用户名: 密码: 验证码:
SDF-1及CXCR4在哮喘小鼠肺组织中的表达及布地奈德的干预作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
支气管哮喘是由多种细胞,包括炎性细胞和气道结构细胞以及细胞组分共同参与的气道慢性炎症性疾病,以气道炎症、气道重塑及气道高反应性为特点。反复的气道炎症在不断的损伤与修复过程中,逐渐引起了气道结构的改变,包括上皮细胞脱落、上皮下纤维化、气道平滑肌增厚、平滑肌层与上皮层距离缩短、黏液腺化生和杯状细胞化生、血管增生及重塑、气道壁水肿等,被称为气道重塑。气道重塑与哮喘患者的气道高反应性及不完全可逆性气流受限都有着密切的关系,其具体发生机制尚未完全阐明。基质细胞衍生因子-1(stromal cell derived factor-1,SDF-1)及CXC趋化因子受体4(CXC chemokine receptor 4, CXCR4)属于趋化因子家族,两者相互作用通过趋化炎症细胞、促进血管生成和血管重塑、调节其他细胞因子的表达等影响支气管哮喘的病理生理过程及气道重塑的发生。本实验通过建立小鼠哮喘模型,研究SDF-1及CXCR4在小鼠肺内的表达以及二者在哮喘气道重塑发生中的作用,并应用布地奈德进行干预,以期为哮喘的早期干预及治疗提供理论依据。
     目的
     本实验通过建立小鼠哮喘模型,探讨哮喘小鼠发病过程中基质细胞衍生因子(SDF-1)及其受体CXCR4在肺内表达的变化,及布地奈德的干预对其表达的影响。
     材料和方法
     1动物分组和模型制作方法
     雄性清洁级6-8周龄BALB/c小鼠30只,随机分为对照组、哮喘组、干预组,每组10只。哮喘组小鼠于第1天、第8天和第15天腹腔注射卵清蛋白(ovalbumin,OVA)/氢氧化铝混合液0.2ml(内含OVA 20μg,氢氧化铝1mg)致敏,从第22天开始用2% OVA生理盐水雾化吸入激发,隔天一次,每次30分钟,共激发7次;干预组以相同方法致敏和激发,每次OVA雾化激发30分钟前用1mg布地奈德混悬液雾化治疗;对照组腹腔注射及雾化吸入均用生理盐水替代,方法同哮喘组。
     2肺组织标本处理
     各组小鼠于末次雾化结束后24小时内用戊巴比妥钠45mg/kg腹腔注射进行麻醉,迅速开胸取左肺,置于液氮冻存,留作RT-PCR用,然后经右心室插管至肺动脉,用生理盐水快速冲洗后取右肺中叶,置于4%甲醛溶液固定24小时,酒精梯度脱水,石蜡包埋,做厚度5μm切片,分别做HE染色和免疫组织化学染色。
     3免疫组化及HE染色结果分析
     结果分析采用Image Pro Plus 6.0图像分析软件,对HE染色图片测定相同级别的完整的支气管横断面的支气管壁面积(μm2)、气道上皮黏膜层面积(μm2)、气道平滑肌面积(μm2),并将其与基底膜周径(μm)的比值代表气道壁厚度(μm2/μm)、上皮黏膜层厚度(μm2/μm)、平滑肌层厚度(μm2/μm)。对于免疫组化图片测定阳性区平均光密度值,每张切片选择至少5个高倍镜视野,取其平均值作为该切片的代表值。
     4 RT-PCR
     将冻存左肺用Trizol法提取总RNA,并逆转录为cDNA,设计引物扩增目的片段CXCR4与β-actin。扩增后进行琼脂糖凝胶电泳,用Band Scan 5.0凝胶分析软件分别测定CXCR4与(3-actin的灰度值,并以CXCR4与β-actin的比值作为该小鼠的代表值。
     5统计学方法
     应用SPSS 13.0进行数据分析。计量资料用均数±标准差(x±s)表示。各组样本均数比较采用单因素方差分析,两两比较采用LSD-t检验,各因素之间的相关性采用pearson相关分析,以a=0.05为检验水准。
     结果
     1病理学改变
     哮喘组小鼠气道壁增厚,管腔变形狭窄,气道上皮细胞脱落,杯状细胞化生,黏液分泌增多,平滑肌层明显增厚,黏膜下及管壁周围炎性细胞浸润明显。干预组上皮细胞偶有脱落,黏膜相对完整,气道壁增厚及炎症细胞浸润均明显轻于哮喘组。对照组肺组织几乎无上述病理改变。
     2免疫组化结果
     SDF-1在哮喘组的表达(0.426±0.052)显著高于对照组(0.268±0.037),经布地奈德干预后小鼠肺内SDF-1的表达水平(0.361±0.065)明显低于哮喘组小鼠,P<0.05。
     3 RT-PCR结果
     CXCR4哮喘组的表达0.829±0.027)显著高于对照组(0.607±0.124),经布地奈德干预后小鼠肺内CXCR4的表达水平(0.723±0.094)明显低于哮喘组小鼠,P<0.05。
     4相关性分析
     SDF-1表达量与气道壁厚度呈正相关(r=0.744,P<0.01);CXCR4 mRNA表达量与气道壁厚度呈正相关(r=0.553,P<0.01)。
     SDF-1及其受体CXCR4参与了哮喘小鼠气道重塑过程,布地奈德干预改善哮喘小鼠的气道重塑与降低SDF-1及CXCR4的表达有关。
Bronchial asthma is a chronic airway disease that involved many cells, include inflammatory cells and airway structural cells and celelular component, characterized by airway inflammation, airway remodeling and airway hyperresponsiveness.Airway was injured by the repeated airway inflammation and repaired once and again, then the airway remodeling occurred gradually. Main changes of the airway remodeling include epithelial detachment, increased airway smooth muscle (ASM) mass, decreased distance between epithelium and ASM cells, subepithelial fibrosis, mucus gland hyperplasia, goblet cell hyperplasia, proliferation and remodeling of blood vessels and airway edema. Airway remodeling is closely related to the airway hyperresponsiveness and irreversible airway obstruction, but the specific mechanisms how airway remodeling developed was not well understood. Stromal cell derived factor-1(SDF-1) and CXC chemokine4(CXCR4), which belong to CXC chemokine family, can attract inflammatory cells, promote angiogenesis and regulator other cytokine, maybe play a role in the process of airway remodeling. In this experiment we set up the mice asthma model,study the expression of SDF-1 and CXCR4 in the airway and the effect of budesonide on their expression, aim at offering effective channel and wide thinking of the treatment and earlier intervention of asthma.
     Objective
     Through building the asthma airway remodeling model in mices, to study the expression of stromal cell derived factor-1(SDF-1)and CXC chemokine receptor 4(CXCR4) in the airway and the effect of budesonide on their expression in mices with asthma.
     Methods
     1 animal group and asthma model
     Thirty BALB/c male mices, aged 6-8 weeks, were randomly divided into three groups:placebo control,untreated asthma, and budesonide-treated asthma,10 mices every group. The untreated asthma group were induced by intraperitoneal injection of 10% ovalbumin (OVA)suspension(containing 0.2ml normal saline, lmg aluminum hydroxide,20μg OVA)on days 1,8 and 15,and then from days 22 to 34, chanllenged by inhalation of 2% OVA aerosol every other day. The budesonide-treated asthma group received same treatment, but was additionally given an inhalation of budesonide(1 mg)before OVA challenge.The placebo control group receive the normal saline instead both on the intraperitioneal injection and aerosol inhalation stage.
     2 Collecting the sample
     All the mice were anesthetized by pentobarbital sodium (45mg per kg weight), then opened the chest, intubated into the pulmonary artery through the right ventricle, using normal sodium to lavage quickly, taken the middle lobe of right lung into 4% methanal to fix them, then imbed in paraffin within 24 hours. Then made 5μm thickness slice, and did HE staining and immunohistochemistry staining.
     3 Analysis of the HE staining and immunohistochemistry staining
     Using computer image analysis system Image Pro Plus 6.0,chosing completed cross section of brochhi, each section was quantified under a×400 objective microscope to measure the perimeter of basement membrane (μm) and area of the airway wall (μm2), area of the tracheal epithelium(μm2), area of the airway smooth muscle(μm2), then use the ratio of area to perimeter to represent the relative thickness.
     On immunohistochemistry staining slice, using the same analysis system, chosing five representative filed of view randomly on each slice under high power lens(×400), selecting positive area and measuring the optical density value, then calculate the mean optical density value as the last result.
     4 RT-PCR
     Using the trizol method to get the total RNA from the frozen left lung, then reversed transcript into cDNA.Add a specific primer and do the polymerase chain reaction to amplify the objective fragment CXCR4 andβ-actin. The agarose gel electrophoresis is conducted to display the DNA. The gel analysis system Band Scan 5.0 can be used to detect the gray scal of CXCR4 andβ-actin. The ratio of CXCR4 to P-actin represent the expression quantity of the CXCR4 in the lung.
     5 Statistics analysis
     Using SPSS13.0 statistical package to analyze, measurement data were demonstrated by mean±standard deviation, using one-way ANOVA to compare the mean of each group, linear correlation analysis was used to assess the relation of variables, a=0.05 is the significance level.
     Results
     1 Pathologic changes
     In the lung sample of mice in the untreated asthma group, we can see the airway wall thickening, lumina narrowing, epithelial detachment, increased airway smooth muscle (ASM) mass, inflammatory cell infiltration. In the budesonide-treated asthma group, thickening of airway wall and infitration of inflammatory cells were both less than those in asthma group.But there were not such changes in control group.
     2 Immunohistochemistry staining
     The expression of the SDF-1 was higher in the model group than that in control group and the therapeutic group of the same period,P<0.05.
     3 RT-PCR
     The expression of the CXCR4 was higher in the model group than that in control group and the therapeutic group of the same period,P<0.05.
     4 linear correlation analysis
     The expression of SDF-1 and CXCR4 was positive correlation with the thickness of airway wall (r=0.744, r=0.553,respectively, P<0.05).
     Conclusions
     SDF-1 and CXCR4 are tightly correlated with airway remodeling,and glucocorticoids can reduce the expression of SDF-1 and CXCR4 in the asthma airway remodeling process.
引文
[1]陈育智.儿童支气管哮喘的诊断及治疗.人民卫生出版社,2004,1.
    [2]AHEN Hua-hao,ZHANG Gen-sheng,WANG Ping-li.Mycobacterium bocis-Bacillius Calmerre-Guerin and athma.Chinese Medical.2005,118(11):942-947.
    [3]Yuki Sumi, Qutayba Hamid. Airway Remodeling in Asthma. Allergology International.2007;56:341-348.
    [4]Qiang Du, Zhen Chen, Lin-fu Zhou, et al. Inhibitory effects of astragaloside Ⅳ on ovalbumin-induced chronic experimen-tal asthma. Can.J.Physiol. Pharmacol,2008,86: 449-457.
    [5]Kristina Rydell-Tormanen, Lena Uller, Jonas S Erjefalt. Remodeling of extra-bronchial lung vasculature following allergic airway inflammation. Respir Res.2008;9:18.
    [6]张太平,姚干.最适麻醉剂量、方式的实验研究.青海医药杂志,2001,31(3):8-9.
    [7]沈华浩,王苹莉.如何评价哮喘动物模型.医学与哲学(临床决策论坛版),2007,28(8):13-15.
    [8]Jurgen Pauluhn, Ulrich Mohr. Experimental approaches to evaluate respiratory allergy in animal models. J.Experimental and toxicologic Pathology 2005,56:203-204.
    [9]何会霞,李自红.支气管哮喘实验动物模型的研究进展.中国老年医学杂志.2008,28:2074-2076.
    [10]Natasha R.Locke, Simon G.Royce, Jacquetta S.Wainewright, et al.Comparison of Airway Remodeling in Acute, Subacute, and Chronic Models of Allergic Airways Disease. Am J Respir Cell Mol Biol,2007,36:625-632.
    [11]戚好文.哮喘气道重建-支气管哮喘研究中所面临的挑战。第四军医大学学报,2002,23(13):1153-1154.
    [12]Huber HL, Koessler KK. The pathology of bronchial asthma. Arch Intern Med.1922;30: 689-760.
    [13]Taylor Doherty, David Broide. Cytokines and growth factors in airway remodeling in asthma. Current Opinion in Immunology,2007,19:676-680.
    [14]Fedorov IA, Wilson SJ, Davies DE, et al. Epithelial stress and structural remodelling in childhood asthma.Thorax,2005,60:389-39.
    [15]Naylor B.The shedding of the mucosa of the bronchial tree in asthma. Thorax. 1962;17:69-72.
    [16]Carroll N, Elliot J, Morton A, et al. The structure of large and small airways in normal and fatal asthma.Am.Rev. Respir. Dis.1993;147:405-410.
    [17]Tschumperlin DJ, Drazen JM. Mechanical stimuli to airway remodeling. Am.J.Respir. Crit. Care Med.2001;164:S90-S94.
    [18]Cookson W. The immunogenetics of asthma and eczema:a new focus on the epithelium. Nat. Rev. Immunol.2004;4:978-988
    [19]Panettieri RA Jr. Airway smooth muscle:an immunomodulatory cell.J. Allergy Clin. Immunol.2002;110:S269-S274.
    [20]Roche WR, Beasley R, Williams JH, et al. Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1989;1:520-524.
    [21]Ebina M, Takahashi T, Chiba T, et al.Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma:a 3-D morphometric study. Am. Rev. Respir. Dis. 1993;148:720-726.
    [22]Johnson PR, Roth M, Tamm M et al. Airway smooth muscle cell proliferation is increased in asthma. Am. J. Respir. Crit. Care Med.2001;137:251-261.
    [23]Martin JG, Ramos-Barbon D. Airway smooth muscle growth from the perspective of animal models. Respir. Physiol. Neurobiol.2003;137:251-261.
    [24]Vancheri C, Gili E, Failla M et al.Bradykinin differentiates human lung fibroblasts to a myofibroblast phenotype via the B2receptor. J. Allergy Clin. Immunol.2005;116:1242-1248.
    [25]Benayoun L, Druilhe A, Dombret MC, et al.Airway structural alterations selectively associated to severe asthma. Am. J.Respir. Crit. Care Med.2003;167:1360-1368.
    [26]Woodruff PG, Dolganov GM, Ferrando RE, et al.Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am. J.Respir. Crit. Care Med.2004;169:1001-1006.
    [27]Madison JM. Migration of airway smooth muscle cells. Am. J.Respir. Cell Mol. Biol. 2003;29:8-11.
    [28]Vermeer PD,Harson R, Einwalter LA, et al. Interleukin-9 induces goblet cell hyperplasia during repair of human airway epithelia. Am. J. Respir. Cell Mol. Biol.2003;286-295.
    [29]Reader JR, Hyde DM, Schelegle ES, et al. Interleukin-9 induces mucous cell metaplasia independent of inflammation.Am. J. Respir. Cell Mol. Bilo.2000;28:664-672.
    [30]Tanaka H, Yamada G, saikai T, et al.Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am.J. Respir. Crit. Care Med.2003;168: 1495-1499.
    [31]Walsh DA, Pearson CI. Angiogenesis in the pathogenesis of inflammatory joint and lung disease.Arthritis Res,2001,3:147-153.
    [32]Jose-Angel Gonzalo, Clare M. Lloyd, Amnon Peled, et al. Critical Involvement of the Chemotactic Axis CXCR4/Stromal Cell-Derived Factor-1αin the Inflammatory Component of Allergic Airway Disease. The Journal of Immunology,2000; 165(1):499-508.
    [33]Coyle AJ, Wagner K, Bertrand C, et al.Central role of immunoglobulin E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production inhibition by a non-anaphylactogenic anti-IgE antibody. J Exp Med 1996; 183:1303-1310.
    [34]Kiwamoto T, Ishii Y, Morishima Y, et al. Transcription factors T-bet and GATA-3 regulate development of airway remodeling. Am J Respir Crit Care Med 2006; 174:142-151.
    [35]Finotto S, Neurath MF, Glickman JN, et al. Development of spontaneous airway changes consistent with human asthma in mice lacking T-bet. Science 2002; 295:336-338.
    [36]Nakamura Y, Ghaffar O, Olivenstein R, et al. Gene expression of the GATA-3 transcription factor is increased in atopic asthma. J Allergy Clin Immunol 1999; 103:215-222.
    [37]Cho JY, Miller M, Baek KJ, et al. Inhibition of airway remodeling in IL-5 deficient mice. J Clin Invest 2004;133:551-560.
    [38]Zhu Z, Homer RJ, Wang Z, et al. Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 1999; 103:779-788.
    [39]Larche M. Regulatory T cells in allergy and asthma. Chest 2007;132:1007-1014.
    [40]Ling EM, Smith T, Nguyen XD, et al.Relation of CD41CD251 regulatory T-cell suppression of allergen-driven T-cell activation to atopic status and expression of allergic disease. Lancet 2004;363:608-615.
    [41]Grindebacke H,Wing K, Andersson AC,et al. Defective suppression of Th2 cytokines by CD4CD25 regulatory T cells in birch allergies during birch pollen season. Clin Exp Allergy 2004;34:1364-1372.
    [42]Bellinghausen I, Klostermann B, Knop J, et al. Human CD41CD251 T cells derived from the majority of atopic donors are able to suppress TH1 and TH2 cytokine production.J Allergy Clin Immunol 2003;111:862-868.
    [43]Hartl D, Roller B, Mehlhorn AT, et al.Quantitative and functional impairment of pulmonary CD41CD25hi regulatory T cells in pediatric asthma. J Allergy Clin Immunol 2007;119: 1258-1266.
    [44]Conrad C.Bleul, Robert C.Fuhlbrigge, Jose M.Casanovas, et al. A highly efficacious lymphocyte chemoatractant, stromal cell-derived factor (SDF).J Exp Med 1996,184: 1101-1109.
    [45]Campbell JJ, Hedrick J, Zlotnik A, et al.Chemokines and the arrest of lymphocytes rolling under flow conditions. Science,1998;279(5349):381-384.
    [46]Toshihiro N, Peter E. Cutting Edge:Stromal Cell-Derived Factor-1 Is a Costimulator for CD41 TCell Activation. J Irmnunol.2000.164(10):5010-5014.
    [47]Ara T, Itoi M, Kawabata K, et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult Tcell development in vivo. J Immunol,2003,170(9):4649-4655.
    [48]Plotkin J, Prockop SE, Lepique A, et al.Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postriatal thymus. J Immunol,2003,171(9): 4521-4527.
    [49]Brinke A, Zwinderman AH,Sterk PJ, et al. Factors associated with persistent airflow limitation in severe asthma. Am J Respir Crit Care Med 2001;164:744-748.
    [50]Cho JY, Miller M, Baek KJ, et al. Inhibition of airway remodeling in IL-5 deficient mice. J Clin Invest 2004;133:551-560.
    [51]Flood-Page P, Menzies-Gow A, Phipps S, et al.Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J Clin Invest 2003;112:1029-1036.
    [52]Aceves SS, Newbury RO, Dohil R, et al.Esophageal remodeling in pediatric eosinophilic esophagitis. J Allergy Clin Immunol 2007; 119:206-212.
    [53]Le AV, Cho JY, Miller M, et al.Inhibition of allergen-induced airway remodeling in smad 3-deficient mice. J Immunol 2007;178:7310-7316.
    [54]McMillan SJ, Xanthou G, Lloyd CM. Manipulation of allergen-induced airway remodeling by treatment with anti-TGF-beta antibody:effect of the Smad signaling pathway. J Immunol 2005;174:5774-80.
    [55]Chakir J, Shannon J, Molet S, et al. Airway remodeling-associated mediators in moderate to severe asthma:effect of steroids on TGF-beta, IL-11,IL-17,and type Ⅰ and type Ⅲ collagen expression. J Allergy Clin Immunol 2003;111:1293-1298.
    [56]Wynn A.Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007;117:524-529.
    [57]Xie S, Sukkar MB,Issa R, et al.Mechanisms of induction of airway smooth muscle hyperplasia by transforming growth factor-{beta}.Am J Physiol Lung Cell Mol Physiol 2007;293:L245-L253.
    [58]Ohno I, Nitta Y, Yamauchi K, et al. Transforming growth factor beta 1 (TGF beta 1)gene expression by eosinophils in asthmatic airway inflammation. Am J Respir Cell Mol Biol 1996;15:404-409.
    [59]Hiroyuki Nagase, Misato Miyamasu, Masao Yamaguchi, et al. Expression of CXCR4 in Eosinophils:Functional Analyses and Cytokine-Mediated Regulation. J Immunol,2000,164: 5935-5943.
    [60]Suratt BT, Petty JM, Young SK, et al. Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood,2004,104:567-571.
    [61]Dorman SC, Babirad I, Post J, et al. Progenitor egress from the bone marrow after allergen challenge:Role of stromal cell-derived factor 1αand eotaxin. J Allergy Clin Immunol 2005; 115:501-507.
    [62]Dorman SC, Efthimiadis A, Babirad I, et al. Sputum CD341IL-5Ra1 cells increase after allergen:evidence for in situ eosinophilopoiesis. Am J Respir Crit Care Med 2004;169: 549-560.
    [63]Catalli AE, Thomson JV, Babirad IM, et al. Modulation of β1-integrins on hemopoietic progenitor cells after allergen challenge in asthmatic subjects. J Allergy Clin Immunol 2008; 122:803-810.
    [64]Jane Eddleston,Sandra C. Christiansen, Bruce L. Zuraw. Functional Expression of the C-X-C Chemokine Receptor CXCR4 by Human Bronchial Epithelial Cells:Regulation by Proinfla-mmatory Mediators. J Immunol,2002,169:6445-6451.
    [65]M. Hoshino, N. Aoike, M. Takahashi, et al. Nakagawa. Increased immunoreactivity of stromal cell-derived factor-1 and angiogenesis in asthma. J Eur Respir 2003,21:804-809.
    [66]Nicholas W. Lukacs, Aaron Berlin, Dominique Schols, et al. Bridger. AMD3100, a CXCR4 Antagonist, Attenuates Allergic Lung Inflammation and Airway Hyperreactivity. Am J Patbol, 2002,160:1353-1360.
    [67]Muriel Hachet-Hass, Karl Balabanian, Francois Rohmer, et al. Small Neutralizing Molecules to Inhibit Actions of the Chemokine CXCL12. J. Biol Chem.2008,283(34):23189-23199.
    [68]Salcedo, R Wasserman, K young, HA Grimm, et al.Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells. Am J Pathol 1999,154:1125-1135.
    [69]Chetta A, Zanini A, Torre O, et al. Vascular remodelling and angiogenesis in asthma: morphological aspects and pharmacological modulation. Inflamm Allergy Drug Targets 2007;6:41-45.
    [70]Hashimoto M, Tanaka H,Abe S.Quantitative analysis of bronchial wall vascularity in the medium and small airways of patients with asthma and COPD. Chest 2005;127:965-972.
    [71]Tanaka H,Yamada G, Saikai T, et al. Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope. Am J Respir Crit Care Med 2003;168: 1495-1499.
    [72]Chetta A, Zanini A, Olivieri D. Therapeutic approach to vascular remodelling in asthma. Pulm Pharmacol Ther 2007;20:1-8.
    [73]Barbato A, Turato G, Baraldo S, et al.Epithelial damage and angiogenesis in the airways of children with asthma. Am J Respir Crit Care Med 2006;174:975-981.
    [74]Snibson KJ, Bischof RJ, Slocombe RF, et al. Airway remodelling and inflammation in sheep lungs after chronic airway challenge with house dust mite. Clin Exp Allergy 2005;35: 146-152.
    [75]Koumoundouros E, Bischof RJ, Meeusen EN,et al.Chronic airway disease:deteriorating pulmonary function in sheep associated with repeated challenges of house dust mite. Exp Lung Res 2006;32:321-330.
    [76]Avdalovic MV, Putney LF, Schelegle ES, et al.Vascular remodeling is airway generation-specific in a primate model of chronic asthma. Am J Respir Crit Care Med 2006;174: 1069-1076.
    [77]Horvath G, Vasas S, Wanner A. Inhaled corticosteroids reduce asthma-associated airway hyperperfusion through genomic and nongenomic mechanisms. Pulm Pharmacol Ther 2007;20:157-162.
    [78]Wiggs BR, Bosken C, Pare PD, et al. A model of airway narrowing in asthma and in chronic obstructive pulmonary disease. Am Rev Respir Dis 1992;145:1251-1258.
    [79]Nagasawa T, Hirota S, Tachibana K, et al. Defects of B cell lymphopoiesis and bone marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1.Nature,1996,3802: 635-638.
    [80]马宇光,武力,王红磊.CXCR4单克隆抗体对新生血管形成的影响.现代肿瘤医学.2008, 16(12):2069-2071.
    [81]Asai K, Kanazawa H, Otani K, et al.Imbalance between vascular endothelial growth factor and endostatin levels in induced sputum from asthmatic subjects. J Allergy Clin Immunol 2002;110:571-575.
    [82]Hoshino M, Nakamura Y, Hamid QA. Gene expression of vascular endothelial growth factor and its receptors and angiogenesis in bronchial asthma. J Allergy Clin Immunol 2001;107:1034-1038.
    [83]Bhandari V, Choo-Wing R, Chapoval S, et al. Essential role of nitric oxide in VEGF-induced asthma-like angiogenic, inflammatory, mucus, and physiologic responses in the lung. Proc Natl Acad Sci U S A 2006;103:11021-11026.
    [84]Salvucci O, YaoLei, Villalba S, et al.Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1.Blood,2002,99(8):2703-2711.
    [85]何皓頔.吸入性糖皮质激素治疗哮喘的进展.临床内科杂志,2007,24(4):233-235.
    [86]Shen HH, Wang SB.Effects of budesonide on airway inflammation and airway remodeling in the ovalbumin sensitized and challenged mice.Zhonghua Jie He He Hu Za Zhi.2005;28(3): 154-159.
    [1]戚好文.哮喘气道重建-支气管哮喘研究中所面临的挑战.第四军医大学学报,2002,23(13):1153-1154.
    [2]Taylor Doherty, David Broide. Cytokines and growth factors in airway remodeling in asthma. Current Opinion in Immunology,2007,19:676-680.
    [3]Fedorov IA, Wilson SJ, Davies DE, et al.Epithelial stress and structural remodelling in childhood asthma.Thorax,2005,60:389-394.
    [4]Fedorov IA, Wilson SJ, Davies DE, et al. Epithelial stress and structural remodelling in childhood asthma.Thorax,2005,60:389-394.
    [5]Yuki Sumi, Qutayba Hamid. Airway Remodeling in Asthma. Allergology International.2007; 56:341-348.
    [6]Naylor B.The shedding of the mucosa of the bronchial tree in asthma. Thorax.1962;17: 69-72.
    [7]Carroll N, Elliot J, Morton A, et al. The structure of large and small airways in normal and fatal asthma. Am.Rev. Respir. Dis.1993;147:405-410.
    [8]Tschumperlin DJ, Drazen JM. Mechanical stimuli to airway remodeling. Am. J. Respir. Crit. Care Med.2001;164:S90-S94.
    [9]Cookson W. The immunogenetics of asthma and eczema:a new focus on the epithelium. Nat. Rev. Immunol.2004;4:978-988.
    [10]Panettieri RA Jr. Airway smooth muscle:an immunomodulatory cell. J. Allergy Clin. Immunol.2002;110:S269-S274.
    [11]Roche WR,Beasley R, Williams JH, et al. Subepithelial fibrosis in the bronchi of asthmatics. Lancet 1989;1:520-524.
    [12]Ebina M, Takahashi T, Chiba T, et al. Cellular hypertrophy and hyperplasia of airway smooth muscles underlying bronchial asthma:a 3-D morphometric study.Am.Rev. Respir. Dis. 1993;148:720-726.
    [13]Johnson PR, Roth M, Tamm M, et al.Airway smooth muscle cell proliferation is increased in asthma. Am. J. Respir. Crit. Care Med.2001;137:251-261.
    [14]Martin JG, Ramos-Barbon D. Airway smooth muscle growth from the perspective of animal models. Respir. Physiol. Neurobiol.2003;137:251-261.
    [15]Vancheri C, Gili E, Failla M, et al.Bradykinin differentiates human lung fibroblasts to a myofibroblast phenotype via the B2receptor. J. Allergy Clin. Immunol.2005;116:1242-1248.
    [16]Benayoun L, Druilhe A, Dombret MC, et al. Airway structural alterations selectively associated to severe asthma. Am.J. Respir. Crit. Care Med.2003;167:1360-1368.
    [17]Woodruff PG, Dolganov GM, Ferrando RE, et al. Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression. Am.J.Respir. Crit. Care Med.2004;169:1001-1006.
    [18]Madison JM. Migration of airway smooth muscle cells. Am.J.Respir. Cell Mol. Biol. 2003;29:8-11.
    [19]Vermeer PD, Harson R, Einwalter LA, et al.Interleukin-9 induces goblet cell hyperplasia during repair of human airway epithelia. Am.J. Respir. Cell Mol. Biol.2003;286-295.
    [20]Reader JR, Hyde DM, Schelegle ES, et al. Interleukin-9 induces mucous cell metaplasia independent of inflammation. Am. J. Respir. Cell Mol.Bilo.2000;28:664-672.
    [21]Tanaka H, Yamada G, saikai T, et al.Increased airway vascularity in newly diagnosed asthma using a high-magnification bronchovideoscope.Am.J. Respir. Crit. Care Med.2003;168: 1495-1499.
    [22]Walsh DA, Pearson CI.Angiogenesis in the pathogenesis of inflammatory joint and lung disease. Arthritis Res,2001,3:147-153.
    [23]Nagasawa T, Kikutani H, Kishimoto T. Molecular cloning and structure of pre-B-cell growth-stimulating factor. Proc Natl Acad Sci USA,1994,91(6):2305-2309.
    [24]Muller A, Homey B,Soto H, et al.Involvement of chemokine receptors in breast cancer metastasis. J. Nature,2001,410(6824):50-56.
    [25]杨文博,孔佩艳.趋化因子基质细胞衍生因子1(SDF-1)及其受体CXCR4.免疫学杂志,2003,19(3):1421.
    [26]Murdoch C. CXCR4:chemokine receptor extraordinaire. Immunol Rev,2000,177(355): 175-184.
    [27]Crump MP, Gong JH, Loetscher P, et al. Solution structure and basis for functional activity of stromal cell-derived factor-1;dissociation of CXCR4 activation from binding and inhibition of HIV-1.J. EMBO J,1997,16(23):6996-7007.
    [28]Gleichmann M, Gillen C, Czardybon M, et al. Cloning and haracterization of SDF-1 gamma, a novel SDF-1 chemokine transcript with developmentally regulated expression in the nervous system. Eur J neurosci,2000,12(6):1857-1866.
    [29]Yu L, Cecil J, Peng SB, et al. Identification and expression of novel isoforms of human stromal cell-derived factor 1.Gene,2006,374:174-179.
    [30]Roland J, Murphy B J, Ahr B,et al. Role of the intracellular domains of CXCR4 in SDF-1-mediated signaling. J. Blood,2003, Jan 15,101(2):399-406.
    [31]Burn JM, Summers BC, Wang Y, et al. A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J Exp Med,2006,203: 2201-2213.
    [32]Charnaux N, Brule S, hamon M, et al. Syndecan-4 is a signaling molecule for stromal cell-derived factor-1 (SDF-1)/CXCL12.FASEB J,2005,272:1937-1951.
    [33]Bingle L, Brown N J, Lewis C E. The role of tumor-associated macrophages in tumour progression:implications for new anticancer therapies J. Pathol,2002,196:254-265.
    [34]Jiming Wang,Xiyun Deng,Shaobo Su,et al.Chemokines and their role in tumor growth and metastasis[J].J Immunol Meth,1998,220(2):1-17.
    [35]Rossi D.Zlotnik A.The biology of chemokines and their receptors.Annu Rev.Immunol, 2000,18:217-242.
    [36]Federspiel B,Melhado I G,Duncan A M,et al.Molecular cloning of the cDNA and chromosomak localization of the gene for aputative seven-transmembrane segment(7-TMS) receptor isolated from human spleen.Genomics,1993,16(3):707-712.
    [37]Loetscher M,Geiser T, O'Reilly T,et al.Cloning of a human seven-transmembrane domain receptor,LESTR,that is highly expressed in leukocytes.J Biol Chem,1994,269(1): 232-237.
    [38]Bleul C C,Farzan M,Choe H,et al.The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry[J].Nature,1996,382(6594):829-883.
    [39]Christopherson K W,Cooper S,Broxmeyer H E.Cel 1 surface eptidase CD26/DPPIV mediates G-CSF mobilization of mouse progenitot cells.Blood,2003,101(12):4680-4686.
    [40]Sbaa-Ketata E,Courel M N,Delpech B,et al.Hyaluronan-derived oligosaccharides enhance SDF-1-dependent chemotactic effect on peripheral blood hematopoietic CD34+celIs[J].Stem Cells,2002,20(6):585-587.
    [41]Hecht I,Cahalon L,Hershkoviz R,et al.Heterologous desensitization of T cell functions by CCR5 and CXCR4 ligands:inhibition of cellular signaling,adhesion and chemotaxis.Int Immunol,2003,15(1):29-38.
    [42]Bachelder R E,Wendt MA,Mercurio A M.Vascular endothelial growth factor romotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4.Cancer Res,2002,62(24):7203-7206.
    [43]Coyle AJ, Wagner K, Bertrand C, et al.Central role of immunoglobulin E in the induction of lung eosinophil infiltration and T helper 2 cell cytokine production inhibition by a non-anaphylactogenic anti-IgE antibody. J Exp Med 1996; 183:1303-1310.
    [44]Conrad C. Bleul, Robert C. Fuhlbrigge, Jose M.Casanovas, et al.A highly efficacious lymphocyte chemoatractant, stromal cell-derived factor (SDF)[J].J Exp Med 1996,184: 1101-1109.
    [45]Campbell JJ, Hedrick J, Zlotnik A, et al.Chemokines and the arrest of lymphocytes rolling under flow conditions.Science,1998.279(5349):381-384.
    [46]Toshihiro N, Peter E.Cutting Edge:Stromal Cell-Derived Factor-1 Is a Costimulator for CD41 TCell Activation.J Irmnunol.2000.164(10):5010-5014.
    [47]Bradfield PF, Amft N,Vernon-Wilson E, et al.Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell-derived factor-1 (CXCL12),which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue.Arthritis Rheum,2003,48(9):2472-2482.
    [48]Jose-Angel Gonzalo, Clare M. Lloyd, Amnon Peled, et al. Critical Involvement of the Chemotactic Axis CXCR4/Stromal Cell-Derived Factor-lain the Inflammatory Component of Allergic Airway Disease. The Journal of Immunology,2000 Jul 1;165(1):499-508.
    [49]Ara T, Itoi M, Kawabata K, et al.A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult Tcell development in vivo. J Immunol,2003,170(9):4649-4655.
    [50]Plotkin J, Prockop SE, Lepique A, et al. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postriatal thymus. J Immunol,2003,171(9): 4521-4527.
    [51]Wenzel SE, Schwartz LB, Langmack EL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics.Am J Respir Crit Care Med 1999;160:1001-1008.
    [52]Hiroyuki Nagase, Misato Miyamasu, Masao Yamaguchi, et al.Expression of CXCR4 in Eosinophils:Functional Analyses and Cytokine-Mediated Regulation. The Journal of Immunology,2000,164:5935-5943.
    [53]Suratt BT, Petty JM, Young SK, et al.Role of the CXCR4/SDF-1 chemokine axis in circulating neutrophil homeostasis. Blood,2004,104:567-571.
    [54]Donald M. Mcdonald. Angiogenesis and Remodeling of Airway Vasculature in Chronic Inflammation. Am J Respir Crit Care Med 2001,164:S39-S45.
    [55]M.Hoshino, N. Aoike, M. Takahashi,et al.Increased immunoreactivity of stromal cell-derived factor-1 and angiogenesis in asthma. J Eur Respir 2003,21:804-809.
    [56]Salcedo, R Wasserman, K young, HA Grimm, et al.Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells. Am J Pathol 1999,154:1125-1135.
    [57]Nagasawa T, Hirota S,Tachibana K, et al. Defects of B cell lymphopoiesis and bone marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1.Nature,1996,3802: 635-638.
    [58]Kanda S, Mochizuki Y, Kanetake H. Stromal cell-derived factor 1 alpha induces tube-like structure formation of endothelial cells through phosphoinositide 3-kinase. J Biol Chem, 2003,278(1):257-262.
    [59]马宇光,武力,王红磊.CXCR4单克隆抗体对新生血管形成的影响.现代肿瘤医学.2008,16(12):2069-2071.
    [60]Gomulka K, Liebhart J. Vascular endothelial growth factor-structure,function and role in airways inflammation and the clinical course of asthma. Pneumonol Alergol Pol.2009;77(6): 549-53.
    [61]Salvucci O, YaoLei, Villalba S, et al. Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1.Blood,2002,99(8):2703-2711.
    [62]Kijowski J, BajKrzyworzeka M. The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells. Stem Cells,2001,19(5):453-466.
    [63]Deshane Y, Chen SF, callallero S, et al.Stromal cell-derived factor 1 promotes angiogenesis via a heme oxygenase 1-dependent mechanism. Exp Med,2007,204:605-618.
    [64]Nicholas W. Lukacs, Aaron Berlin, Dominique Schols, et al. Bridger. AMD3100, a CXCR4 Antagonist, Attenuates Allergic Lung Inflammation and Airway Hyperreactivity. Am J Patbol, 2002,160:1353-1360.
    [65]Jianguo Xu, Ana Mora, Hyunsuk Shim, et al. Role of the SDF-1/CXCR4 Axis in the pathogenesis of lung injury and fibrosis. Am J Respir Cell Mol Biol.2007,37:291-299.
    [66]Muriel Hachet-Hass, Karl Balabanian, Francois Rohmer, et al. Small Neutralizing Molecules to Inhibit Actions of the Chemokine CXCL12. J. Biol Chem.2008,283(34):23189-23199.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700