27]. Matava MJ, Whitesides TE Jr, Davis PC. Traumatic atlanto-occipital dislocation with survival. Serial computerized tomography as an aid to diagnosis and reduction: a report of three cases[J]. Spine, 1993,18(13):1897-1903.
    [28]. Saeheng S,Phuenpathom N.Traumatic occipitoatlantal dislocation[J].Surg Neurol,2001,55(1): 35-40.
    [29]. Dickman CA, Greene KA, Sonntag VK. Injuries involving the transverse atlantal ligament: classification and treatment guidelines based upon experience with 39 injuries[J]. Neurosurgery, 1996,38(1):44-50.
    [30].戴力扬.寰椎横韧带损伤[J].颈腰痛杂志,2001,22:72-74.
    [31]. Burguet JL, Sick H, Dirheimer Y, et al. CT of the main ligaments of the cervico-occipital hinge[J]. Neuroradiology, 1985,27(2):112-118.
    [32].Dickman CA, Mamourian A, Sonntag VK, et al. Magnetic resonance imaging of the transverse atlantal ligament for the evaluation of atlantoaxial instability[J].J Neurosurg,1991,75(2):221- 227.
    [33]. Fielding JW, Francis WR Jr, Hawkins RJ, et al. Traumatic spondylolisthesis of the axis[J]. Clin Orthop Relat Res, 1989,(239):47-52.
    [34]. Anderson LD, D'Alonzo RT. Fractures of the odontoid process of the axis[J]. J Bone Joint Surg Am, 1974,56(8):1663-1674.
    [35]. Gaber JN. Abnormalities of the atlas and axis vertibrae: congenital and traumitic[J]. J Bone Joint Surg Am, 1964,46:1782-1791.
    [36]. Levine AM, Edwards CC. The management of traumatic spondylolisthesis of the axis[J]. J Bone Joint Surg Am,1985,67(2):217-226.
    [37]. Effendi B, Roy D, Cornish B, et al. Fractures of the ring of the axis. A classification based on the analysis of 131 cases[J]. J Bone Joint Surg Br, 1981,63-B(3):319-327.
    [38]. Benzel EC, Hart BL, Ball PA, et al. Fractures of the C-2 vertebral body[J]. J Neurosurg, 1994,81(2):206-212.
    [39].王建华,尹庆水,夏虹,等.综合应用现代影像学技术对上颈椎骨折脱位85例诊疗分析[J].实用医学杂志,2006,22:1176-1177.
    [40].贾连顺,李国.Hangman骨折[J].中华骨科杂志,2004,24:317-320.
    [41].谭军,贾连顺,侯黎升,等. C2椎弓根拉力螺钉选择性治疗Hangman骨折[J].中华骨科杂志, 2002,22: 653-656 .

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700