用户名: 密码: 验证码:
拟南芥MPT家族调节非生物胁迫耐性的分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物在生长发育的整个生命周期中,会面临各种不利的外部环境(如土壤盐害、干旱、涝害、低温、高温、病原菌侵袭、机械损伤等)。在长期的进化过程中,植物形成了响应胁迫和提高抗性的机制。植物感受到胁迫信号后,会自主启动防御机制:包括物理结构适应,如自身结构改变和器官功能特性对盐分和缺水的适应;胞内渗透保护物质(脯氨酸、甜菜碱和可溶性糖等)含量增加,如超氧化物歧化酶、过氧化氢酶、抗坏血酸酶等的合成水平上升;启动植物激素(赤霉素、脱落酸等)参与的适应性调节等,帮助植物体重新建立物质和能量代谢平衡,从而在胁迫环境下存活。
     伴随着多种生物及非生物胁迫的影响,呼吸作用和光合作用都会有所减弱,出现能量不足,从而引起一系列生理、代谢和分子水平上的事件发生,包括生物合成酶类活性的降低,分解代谢的活化以提供营养和植物生长的抑制等。线粒体是多种重要代谢过程发生的场所,例如呼吸作用、氧化磷酸化、控制植物细胞内ROS的平衡、参与脯氨酸、维生素C的合成等,因此线粒体是植物适应外界各种胁迫环境的重要细胞器。其中,线粒体磷酸转运体(Mitochondrial phosphate transporter/Phosphate Carrier, MPT/PiC)是位于线粒体内膜上的一种重要的功能蛋白,负责将重要代谢底物无机磷酸(Pi)通过线粒体内膜从细胞质转移到线粒体基质。但是人们对于植物MPT与逆境胁迫抗性的关系,仍不是很清楚。
     在模式植物拟南芥中,我们克隆得到了MPT基因家族的三个成员,分别命名为AtMPT1、AtMPT2和AtMPT3,对其表达模式和功能进行分析:
     (1)通过进化树分析表明,AtMPT蛋白进化保守,其中AtMPT2和AtMPT3同源性要高于两者与AtMPT1的同源性。
     (2)利用qRT-PCR和GUS染色分析表明,AtMPT1、AtMPT2及AtMPT3具有不同的组织表达模式,暗示着三个成员在拟南芥生长发育的不同阶段起作用。而且AtMPT3表达量明显的比AtMPT1和AtMPT2的表达量高,说明AtMPT3可能起主要作用。
     (3)AtMPT1、AtMPT2及AtMPT3突变体和超表达植株表现出对盐胁迫的敏感性。盐胁迫使WT中GAs的含量降低,而AtMPT1、AtMPT2及AtMPT3的突变体和超表达植株中GAs的含量有所提高;此外,外施GAs合成抑制剂UNI使其盐敏感的表型恢复。表明MPTs通过调节赤霉素使拟南芥对盐胁迫做出响应。
     (4)GAs代谢相关基因的表达明显受到了AtMPTs的调节。盐胁迫下,AtMPT1、AtMPT2及AtMPT3的突变体和超表达植株中GAs合成基因GA3ox1/2/3、GA20ox1/2/4表达上调,GAs失活基因GA2oxs表达下调。表明AtMPTs表达过高或过低都会破坏植物GA的正常代谢,造成GAs含量的紊乱,破坏GA介导的植物对盐胁迫的适应。
     (5)AtMPT3受到渗透胁迫的明显诱导。AtMPT3的突变体和超表达植株表现出对渗透胁迫的敏感性。350mM Mannitol处理24小时后WT、mpt3、OEMPT3体内ABA含量均有所上升。其中突变体和超表达株系分别是处理前的2.09倍和1.99倍,野生型仅为1.23倍。此外,外施ABA合成抑制剂钨酸钠能够恢复其敏感的表型。表明内源ABA含量的升高是MPT3突变体和超表达株系对渗透胁迫表现出超敏感的原因。
     (6)AtMPT3的突变体和超表达植株中ABA代谢相关基因表达受到影响。ABA合成基因NCEDs和AAOs表达量增加;ABA降解基因CPY707A3表达量降低,导致ABA过度合成。然而在突变体和超表达株系中CPY707A1表达量仍上调,但并未产生明显作用,可能由于表达部位不同而致。表明AtMPT3的异常表达会导致植株在幼苗生长阶段和成花诱导阶段对渗透胁迫的敏感。
     (7)GUS活性(GUS/LUC)的瞬时测定证明GT-1 box和双TM6的融合成功地提高了盐诱导启动子GhNHX1的活性。
Plants are sessile organisms and hence they cannot escape unfavourable environmental conditions within their life cycle, such as high salinity, drought, waterlog, high or low temperature, pathogen attack and mechanical agitation. Among them, high salinity and drought are the main constraints in plant geographical distribution and crop productivity. Plants have evolved finely tuned high-salinity and osomotic signaling and resistance mechanisms. When exposed to salt or osomotic stress, plants respond rapidly and carry out protective processes, for example, physical adaptation (changes in cellular structure and organic functional adaptation), accumulation of osmoprotectants (soluble sugars, proline, betaine, etc.) in cytosol, increased contents of various antioxidants (superoxide dismutase, catalase, ascorbinase, etc.), phytohoromone (GA, ABA) regulated adaptatipon etc., which reprogram the biological activities and establish a new metabolism balance for stressed plants and help survive the salt or osomotic stress.
     Often associated with stress is a reduction in photosynthesis and/or respiration, which in turn results in energy deprivation and ultimately in growth arrest and cell death. Mitochondria can integrate numerous metabolic pathways that are important in adaptive responses to extreme environmental conditions, such as respiration and oxidative phosphorylation, the control of redox balance, and the metabolism of proline and ascorbate. The mitochondrial phosphate transporter/carrier (MPT/PiC) which is located in the mitochondrial inner membrane catalyzes phosphate transportation. Nevertheless, the relationship between MPT and environmental stress are still largely unknown.
     A total of three MPT genes have been cloned from the Arabidopsis genome, which were designed as AtMPT1 (AT2G17270), AtMPT2 (AT3G48850) and AtMPT3 (AT5G14040). Their expression modes and function are analyzed in detail:
     (1) The phylogenetic tree analysis showed that the evolution of MPTs family is conservertive in all specices. The data also indicate that AtMPT2 protein is more closely related with AtMPT3 than with AtMPT1.
     (2) By quantitative real-time reverse transcription-PCR (qRT-PCR) and promoter:β-glucouronidase (GUS) fusions, the expression patterns were different among three AtMPT genes during Arabidopsis development. Moreover, the expression level of AtMPT3 is much higher compared with the other two MPT genes, revealing that AtMPT3 plays a predominant role in Arabidopsis development.
     (3) Both the seed germination and seedling establishment of mpt mutants and OEMPTs were obviously inhibited by salt stress. Recent research proved that GAs contents had something to do with the adaptation to salt stress in Arabidopsis. And the levels of bioactive GAs were slightly reduced in WT, on the contrary evaluated in mpts mutants and OEMPTs after salt treatment compared to the control. Besides, the salt sensitivities of mpt mutants and OEMPTs were similar to WT after supplementing with UNI during the seeds germination and seedlings establishment stages. These results indicate that MPTs mediated early Arabidopsis responses to salt stress, most probably through bioactive GAs.
     (4) The expression of GAs metabolic-related genes were remarkably regulated by AtMPTs. The expressions of GA responsive and metabolic genes changed remarkably in mpt3 and OEMPT3 compared with WT plants under salt stress condition. In detail, the biosynthesis genes GA20ox1/2/3 and GA3ox1/2/4 in mpt3 and OEMPT3 were slightly higher than that in WT plants, whereas the induced transcriptional levels of most GAs-deactivation genes GA2oxs were lower than that in WT plants.
     (5) AtMPT3 was induced by osmotic stress. Both the seed germination and seedling establishment of mpt3 and OEMPT3 were obviously inhibited by osomotic stress. The levels of bioactive ABA were all elevated in WT, mpt3 mutants and OEMPT3 after osomotic treatment. However, the ABA concentration increased 2.09-fold in mpt3, 1.99-fold in OEMPT3 compared to untreated controls, only1.23-fold in WT. Moreover, the osomotic sensitivities of mpt3 and OEMPT3 were restored to normal after applicating with tungstate during the seeds germination and seedlings establishment stages. These results suggested that some increase in endogenous ABA levels during osomotic stress could contribute to the enhancement of stress sensitivity of the mpt3 and OEMPT3.
     (6) ABA metabolic genes changed remarkably in mpt3 and OEMPT3 compared with WT plants. The transcription levels of the genes involving in ABA metabolism were affected by variable transcription level of AtMPT3. In mpt3 mutant and OEMPT3, the transcriptional levels of ABA biosynthesis related genes NCEDs and AAOs was induced much higher than that of WT; moreover, the transcriptional level of ABA decompose genes CYP707As was induced much lower than that of WT, Which in turn leads to the increase of ABA levels in mpt3 and OEMPT3.
     (7) The relative GUS activity of the newly constructed P3 promoter showed that the induced levels of GhNHX1 promoter was largely enhanced by the repeated GT-1 box and the TM6s.
引文
胡学博,宋凤鸣,郑重。高等植物中蛋白磷酸酶2C的结构与功能。细胞生物学杂志, 2005,27(1):29-34
    李彦,张英鹏,孙明。盐胁迫对植物的影响及植物耐盐机理研究进展。植物生理科学, 2008,24(1):258-265
    刘爱荣,赵可夫。盐胁迫下盐芥渗透调节物质的积累及其渗透调节作用。植物生理与分子生物学学报,2005,31(4):389-395
    刘友良,汪良驹。植物对盐胁迫的反应和耐盐。余叔文、汤章城主编:植物生理与分子生物学(第二版),科学出版社,1998,752-769
    潘瑞炽,董愚得。植物生理学。北京:高等教育出版社,1995,322- 328
    王爱国。活性氧对花生叶片大分子量DNA的损伤。植物生理学通讯,1993,29:260-262 王宝山。植物生理。科学出版社,2004,4:151-156
    韦存虚,王建波,陈义芳。盐生植物星星草叶表皮具有泌盐功能的蜡质层。生态学报,2004,24(11):2451-2456
    吴小萍,陈晓萍,斯昇亮。丝裂原活化蛋白激酶信号通路相关研究。生物学通报, 2006, 41(6): 20
    张宏飞,王锁民。高等植物Na+吸收、转运及细胞内Na+稳态平衡研究进展。植物学通报, 2007,24:561-571
    张洁明,孙景宽,刘宝玉。盐胁迫对荆条、白蜡、沙枣种子萌发的影响。植物研究, 2006,26(5):595-599
    张其德,盐胁迫对植物及其光合作用的影响,植物杂志,1999,6:32-33
    赵可夫,范海。盐生植物及其对盐渍生境的适应生理。北京:科学出版社,2005,1:131-180
    赵可夫,李法曾。中国盐生植物。北京:科学出版社,1999,1:30-65
    Abe H., Yamaguchi-Shinozaki K. and Urao T.. Role of Arabidopsis MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell, 1997, 9: 1859
    Achard P., Cheng H. and Grauwe L. D.. Integration of plant responses to environmentally activated phytoh-ormonal signals. Science, 2006, 311: 91-94
    Ali H,Tucher T. C. and Thompson T. L.. Effects of salinity and mixed ammonium and nitrate nutrition on the growth and nitrogen utilization of barley. Agro. Crop. Sci., 2001, 186: 223-228
    Ana Alonso-Ram?′rez and Dolores Rodr?′guez. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in arabidopsis seeds. Plant Physiol.,2009, 150: 1335-1344
    Apse M. P., Aharon G. S. and Snedden W. A.. Salt tolerance conferres by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science, 1999, 285: 256-1258
    Ariizumi T., Murase K and Sun T. P.. Proteolysis-independent downregulation of DELLA repression in arabidopsis by the gibberellin receptor gibberellin insensitive dwarf 1. Plant Cell, 2008, 20: 2447-2459
    Attia H., Karray N. and Rabhi M.. Salt-imposed restrictions on the uptake of macroelements by roots of Arabidopsis thaliana. Acta. Physiol. Plantarum, 2008, 30: 723-727
    Ballesteros E., Blumwald E., Donaire J. P., Belver A.. Na+/H+ antiporter activity in tonoplast vesicles isolated from sunflower induced by NaCl stress. Physiol. Plant, 1997, 99: 328-334
    Belin C., de Franco P. O., Bourbousse C., Chaignepain S., Schmitter J. M., Vavasseur A., Giraudat J., Barbier-Brygoo H., Thomine S.. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol., 2006, 141(4): 1316-1327
    Blaha G., Stelza U., Spahn C. T., Agrawal R. K., Frank J., Nierhaus K. H.. Preparation of functional ribosomal complexed and effect of buffer conditions on tRNA positions observed by cryoelecttron microscopy. Metheds in Enzymology, 2000, 317: 292-309
    Blumwald E., Aharon G. S. and Apse M. P.. Sodium transport in plant cells. Biochim. Biophys. Acta., 2000, 1465: 140-151
    Blumwald E. Sodium transport and salt tolerance in plants. Curr. Opin. in Cell Biology, 2000, 12: 431-434
    Bode J., Kohwi Y., Dickinson L., Joh T., Klehr D., Mielke C., and Kohwi-Shigematsu, T. Biological significance of unwinding capability of nuclear matrix-associating DNAs. Science, 1992, 255: 195-197
    Bohumil M.. Germination requirements of invasive and non-invasive Atriplex species: a comparative study. Flora, 2003, 198, 45-54
    Boudsocq M. and Lauriere C.. Osmotic signaling in plants. multiple pathways mediated by emerging kinase families. Plant Physiol., 2005, 138:1185
    Bray E. A.. Abscisic acid regulation of gene expression during water deficit stress in the era of the Arobidopsis genome. Plant Cell Environ., 2002, 25: 153
    Breckle S. W.. Salinity tolerance of different halophyte types. In: Bassam NEL ed. Genetic aspects of plant mineral nutrition. Kluwer Academic Publishers, Dordrecht, the Netherlands, 1990, 4: 167-175
    Brouwer C., Bruce W., Maddock S., Avramova Z., and Bowen B.. Suppression of transgene silencing by matrix attachment regions in maize: a dual role for the maize 5' ADH1 matrix attachment region. Plant Cell, 2002, 14: 2251-2264
    Burnstock G. and Knight G. E.. Cellular distribution and functions of P2 receptor subtypes in different systems. Int. Rev. Cytol., 2004, 240: 31-51
    Camps M., Nichols A. and Arkinstall S.. Dual specificity phosphatases: a gene family for control of MAP kinase function. FASEB J., 1999, 14: 6
    Cheng W. H., Endo A., Zhou L., Penney J., Chen H. C., Arroyo A., Leon P., Nambara E., Asami T., Seo M., Koshiba T. and Sheen J.. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell, 2002, 14(11): 2723-2743
    Chhipa B. R. and Lal P.. Na/K ratios as the basis of salt tolerance in wheat. Aust. J. Agric. Res., 1995, 46(3): 533-539
    Cushman J. C. and Bohnert H. J.. Genomic approaches to plant stress tolerance. Curr Opin in Plant Biology, 2000, 3:117-124
    Cutler A. J. and Krochko J. E.. Formation and breakdown of ABA. Trends Plant Sci., 1999, 4(12): 472-478
    Davenport R. and James R. A., Zakrisson-Plogander A., Tester M., Munns R.. Control of sodium transport in durum wheat. Plant Physiol., 2005, 137: 807-818
    Davenport R. J. and Tester M. A.. Weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant physiol., 2003, 122: 823-834
    Desikan R., Cheung M. K. and Bright J.. ABA, hydrogen peroxide and nitric oxide signalling in stomatal guard cells. J. Exp. Bot., 2004, 55: 205
    Dolce V., Fiermonte G. and Palmieri F.. Tissue-specific expression of the two isoforms of the mitochondrial phosphate carrier in bovine tissues. FEBS Lett., 1996, 399: 95-98
    Dolce V., Iacobazzi V., Palmieri F. and Walker J. E.. The sequences of human and bovine genes of the phosphate carrier from mitochondria contain evidence of alternatively spliced forms. J. Biol. Chem., 1994, 269: 10451–10460
    Dracup M.. Increasing salt tolerance of plants through cell culture requires greater understanding of tolerance mechanisms. Australian J. of Plant Physiology, 1991, 18: 1-15
    Ferreira G. C., Pratt R. D. and Pedersen P. L.. Energy-linked anion transport. Cloning, sequencing and characterization of a full length cDNA encoding the rat liver mitochondrial proton/phosphate symporter. J. Biol. Chem., 1989, 264: 15628-15633
    Fiermonte G., Dolce V. and Palmieri F.. Expression in Escherichia coli, functional characterization, and tissue distribution of isoforms A and B of the phosphate carrier from bovine mitochondria. J. Biol. Chem., 1998, 273: 22782-22787
    Finkelstein R. R., Gampala S. L. and Rock C. D.. Abscisic acid signaling in seeds and seedlings. Plant Cell, 2002, (14): 589-597
    Fleet C. M. and SUN T. P.. DELLA cate balance: the role of gibberellin in plantmorphogenesis. Curr. Opin. Plant Biol., 2005, 8: 77-85
    Flexas J., Bota J. and Galmés J.. Keeping a positive carbon balance under adverse conditions: responses of photosynthesis and respiration to water stress. Physiol. Plant, 2006, 127: 343-352
    Flowers T. J.. Chloride as a nutrient and as an osmoticum. In: Tinker B, L?uuchli A, eds. Asvanced in plant nutrition, New York: Praeger, 1988: 55-78
    Fujii H., Verslues P. E. and Zhu J. K.. Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in arabidopsis. Plant Cell, 2007, 19(2): 485-494
    Fujii H. and Zhu J. K.. Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proc. Natl. Acad. Sci. USA, 2009, 106(20): 8380-8385
    Fukuda A., Nakainura A. and Tagiri A.. Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+antiporter from rice. Plant Cell Physiol., 2004, 45(2): 146-159
    Fukuda Y., and Nishikawa S.. Matrix attachment regions enhance transcription of a downstream transgene and the accessibility of its promoter region to micrococcal nuclease. Plant Mol. Biol., 2003, 51: 665-675
    G. Brandolin C., Dahout-Gonzalez H., Nury V., Trézéguet G. M., Lauquin E. and Pebay-Peyroula. Molecular, Functional, and Pathological Aspects of the Mitochondrial ADP/ATP Carrier. Physiology, 2006, 21: 242-249
    Gardestrom P. and Lernmark U.. The contribution of mitochondria to energetic metabolism in photosynthetic cells. J. Bioenerg. Biomembr., 1995, 27: 415-421
    Gaxiola R., Li J., Undurraga S., Dang L. M., Allen G. J., Alper S. L. and FinkG. R.. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+ pump. Proc. Natl. Acad. Sci. USA, 2001, 98: 11444-11449
    Gomi K. and Matsuoka M.. Gibberellin signalling pathway. Curr. Opin. Plant Biol., 2003, 6: 489-493
    González-Guzmán M., Apostolova N., Bellés J. M., Barrero J. M., Piqueras P., Ponce M. R., Micol J. L., Serrano R., Rodríguez P. L.. The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell, 2002, 14(8): 1833-1846
    Gosti F., Beaudoin N., Serizet C., Webb A. A., Vartanian N. and Giraudat J.. ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell, 1999, 11(10): 1897-1910
    Greenway H. and Munns R.. Mechanisms of salt tolerance in non halophytes. Annu. Rev. of Plant Physiol., 1980, 31, 149-190
    Guerin B., Bukusoglu C., Rakotomanana F. and Wohlrab H.. Mitochondrial phosphate transport N-ethylmaleimide insensitivity correlates withabsence of beef heart-like Cys42 from the Saccharomyces cereisiae phosphate transport protein. J. Biol. Chem., 1990, 265: 19736-19741
    Guo Y., Halfter U., Ishitani M.. Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell, 2001, 13: 1383
    Halfter U., Ishitani M., Zhu J. K.. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calciumbinding protein SOS3. Proc. Natl. Acad. Sci. USA, 2000, 97: 3735
    Hamel P., Saint-Georges Y., de P. B., Lachacinski N., Altamura N. and Dujardin G.. Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana. Mol. Microbiol., 2004, 51: 307-317
    Han N., Shao Q., Lu C. M. and Wang B. S.. The leaf tonoplast V-H+-ATPase activity of a C3 halophyte Suaedasalsa is enhanced by salt stress in a Ca-dependentmode. J. Plant Physiol., 2005, 162: 267–274
    Hanning I. and Heldt H. W.. On the function of mitochondrial metabolism during photosynthesis in spinach (Spinacia oleracea L.) leaves: partitioning between respiration and export of redox equivalents and precursors for nitrate assimilation products. Plant Physiol., 1993, 103: 1147-1154
    Hansen H. and Dorffling K.. Changes of free and conjugated abscisic acid and phaseic acid in xylem sap of drought-stressed sunflower plants. J. Exp. Bot., 1999, 50: 1599-1605
    Hartung W., Sauter A., Hose E.. Abscisic acid in the xylem: where does it come from, where does it go to. J. Exp. Bot., 2002, 53: 27
    Hartweck L. M. and Olszewski N. E.. Rice Gibberellin insensitive dwarf 1 is a gibberellin receptor that illuminates and raises questions about GA signaling. Plant Cell, 2006, 18: 278-282
    Hedden P. and Phillips A. L.. Gibberellin metabolism: New insights revealed by the genes. Trends Plant Sci., 2000, 5:523-530
    Henriksson E. and Henriksson K. N.. Salt-stress signalling and the role of calcium in the regulation of the Arabidopsis ATHB7 gene. Plant Cell Environ., 2005, 28:202
    Hoefnagel M. N., Atkin O. K. and Wiskich J. T.. Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim. Biophys. Acta., 1909, 8 (1366): 235-255
    Ilka Haferkamp. The diverse members of the mitochondrial carrier family in plants. FEBS Lett., 2007, 581: 2375-2379
    Iuchi S., Kobayashi M. and Taji T.. Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J., 2001, 27: 325-333
    Johnson R. R., Wagner R. L., Verhey S. D. and Walker-Simmons M. K.. The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiol., 2002, 130(2): 837-846
    Johnston C. A., Temple B. R., Chen J. G., Gao Y., Moriyama E. N., Jones A. M., Siderovski D. P. and Willard F. S.. Comment on "A G protein coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid". Science, 2007, 318(5852): 914
    Kaneko M., Itoh H. and Inukai Y.. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants. Plant J., 2003, 35: 104-115
    Kaplan R. S. and Pedersen P. L.. Characterization of phosphate ef?ux pathways in rat liver mitochondria. Biochem. J., 1983, 212: 279–288
    Kavi Kishor P. M., Hong Z., Miao G. H., Hu C. A. and Verma D. P.. Overexpression of Delta 1-pyrroline-5-carboxylate synthesis increase proline production and confers osmotolerance in transgenetic plants. Plant Physiol., 1996, 108: 1387-1394
    Kawaide H.. Riview: Biochemical and molecular analyses of gibberellin biosynthesis in fungi. Biosci. Biotechnol. Biochem., 2006, 70: 583-590
    Khadri M., Tejera N. A. and Lluch C.. Sodium chloride-ABA interaction in two common bean (Phaseolus vulgaris) cultivars differing in salinity tolerance. Environ. Exp. Bot., 2007, 60: 211
    Kiiskinen M., Korhonen M. and Kangasjarvi J.. Isolation and characterization of cDNA for a plant mitochondrial phosphate translocator (Mpt1)-ozone stress induces Mpt1 mRNA accumulation in Birch (Betula pendularoth). Plant Mol.. Biol., 1997, 35: 271-279
    Kohorn B. D.. WAKs: cell wall associated kinases.Curr. Opin. Cell Biol., 2001, 13: 529
    Kolbe H. V. and Wohlrab H.. Sequence of the N-terminal formic acid fragment and location of the N-ethylmaleimide-binding site of the phosphate transport protein from beef heart mitochondria. J. Biol. Chem., 1985, 260(15): 899-15906
    Kolbe H. V., Costello D., Wong A., Lu R. C. and Wohlrab H.. Mitochondrial phosphate transport. Large-scale isolation and characterization of the phosphate transport protein from beef heart mitochondria. J. Biol. Chem., 1984, 259(9): 115-9120
    Koyro H. W. and Eisa S. S.. Effect of salinity on composition, viability and germination of seeds of Chenopodium quinoa Willd. Plant Soil, 2008, 302: 79-90
    Kroemer S. Respiration during photosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol, 1995, 46: 45-70
    Kuan J. and Saier Jr., M. H.. The mitochondrial carrier family of transport proteins: structural, functional, and evolutionary relationships. Crit. Rev. Biochem. Mol. Biol., 1993, 28: 209-233
    Kuhn J. M., Boisson-Dernier A., Dizon M. B., Maktabi M. H., Schroeder J. I.. The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiol., 2006, 140(1): 127-139
    Kushiro T., Okamoto M., Nakabayashi K., Yamagishi K., Kitamura S., Asami T., Hirai N., Koshiba T., Kamiya Y., Nambara E.. The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. EMBO J., 2004, 23(7): 1647-1656
    Lecourieux D., Ranjeva R. and Pugin A.. Calcium in plant defence-signalling pathways. New Phytol., 2006, 171: 249
    Lee K. H., Piao H. L., Kim H. Y., Choi S. M., Jiang F., Hartung W., Hwang I., Kwak J. M., Lee I. J. and Hwang I.. Activation of glucosidase via stress-induced polymerization rapidly increases active pools of abscisic acid. Cell, 2006, 126(6): 1109-1120
    Leung J. and Giraudat J.. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. Mol. Biol., 1998, 49: 199
    Li J., Wang X. Q., Watson M. B. and Assmann S. M.. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science, 2000, 287(5451): 300-303
    Link V. L., Hofmann M. G. and Sinha A. K.. Biochemical evidence for the activation of distinct subsets of mitogen-activated protein kinases by voltage and defence-related stimuli. Plant Physiol., 2002, 128: 271
    Liu J., Ishitani M. and Halfter U.. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA, 2000, 97(3730):
    Liu J., Zhu J. K.. A calcium sensor homolog required for plant salt tolerance. Science, 1998, 280: 1943-1945
    Liu Q., Zhang Y. C. and Wang C. Y.. Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone signaling. FEBS Lett., 2009, 583: 723-728
    Liu W. C. and Carnsdagger H. R.. Isolation of Abscisin, an Abscission Accelerating Substance. Science, 1961, 134(3476): 384-385
    Liu X., Yue Y., Li B., Nie Y., Li W., Wu W. H. and Ma L. G.. protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science, 2007, 315(5819): 1712-1716
    Ma S., Gong Q. and Bohnert H. J.. Dissecting salt stress pathways. J. Exp. Bot., 2006, 57: 1097
    Ma Y., Szostkiewicz I., Korte A., Moes D., Yang Y., Christmann A. and Grill E.. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science, 2009, 324(5930):1064-1068
    MacMillan J.. Occurrence of gibberellins in casvular plants, fungi, and bacteria. J. Plant Growth Regul., 2001, 20: 387-442
    Mahajan S. and Tuteja N.. Cold, salinity and drought stress. Arch. Biochem. Biophys., 2005, 444: 139
    Marin E., Nussaume L., Quesada A., Gonneau M., Sotta B., Hugueney P., Frey A. and Marion-Poll. A.. Molecular identification of zeaxanthin epoxidase of Nicotiana plumbaginifolia, a gene involved in abscisic acid biosynthesis and corresponding to the ABA locus of Arabidopsis thaliana. EMBO J., 1996, 15(10): 2331-2342
    Maser P., Thomin S. and Schroeder J. I.. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol., 2001, 126: 1646.
    Maslenkora L. T.. Adaptation to salinity as monitored by pSⅡoxygen evolving reactions in barley thylakoids. Physiol. Plant, 1993, 142: 629-634
    McIntosh C. A. and Oliver D. J.. The phosphate transporter from pea mitochondria: Isolation and characterization in proteolipid vesicles. Plant Physiol., 1994, 105: 47–52
    Melcher K., Ng L. M., Zhou X. E., Soon F. F., Xu Y., Suino-Powell K. M., Park S.. Y., Weiner J. J., Fujii H., Chinnusamy V., Kovach A., Li J., Wang Y., Li J., Peterson F. C., Jensen D. R., Yong E. L., Volkman B. F., Cutler S R, Zhu J. K. and Xu H. E.. A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature, 2009, 462(7273): 602-608
    Merlot S., Gosti F., Guerrier D., Vavasseur A. and Giraudat J.. The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J., 2001, 25(3): 295-303
    Miyazono K., Miyakawa T., Sawano Y., Kubota K., Kang H. J., Asano A., Miyauchi Y., Takahashi M., Zhi Y., Fujita Y., Yoshida T., Kodaira K. S., Yamaguchi-Shinozaki K. and Tanokura M.. Structural basis of abscisic acid signalling. Nature, 2009, 462(7273): 609-614
    Munns R., Cramer G. R. and Ball M. C.. Interactions between rising CO2, soil salinity and plant growth, In: Luo Y, Mooner HA, eds. Carbondioxide and environmental stress. London: Academic Press, 1999, 139-167
    Munns R.. Comparative physiology of salt and water stress. Plant Cell Envi., 2002, 25: 239-250
    Murase K., Hirano Y. and Sun T. P.. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 2008, 456:459-463
    Mustilli A. C., Merlot S., Vavasseur A., Fenzi F. and Giraudat J.. Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell, 2002, 14(12): 3089-3099
    Nambara E., Marion-Poll A.. Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol., 2005, 56: 165-185
    Nishimura N., Yoshida T., Kitahata N., Asami T., Shinozaki K., Hirayama T.. ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in arabidopsis seed. Plant J., 2007, 50(6): 935-949
    Niu X., Bressan R. A., Hasegswa P. M. and Pardo J. M.. Ion homeostasis in NaCl stress environments. Plant Physiol., 1995, 109: 735-742
    North H. M., De Almeida A., Boutin J. P., Frey A., To A., Botran L., Sotta B., Marion-Poll A.. The Arabidopsis ABA-deficient mutant aba4 demonstrates that the major route for stress-induced ABA accumulation is via neoxanthin isomers. Plant J., 2007, 50(5): 810-824
    Nuccio, M. L., Rhodes, D., McNeil, S. D., and Hanson, A. D.. Metabolic engineering of plants for osmotic stress resistance. Curr. Opin. Plant Biol., 1999, 2: 128-134
    O′Neill D. P., Ross J. J.. Auxin regulation of the gibberellin pathway in pea1. Plant Physio1., 2002, 130: 1974-1982
    Ohkuma K., Lyon J. L., Addicott F. T.and Smith O E.. Abscisin II, an Abscission-Accelerating Substance from Young Cotton Fruit. Science, 1963, 142(3599): 1592-1593
    Palmieri F.. Mitochondrial carrier proteins. FEBS Lett., 1994, 346: 48-54
    Palmieri F., Bisaccia F., Capobianco L., Iacobazzi V., Indiveri C. and Zara V.. Structural and functional properties of mitochondrial anion carriers. Biochim. Biophys. Acta., 1990, 1018: 147-150
    Pandey G. K., Reddy V. S., Reddy M. K., Deswal R., Bhattacharya A., Sopory S. K.. Transgenic tobacco expressing Entamoeba histolytica calcium binding protein enhanced growth and tolerance to slat stress. Plant Science, 2002, 162: 41-47
    Pardo J. M., Cubero B., Leidi E. O.. Alkali cation exchangers: roles in cellular homeostasis and stress tolerance. J. Exp. Bot., 2006, 57: 1181
    Parida A. K. and Das A. B.. Salt tolerance and salinity effects on plants. Ecotoxicol Environ Safe, 2005, 60: 324-349
    Park K. Y., Jung J. Y. and Park J.. A role for phosphatidylinositol 3-phosphate in abscisic acid-induced reactive oxygen species generation in guard cells. Plant Physiol., 2003, 132: 92
    Park S. Y., Fung P., Nishimura N., Jensen D. R., Fujii H., Zhao Y., Lumba S., Santiago J., Rodrigues A., Chow T. F., Alfred S. E., Bonetta D., Finkelstein R., Provart N. J., Desveaux D., Rodriguez P. L., McCourt P., Zhu J. K., Schroeder J. I., Volkman B. F. and Cutler S. R.. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science, 2009. 324(5930): 1068-1071
    Patterson B. D., Macrea E. A. and Ferguson I. B.. Estimation of hydrogen peroxide in plant extracts titanium. Analytical Biochemistry, 1984, 139: 487-492
    Pei Z. M., Murata Y., Benning G.. Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature, 2000, 406: 731
    Phelps A. and Wohlrab H.. Mitochondrial phosphate transport. The Saccharomyces cereisiae (threonine 43 to cysteine) mutant protein explicitly identifies transport with genomic sequence. J. Biol. Chem., 1991, 266: 19882-19885
    Phelps A., Briggs C., Mincone L. and Wohlrab H.. Mitochondrial phosphate transport protein replacements of glutamic, aspartic and histidine residues affect transport and protein conformation and point to a coupled proton transport path. Biochemistry, 1996, 35: 10757-10762
    Phelps A., Schobert C. T. and Wohlrab H.. Cloning and characterization of the mitochondrial phosphate transport protein gene from the yeast Saccharomyces cereisiae. Biochemistry, 1991, 30: 248-252
    Qiu Q. S., Guo Y. and Dietrich M. A.. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci.USA, 2002, 99: 8436
    Razem F. A., El-Kereamy A., Abrams S. R., Hill R. D.. The RNA-binding protein FCA is an abscisic acid receptor. Nature, 2006, 439(7074): 290-294
    Ren D., Yang H. and Zhang S.. Cell death mediated by MAPK is associated with hydrogen peroxide production in Arabidopsis. J. Biol. Chem., 2002, 77: 559
    Rodriguez P. L.. Protein phosphatase 2C (PP2C) function in higher plants. Plant Mol. Biol.. 1998, 38(6): 919-927a
    Rubio S., Rodrigues A., Saez A., Dizon M. B., Galle A., Kim T. H., Santiago J., Flexas J., Schroeder J. I. and Rodriguez P. L.. Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiol., 2009, 150(3): 1345-1355
    Runswick M. J., Powell S. J., Nyren P. and Walker J. E.. Sequence of the bovine mitochondrial phosphate carrier protein: structural relationship to ADP/ATP translocase and the brown fat mitochondria uncoupling protein. EMBO J., 1987, 6: 1367–1373
    Saez A., Apostolova N., Gonzalez-Guzman M., Gonzalez-Garcia M. P., Nicolas C., Lorenzo O., Rodriguez P. L.. Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant J.. 2004. 37(3): 354-369.
    Santner A., Calderon-Villalobos L. I. A. and Estelle M.. Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol, 2009, 5: 301-307
    Sasaki A., Itoh H., Gomi K.. Accumulation of phosphorylated repressor for gibberellinsignaling in an F-box mutant. Science, 2003, 299: 1896-1898
    Saito S., Hirai N., Matsumoto C., Ohigashi H., Ohta D., Sakata K., Mizutani M.. Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol., 2004, 134(4):1439-1449
    Schroers A., Burkovski A., Wohlrab H., and Kr?mer R.. The phosphate carrier from yeast mitochondria. Dimerization is a prerequisite for function. J. Biol. Chem., 1998, 273: 14269-14276
    Schroers A., Kramer R. and Wohlrab H.. The reversible antiport-uniport conversion of the phosphate carrier from yeast mitochondria depends on the presence of a single cysteine. J. Biol. Chem., 1997, 272: 10558-10564
    Schweighofer A., Hirt H. and Meskiene I.. Plant PP2C phosphatases: emerging functions in stress signaling. Trends Plant Sci., 2004, 9(5): 236-243
    Seo M., Koshiba T.. Complex regulation of ABA biosynthesis in plants. Trends Plant Sci., 2002, 7(1): 41-48
    Shen Y. Y., Wang X. F. and Wu F. Q.. The Mg-chelatase H subunit is an abscisic acid receptor. Nature, 2006, 443: 823
    Shi H., Ishitani M., Kim C.. The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc. Natl. Acad. Sci. USA, 2000, 97: 6896
    Shi H. Z., Lee B. H. and Wu S. J., Zhu J. K.. Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabisopsis thaliana. Nat. Biotech., 2002, 21: 81-85
    Shimada A., Ueguchi-Tanaka M. and Nakatsu T.. Structural basis for gibberellin recognition by its receptor GID1. Nature, 2008, 456: 520-523
    Shinozaki K. and Yamaguchi-Shinozaki K.. Gene expression and signal transduction in water-stress response. Plant Physiol., 1997, 115: 327
    Silberbush M. and Ben-Asher J.. Simulation study of nutrient uptake by plants from soiless cultures as affected by salinity buildup and transpiration. Plant and Soil, 2001, 233: 59-69
    Stappen R. and Kramer R.. Functional properties of the reconstituted phosphate carrier from bovine heart mitochondria: evidence for asymmetric orientation and characterization of three different transport modes. Biochim. Biophys. Acta., 1993, 1149: 40-48
    Stappen R., and Kr?mer R.. Kinetic mechanism of phosphate/phosphate and phosphate/OH- antiports catalyzed by reconstituted phosphate carrier from beef heart mitochondria. J. Biol. Chem., 1994, 269: 11240-11246
    Sugino M., Hibino T., Tanaka Y., Nii N. and Takana T.. Overexpression on DnaK from a halotolerant cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants. Plant Science, 1999, 146: 81-88
    Sun T. P., Gubler F.. Molecular mechanism of gibberellin signaling in plants. Annu. Rev. Plant Biol., 2004, 55:197-223
    Szabolcs I., Soils and salinization. In: Pessarakli M, ed. Handbook of plant and crop stress. New York: Marcel Dekker, 1994, 8: 3-11
    Takabatake R., Hata S., Taniguchi M. and Kouchi H.. Isolation and characterization of cDNAs encoding mitochondrial phosphate transporters in soybean, maize, rice and Arabidopsis. Plant Mol. Biol., 1999, 40: 479-486
    Tan B. C., Joseph L. M., Deng W. T., Liu L., Li Q. B., Cline K., McCarty D. R.. Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J., 2003, 35(1): 44-56
    Taylor I. B., Burbidge A. and Thompson A. J.. Control of abscisic acid synthesis. J. Exp. Bot., 2000, 51(350): 1563-1574
    Tester M., Davenport R.. Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 2003, 91: 503-527
    Testerink C., Munnik T.. Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant. Sci., 2005, 10: 368
    Ueguchi-Tanaka M., Nakajima M. and Motoyuki A.. Gibberellin receptor and its role in gibberellin signaling in plants. Annu. Rev. Plant Biol., 2007, 58: 183-198
    Uno Y., Furihata T., Abe H.. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA, 2000, 97: 11632
    Wang W. B., Vinocur A.. Altman Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 2003, 218: 1-14 Walker J. E., Fearnley I. M. and Blows R. A.. A rapid solid-phase protein microsequencer. Biochem J., 1986, 237: 73-84
    Wang B., Davenport R. J., Volkov V, Amtmann A.. Low unidirectional sodium influx into root cells restricts net sodium accumulation in Thellungiella halophila, a salt-tolerant relative of Arabidopsis thaliana. J. Exp. Bot., 2006, 57: 1161-1170
    Wang Y. N., Zhang W. S., Li K. X.. Salt-induced plasticity of root hair development is caused by ion disequilibrium in Arabidopsis thaliana. Plant Res., 2008, 121: 87-96
    Welin B. V., Olson A., Nylander M., Palva E. T.. Characterization and differential expression of dhn/lea/rab-like genes during cold acclimation and drought stress in Arabidopsis thaliana. Plant Mol. Biol., 1994, 26(1): 131-144
    White P. J.. Calcium channels in higher plants. Biochem. Biophys. Acta., 2000, 1465: 171
    Wilkinson S. and Davies W. J.. ABA-based chemical signalling: the co-ordination of responses to stress in plants. Plant Cell Environ., 2002, 25(2): 195-210
    Willige B. C., Ghosh S. and Nill C.. The Della domain of GA insensitive mediates the interaction with the GA insensitive dwarf 1A gibberellin receptor of Arabidopsis. Plant Cell, 2007, 19: 1209-1220
    Winicov I.. New molecular approaches to improving salt tolerance in crop plants. Annals of Botany, 1998, 82: 703-710
    Wu C. A., Yang G. D. and Meng Q. W.. The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important rolein salt stress. Plant Cell Physiol., 2004, 45(5): 600-607
    Wu Y. R. and Xie Q.. ABA and Plant Stress Response. Chinese Bulletin of Botan., 2006, 23: 511-518
    Xiong L. and Zhu J. K.. Salt Tolerance in: The Arabidopsis Book. American Society of Plant Biologists, 2002
    Xiong L. M., Schumaker K. S. and Zhu J. K.. Cell signaling during cold, drought and salt stress. Plant Cell, 2002, 14: 165
    Xiong L., Gong Z. and Rock C. D.. Modulation of abscisic acid signal transduction and biosynthesis by an Sm like protein in Arabidopsis. Dev. Cell, 2001, 1: 771-781
    Xiong L., Ishitani M. and Lee H.. The LOS5/ABA3 locus encodes a molybdehum cofactor sulfurase and m odulates cold stress and osmotic stress responsive gene expression. Plant Cell, 2001, 13: 2063-2083
    Xue H., Yang Y. T., Wu C. A., Yang G. D., Zhang M. M., and Zheng, C.C.. TM2, a novel strong matrix attachment region isolated from tobacco, increases transgene expression in transgenic rice calli and plants. Theorapy Appllication Genetic, 2005, 110: 620-627
    Yamaguchi-Shinozaki K. and Shinozaki K.. The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol. Gen. Genet., 1993, 238(2): 17-25
    Yamaguchi S., Kamiya Y. and Sun T.. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J., 2001, 28: 443-453
    Yamaguchi S.. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol., 2008, 59: 225-251
    Yeo A. R.. Molecular Biology of salt tolerance in the context of whole plant. Plant Physiol., 1998, 49: 915-929
    YI L. P. and LI Y.. Impact of salt stress on the features and activities of root system for three desert halophyte species in their seedling stage. Sci China ser D-Earth Sci, 2007, 50: 97-106
    Yin P., Fan H., Hao Q., Yuan X., Wu D., Pang Y., Yan C., Li W., Wang J. and Yan N.. Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat. Struct. Mol. Biol., 2009, 16(12): 1230-1236
    Yokoi S., Quintero F. J. and Cubero B.. Differential expression and function of Arabidopsis thaliana NHX Na+/H+antiporters in the salt stress response. Plant J., 2002, 30: 529
    Yoshida T., Nishimura N., Kitahata N., Kuromori T., Ito T., Asami T., Shinozaki K. and Hirayama T.. ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiol., 2006, 140(1): 115-126
    Zhang J., Jia W. and Yang J.. Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res., 2006, 97: 111
    Zhang S. Q. and Klessig D. F.. MAPK cascades in plant defense signaling. Trends Plant Science, 2001, 6: 520-534
    Zhang Y., Zhu Y. and Peng Y.. Gibberellin homeostasis and plant height control by EUI and a role for gibberellin in root gravity responses in rice. Cell Res., 2008, 18: 412-421
    Zhao F. G. and Qin P.. Protective effect of exogenous polyamines on root tonoplast functions against salt stress in barley seedlings. Plant Growth Regula., 2004, 42: 97-103
    Zhou R., Cutler A. J., Ambrose S. J., Galka M. M., Nelson K. M., Squires T. M., Loewen M. K., Jadhav A. S., Ross A. R., Taylor D. C. and Abrams S. R.. A new abscisic acid catabolic pathway. Plant Physiol., 2004, 134(1): 361-369
    Zhu J. K.. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol., 2003, 6:441
    Zhu J. K..Salt and drought stress signal transduction in plants. Ann. Rev. Plant Biol., 2002, 53: 247
    Zhu J. K.. Plant salt tolerance. Trends Plant Sci., 2001, 6: 66-71
    Zhu J. K.. Salt and drought stress signal trasduction in plants. Annu. Rev. Plant Physiol, Plant Mol. Biol., 2002, 53: 247-273

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700