用户名: 密码: 验证码:
绵羊CCL28和Granulysin基因的克隆与体外表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CC趋化因子配体28(CCL28),又称黏膜相关上皮趋化因子(MEC),是新近发现的CC趋化因子家族成员,在人和小鼠的大部分黏膜组织(唾液腺、乳腺、小肠、大肠和气管)中表达,并且是由以上组织的上皮细胞产生。CCL28对IgA抗体分泌细胞(IgA-ASCs)的归巢起重要作用,此外,CCL28还具有广谱的抗微生物活性。
     Granulysin是一种表达于人体细胞毒性T淋巴细胞(CTL)和自然杀伤细胞(NK Cells)中的一种抗菌蛋白,属于SAPLIP(saposin-like protein)家族的一类脂封闭蛋白,是目前CTL胞浆颗粒中唯一证实具有抗菌活性的效应分子。Granulysin能与穿孔素和颗粒酶共同定位于人的细胞毒性T淋巴细胞和自然杀伤细胞颗粒中,其作用相当于广谱抗菌素,作用范围包括革兰氏阳性菌、革兰氏阴性菌、真菌和寄生虫,Granulysin也能杀灭人的肿瘤细胞。
     为了研究CCL28和Granulysin在绵羊体内是否具有同样的功能,我们克隆了绵羊CCL28和Granulysin基因,并得到了相应的融合蛋白,试验分两个系列。
     一、绵羊CCL28基因的克隆与体外表达。利用同源序列克隆原理设计一对克隆引物,对绵羊结肠黏膜组织提取的总RNA进行RT-PCR,将PCR产物与pMD19-T载体连接后转化Ecol.JM109感受态细胞,筛选阳性克隆、测序,并进行序列分析;又根据克隆序列设计一对表达引物,用PCR法从重组克隆载体中扩增出含BamHI/XhoI酶切位点的CCL28片段,双酶切后亚克隆至pGEX-4T-1载体,构建重组原核表达载体pGEX-CCL28,转化宿主菌E.coli BL21,经IPTG诱导进行表达,SDS-PAGE鉴定。克隆的绵羊CCL28基因包含完整的开放阅读框架,长为444bp,ORF为387bp,编码129个氨基酸,与人、小鼠、猪和牛该基因的同源性分别为76.4%、61.4%、84.3%和92.9%,推导的氨基酸序列与人、小鼠、猪和牛的同源性分别为76%、63%、84%和93%,信号肽为1~24aa,SCY功能域为27~88aa,结构特征与人、小鼠、猪和牛的CCL28相一致,成功构建了原核表达载体pGEX-CCL28,表达的融合蛋白分子量约为39ku,为进一步研究绵羊CCL28的生物学功能奠定了基础。
     二、绵羊Granulysin基因的克隆与体外表达。基于电子延伸序列,设计一对克隆引物,对绵羊回肠黏膜组织提取的总RNA进行RT-PCR,将PCR产物与pMD19-T载体连接后转化Ecol.JM109感受态细胞,筛选阳性克隆、测序,并进行序列分析;又根据克隆序列设计一对表达引物,用PCR法从重组克隆质粒中扩增出含BamHI/XhoI酶切位点的Granulysin片段,双酶切后亚克隆至pGEX-4T-1载体,构建重组原核表达载体pGEX-Granulysin,转化宿主菌E.coli BL21,经IPTG诱导进行表达,SDS-PAGE鉴定。克隆的绵羊Granulysin基因包含完整的开放阅读框架,长为509bp,ORF为438bp,编码146个氨基酸,与人和牛该基因的同源性分别为56.2%和87.2%,推导的氨基酸序列与人和牛的同源性分别为38%和75%,信号肽为1~22aa,SapB功能域为64~138aa,结构特征与人和牛的Granulysin相一致,成功构建了原核表达载体pGEX-CCL28,表达的融合蛋白分子量约为41 ku,为进一步研究绵羊Granulysin的生物学功能奠定了基础。
CC chemokine ligand 28 (CCL28), also called mucosae-associated epithelial chemokine (MEC), is the member of the CC chemokine subfamily which was discovered recently and expressed in most mucosal tissues of human and mouse which include the salivary gland, mammary gland, small and large intestines and trachea, where it is predominantly produced by epithelial cells. CCL28 play a essential role in homing of IgA antibody secreting cell (IgA-ASCs), and CCL28 also has a broad-spectrum antimicrobial activity.
     Granulysin, a antimicrobial protein expressed in Cytolytic T Lymphocytes (CTL) and Natural Killer cells (NK cells), is a member of the saposin-like protein (SAPLIP) family of lipid binding proteins and the only one antimicrobial effector molecule which was identified in CTL endochylema at present. Granulysin can colocalizes in human CTL and NK cells with perforin and granzymes. Its function is similar to broad-spectrum antibiotics against both Gram-positive and Gram-negative bacteria, fungi, and parasites. Granulysin also kills human tumor cells.
     To investigate if CCL28 and Granulysin play same roles in the sheep, we cloned ovine CCL28 and Granulysin and obtained cognate fusion protein. The study was divided into two series.
     Ⅰ. Cloning and expression of ovine CCL28 in vitro. A pair of cloning primers were designed according to the cloning principle of homologous sequence. Total RNA extracted from mucosal tissue of ovine colon was amplified by RT-PCR, the PCR products were ligated into the pMD19-T vector, and then transformed into Ecol. JM109 competent cells. The positive clone was identified and the sequence was sequenced and analyzed. Then, a pair of expression primers were designed according to the cloned sequence. A fragment of ovine CCL28 cDNA containing BamHI/XhoI was amplified from recombinant vector by PCR. The fragment digested by BamHI/XhoI was subcloned into pGEX-4T-1 vector to construct a recombinant prokaryotic expression vector, pGEX-CCL28. Subsequently, the recombinant vector was transformed into E.coli BL2l competent cells. The fusion protein induced by IPTG was analyzed by SDS-PAGE. The cloned sequences containing the open reading frame of ovine CCL28 consist of 444bp, and ORF is 387bp and encodes 129 amino acids. Identity analysis showed that the ovine CCL28 nucleotide sequences shared 76.4%, 61.4%, 84.3% and 92.9% homology with that of human, mouse, pig and cattle, the deduced amino acid sequences shared 76%, 63%, 84% and 93% homology with that of human, mouse, pig and cattle. The signal peptide is 1-24aa and the domain SCY is 27-88aa, which reveals that the structural feature is consistent with human, mouse pig and cattle. The prokaryotic expression pGEX-CCL28 was successfully constructed. The fusion protein expressed in E.coli BL21 was about 39ku. It provides the experiment basis for further researching its biological function.
     Ⅱ. Cloning and expression of ovine Granulysin in vitro. A pair of cloning primers were designed based on the in silico sequence information. Total RNA extracted from mucosal tissue of ovine ileum was amplified by RT-PCR, the PCR products were ligated into the pMD19-T vector, and then transformed into Ecol. JM109 competent cells. The positive clone was identified and the sequence was sequenced and analyzed. Then, a pair of expression primers were designed according to the cloned sequence. A fragment of ovine Granulysin cDNA containing BamHI/XhoI was amplified from recombinant vector by PCR. The fragment digested by BamHI/XhoI was subcloned into pGEX-4T-1 vector to construct a recombinant prokaryotic expression vector, pGEX- Granulysin. Subsequently, the recombinant vector was transformed into E.coli BL2l competent cells. The fusion protein induced by IPTG was analyzed by SDS-PAGE. The cloned sequence containing the open reading frame of ovine Granulysin consists of 509bp, and ORF is 438bp and encodes 146 amino acids. Identity analysis showed that the ovine Granulysin nucleotide sequence shared 56.2% and 87.2% homology with that of human and cattle, the predicted amino acid shared 38% and 75% homology with that of human and cattle. The signal peptide is 1-22aa and the domain SapB is 64-138aa, which reveals that the structural feature is consistent with human and cattle. The prokaryotic expression pGEX-Granulysin was successfully constructed. The fusion protein expressed in E.coli BL21 was about 41ku. It provides the experiment basis for further researching its biological function.
引文
[1]赵金红,王健.趋化因子的研究进展[J].陕西医学杂志,2005,34(12):1542-1544.
    [2] Van Lint P, Libert C. Chemokine and cytokine processing by matrix metalloproteinases and its effect on leukocyte migration and inflammation[J]. J Leukoc Biol, 2007, 82(6): 1375-1381.
    [3] Olson TS, Ley K. Chemokines and chemokine receptors in leukocyte trafficking[J]. Am J Physiol Regul Integr Comp Physiol, 2002, 283(1): 7-28.
    [4] Stein JV, Nombela-arrieta C. Chemokine control of lymphocyte trafficking: a general overview[J]. Immunology, 2005, 116(1): 1-12.
    [5]王健,赵金红.趋化因子受体研究进展[J].现代预防医学,2006,33(2):165-167.
    [6] Charo IF, Ransohoff R M. The many roles of chemokines and chemokine receptors in inflammation[J]. N Engl J Med, 2006, 354(6): 610-621.
    [7] Wang W, Soto H, Oldham ER, et al. Identification of a novel chemokine CCK28, which binds CCR10(GPR2) [J]. J Biol Chem, 2000, 275(29): 22313-22323.
    [8] Pan J, Kunkel EJ, Gosslar U, et a1. A novel chemokine ligand for CCRl0 and CCR3 expressed by epithelial cells in mucosal tissues[J]. J Immunol, 2000, l65(6): 2943-2949.
    [9] Tsai H, Bobek LA. Human salivary histatins: promising anti-fungal therapeutic agents[J].Crit Rev Oral Biol Med, 1998 , 9(4) : 480-497.
    [10] Hieshima K, Ohtani H, Shibano M, et al. CCL28 has dual roles in mucosal immunity as a chemokine with broad-spectrum antimicrobial activity[J]. J Immunol, 2003, 170(3): 1452-1461.
    [11] Meurens F, Berri M, Whale J, et al. Expression of TECK/CCL25 and MEC/CCL28 chemokines and their respective receptors CCR9 and CCR10 in porcine mucosal tissues[J]. Vet Immunol Immunopathol, 2006, 113(3-4): 313-327. [12 Meurens F, Whale J, Beownlie R, et al. Expression of mucosal chemokines TECK/CCL25 and MEC/CCL28 during fetal development of the ovine mucosal immune system[J]. Immunology, 2007,120(4): 544-555.
    [13]乔新安,陈丽颖,王艳玲等.CCL25/CCR9和CCL28/CCR10在仔猪胃肠道组织中的表达[J].中国农学通报,2007,23(5):1-5.
    [14] Berri M, Meurens F, Lefevre F, et al. Molecular cloning and functional characterization of porcine CCL28: possible involvement in homing of IgA antibody secreting cells into the mammary gland[J]. Mol Immunol, 2008 45(1): 271-277.
    [15] Nakayama T, Hieshima K, Izawa D, et a1. Cutting edge: profile of chemokine receptor expression on human plasma cells accounts for their efficient recruitment to target tissues[J]. J Immunol, 2003, l70 (3): l l36-1140.
    [16] O'Gorman MT, Jatoi NA, Lane SJ, et al. IL-1beta and TNF-alpha induce increased expression of CCL28 by airway epithelial cells via an NFkappaB-dependent pathway[J]. Cell Immunol, 2005, 238(2):87-96.
    [17] Marchese A, Docherty J M, Nguyen T, et al. Clong of human genes encoding novel G protein coupled receptors[J]. Genomics, 1994, 23(3): 609-618.
    [18] Jarmin DI, Rits M, Bota D, et al. Cutting edge:identification of the orphan receptor G protein coupled receptor 2 as CCR10, a specific receptor for the chemokine Eskine[J]. J Immunol, 2000, 164(7): 3460-3464.
    [19] Homey B, Wang W, Soto H, et al. Cutting edge: the orphan chemokine receptor G protein coupled receptor 2(GPR-2,CCR10)binds the skin-associated chemokine CCL27 (CTACK/ALP/ILC)[J]. J Immunol, 2000, 164(7): 3465-3470.
    [20]乔新安,朱彦彩,都军霞等.CCL25和CCL28及其相应受体CCR9和CCR10[J].医学分子生物学杂志,2007,4(5):458-460.
    [21] Eric JK, Chang HK, Nicole HL, et a1. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells[J]. J Clin Invest, 2003, 111(7): 1001-1010.
    [22] Kunkel EJ,Campbell DJ, Butcher EC. Chemokines in lymphocyte trafficking and intestinal immunity[J]. Microcirculation, 2003, 10 (3-4): 313-323.
    [23] Van Der, Feltz M, Groot J, et al. Lymphocyte homing and Ig secretion in the murine mammary gland[J]. Scand J Immunol, 2001, 54(3): 292–300.
    [24] Buren M, Yamashita M, Suzuki Y, et al. Altered expression of lymphocyte homing chemokines in the pathogenesis of IgA nephropathy[J]. Contrib Nephrol, 2007, 157:50-55.
    [25] Kunkel EJ, Butcher EC. Plasma-cell homing[J]. Nat Rev Immunol, 2003, 3(10): 822–829.
    [26] Cyster JG. Homing of antibody secreting cells[J]. Immunol Rev, 2003, 194: 48-60.
    [27] Salmon H. The intestinal and the mammary immune system in pigs[J]. Vet Immunol Immunopathol, 1987, 17(1-4): 367-388.
    [28] Lazarus NH, Kunkel EJ, Johnston B, et al. A common mucosal chemokine (mucosae-associated epithelial chemokine/CCL28) selectively attracts IgA plasmablasts[J]. J Immunol, 2003, 170(7): 3799-3805.
    [29] Bowman EP, Kuklin NA, Youngman KR, et al. The intestinal chemokine thymus-expressed chemokine (CCL25)attracts IgA antibody-secreting cells[J]. J Exp Med, 2002, 195(2): 269-275.
    [30] Hosoe N, Miura S, Watanabe C, et al. Demonstration of functional role of TECK/CCL25 in T lymphocyte-endothelium interaction in inflamed and uninflamed intestinal mucosa[J]. Am J Physiol Gastrointest Liver Physiol, 2004, 286: 458-466.
    [31] Vicari AP, Figueroa DJ, Hedrick JA, et al. TECK: a novel CC chemokine specifically expressed by thymic dendritic cells and potentially involved in T cell development[J]. Immunity, 1997, 7(2): 291-301.
    [32] Zhou C, Wu J, Torres L, et al. Transient expression of CC chemokine TECK in the ovary during ovulation: its potential role in ovulation[J]. Am J Reprod Immunl, 2005, 53(5): 238-248.
    [33] Hieshima K, Kawasaki Y, Hanamoto H.et al. CC Chemokine Ligands 25 and 28 play essential roles in intestinal extravasation of IgA antibody-secreting cell[J]. J Immunol, 2004,173(6): 3668-3675.
    [34] Wilson E, Butcher EC. CCL28 controls immunoglobulin(Ig)A plasma cell accumulation in the lactating mammary gland and IgA antibody transfer to the neonate[J]. J Exp Med, 2004, 200(6): 805-809.
    [35] Roux M, McWilliams J, Phillips-Quagliata, et al. Origin of IgA-secreting plasma cells in the mammarygland[J]. J Exp Med, 1997, 146(5), 1311-1322.
    [36] Kunkel EJ, Kim CH, Lazarus NH, et al. CCR10 expression is a common feature of circulating and mucosal epithelial tissue IgA Ab-secreting cells[J]. J Clin Invest, 2003, 111(7): 1001-1010.
    [37] Murakami T, Cardones AR, Finkelstein SE, et al. Immune evasion by murine melanoma mediated through CC chemokine receptor-10[J]. J Exp Med, 2003, 198(9): 1337-1347.
    [38] Pabst O, Ohl L, Wendland M , et al. Chemokine receptor CCR9 contributes to the localization of plasma cells to the small intestine[J]. J Exp Med, 2004, 199(3): 411-416.
    [39] Zaballos A, Gutierrez J, Varonar R, et al. Cutting Edge: Identification of the Orphan Chemokine Receptor GPR-9-6 as CCR9, the Receptor for the Chemokine TECK[J]. J Immunol, 1999, 162(10): 5671-5675.
    [40] Meurens F, Berri M, Siggers RH, et al. Commensal bacteria and expression of two major intestinal chemokines, TECK/CCL25 and MEC/CCL28, and their receptors[J]. 2007, 2(7): e677.
    [41] Feng N, Jaimes MC, Lazarus NH, et al. Redundant role of chemokines CCL25/TECK and CCL28/MEC in IgA plasmablast recruitment to the intestinal lamina propria after rotavirus infection[J]. J Immunol, 2006, 176(10): 5749-5759.
    [42] English K, Brady C, Corcoran P, et al. Inflammation of the respiratory tract is associated with CCL28 and CCR10 expression in a murine model of allergic asthma[J]. Immunol Lett, 2006, 103(2): 92-100.
    [43] Ogawa H, Iimura M, Eckmann L, et al. Regulated production of the chemokine CCL28 in human colon epithelium[J]. Am J Physiol Gastrointest Liver Physiol, 2004, 287(5): 1062-10639.
    [44] John AE, Thomas MS, Berlin AA, et al. Temporal production of CCL28 corresponds to eosinophil accumulation and airway hyperreactivity in allergic airway inflammation[J]. Am J Pathol, 2005 , 166(2): 345-353.
    [45] Watkins HR, Lapp CA, Hanes PJ, et al. CCL28 effects on periodontal pathogens[J]. J Periodontol, 2007, 78(12): 2356-2363.
    [46] Eksteen B, Miles A, Curbishley SM, et al. Epithelial inflammation is associated with CCL28 production and the recruitment of regulatory T cells expressing CCR10[J]. J Immunol, 2006, 177(1): 593-603.
    [47] Nieminen T, Kayhty H, Virolainen A, et al. Circulating antibody secreting cell response to parenteral pneumococcal vaccines as an indicator of a salivary IgA antibody response[J]. Vaccine, 1998, 16(2-3): 313-319.
    [48] Law Y, Hill ED, Distelhorst K, et al. Differential accumulation of IgA-ASC in sublingual vs. submaxillary salivary glands is directly correlated with the level of CCL28 expression[J]. J Immunol, 2007, 178: S28.
    [49]李潇,郑燕,李冬.人唾液CCL28与sIgA抗体分泌的相关性研究[J].山东大学学报(医学版),2007,45(1):65-67.
    [50] Melino SS, Rufini M, Sette R, et al. Zn2+ ions selectively induce antimicrobial salivary peptide histatin-5 to fuse negatively charged vesicles: identification and characterization of a zinc-binding motif present in the functional domain[J]. Biochemistry, 1999, 38(30): 9626-9633.
    [51] Alan M. Granulysin Novel Antibacterial Peptide of CytolyticT Lymphocytes and Natural Killer Cells[J]. Biochemical Pharmacology, 2000, 59(4): 317-320.
    [52]陈菲,许伟.Granulysin结构和功能的研究进展[J].国外医学免疫学分册,2005,28(2):96-100.
    [53] Pena SV, Krensky AM. Granulysin, a new human eytolytie granule-associated protein with possible involvement in cell-mediated cytotoxicity[J]. Semin Immunol, 1997, 9(2):117-125.
    [54] Pena S, Hanson D, Cart B, et a1. Processing, subcelular localization, and function of 519(granulysin), a human late T cell activation molecule with homology to small, lytic, granule proteins[J]. J Immunol, 1997, 158(6): 2680-2688.
    [55] Manning WC, Farrell SO, Goralski TJ, et al. Genomic structure and alternative splicing of 519, a gene expressed late after T cell activaion[J]. J Immunol, 1992, 148 (12): 4036-4042.
    [56] Huang LP, Lyu SC, Clayberger C, et al. Granulysin-mediated tumor rejection in transgenic mice[J]. J Immunol, 2007, 178(1): 77-84.
    [57] Stenger S, Hanson DA. An anfimicrobial activity of cytolytic T cells mediated by granulysin[J]. Science, 1998, 282(5386):121-125.
    [58] Ma LL, Wang CL, Neely GG, et al. NK cells use perforin rather than granulysin for anticryptococcal activity[J]. J Immunol, 2004, 173(5): 3357-3365.
    [59] Ernst WA, Thoma-Uszynski S, Teitelbaum R, el a1. Granulysin, a T cell product, kills bacteria by altering membrane permeability[J]. J Immunol, 2001, 165(12): 7102-7108.
    [60] Krensky AM. Granulysin: a novel antimicrobial peptide of cytolytic T lymphocytes and natural killer cells[J]. Biochem Pharmacol, 2000, 59(4): 317-320.
    [61] Wang Z, Choice E, Kaspar A, et al. Bactericidal and tumoricidal activities of synthetic peptides derived from granulysin[J]. Journal of immunology, 2000, 165(3): 1486-1490.
    [62] Andreu D, Carreno C, Linde C, et a1. Identification of an anti-mycobacterial domain in NK-lysin and granulysin[J]. Biochemical journal, 1999, 344(3): 845-849.
    [63] Hanson DA, Kaspar AA, Poulain FR el a1. Biosynthesis of granulysin, a novel cytolytic molecule[J]. Mol Immunol, 1999, 36(7): 413-422.
    [64] Heike B, Matthias L. Membran e-penneabilizing polypeptides of amoebae constituents of an archaic antimicrobial system[J]. Zoology, 2001, 104(2001): 3-11.
    [65] Endsley J, Furrer J. Characterization of Bovine Homologues of Granulysin and NK-lysin[J]. Journal of Immunology, 2004, 173(4): 2607-2614.
    [66] Kishi A, Takamori Y, Ogawa K, et a1. Diferential expressionof granulysin and perforin by NK cells in cancer patients and correlation of impaired granulysin expression with progression of cancer[J]. Cancer Immunology Immunothcrapy, 2002, 50(11): 604-614.
    [67] Kumiko H, Yutaka K, Ye Z, et a1. Antimicrobial Activity and Stability to Proteolysis of Small Linear Catholic Pcptides with D-Amino Acid Substitutions[J]. Micmbiol Immunol, 2002, 46(11): 741-749.
    [68] Shai Y. Mochanian of the binding, insertion and destabilization of phosplipid bilayer memebrances by helical antimibial and cell non-selective membrane-lytic peptides[J]. Biochimica et Biophysica Acta, 1999, 1462(1-2):55-70.
    [69] Dieli F, Troye-Blomberg M, lvanyi J, el a1. Granulysin-Dependent Killing of lntracellular and Extracellular Mycobacterium tuberculosis by Vgamma9/Vdelta2 T Lymphocytes[J]. J Infect Dis, 2001, 184(8): 1082-1085.
    [70] Chen X, Howe J, Andra J, et al. Biophysical analysis of the interaction of granulysin-derived peptides with enterobacterial endotoxins[J]. Biochim Biophys Acta, 2007, 1768(10): 2421-2431.
    [71] Bruhn H, leippe M. Comparative modding of amoebapores and granulysin based on the NK-lysin sltructure-structural and functional implications[J]. Biological chemistry, 1999, 380(7-8): 1001-1007.
    [72] Sordillo LM, Kendall JT, Corl CM, Molecular characterization of a saposin-like protein family member isolated from bovine lymphocytes[J]. J Dairy Sci, 2005, 88(4): 1378-1390.
    [73] Davis EG, Sang Y, Rush B, et al. Molecular cloning and characterization of equine NK-lysin[J]. Vet Immunol Immunopathol, 2005, 105(1-2): 163-169.
    [74] Miteva M, Andersson M, Karshikoff A, et al. Molecular electroporation: a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplified with NK-lysin[J]. FEBS Lett , 1999, 462(1-2): 155-158.
    [75] Liu B, Liu S, Qu X, et al. Construction of a eukaryotic expression system for granulysin and its protective effect in mice infected with Mycobacterium tuberculosis[J]. J Med Microbiol, 2006, 55(10): 1389-1393.
    [76] Zhang X, Matsuo K, Farmawati A, et al. Exhaustive exercise induces differential changes in serum granulysin and circulating number of natural killer cells[J]. Tohoku J Exp Med, 2006, 210(2): 117-124.
    [77] Shing CM, Ogawa K, Zhang X, et al. Reduction in resting plasma granulysin as a marker of increased training load[J]. Exerc Immunol Rev, 2007, 13: 89-99.
    [78] Ericson KG, Fadeel B, Andersson M, et al. Sequence analysis of the granulysin and granzyme B genes in familial hemophagocytic lymphohistiocytosis[J]. Hum Genet, 2003, 112(1): 98-99.
    [79] Pardo J, Perez-Galan P, Gamen S, et al. A role of the mitochondrial, apoptosis-inducing factor in granulysin-induced apoptosis[J]. Joumal of immunology, 2001, 167(3):1222-1229.
    [80] Kaspar AA, Okada S, Kumar J, el a1. A distinct pathway of cell-mediated apoptosis initiated by granulysin[J]. J Immunol, 2001, 167(1): 350-356.
    [81] Maria M, Mats A, Andrey K, et a1. Molecular electroporation:a unifying concept for the description of membrane pore formation by antibacterial peptides, exemplied with NK-lysin[J]. FEBS Letters, 1999, 462(1999):155-158.
    [82] Stenger S, Rosat J-P, Bloom BR, el a1. Granulysin: a lethal weapon of cytolytic T cells[J]. Immunol Today. 1999, 20(8): 390-394.
    [83] Ogawa K, Takamori Y, Suzuki K, et al. Granulysin in human serum as a marker of cell-mediated immunity[J]. Eur J Immunol, 2003, 33(7): 1925-1933.
    [84]Gamen S, Hanson DA, Kaspar A, el a1. Granulysin-induced apoptosis: involvement of at least two distinct pathways[J]. J Immunol, 1998, 161(4): 1758-1764.
    [85] Takamori Y, Ogawa K, Nagata K, et al. Granulysin induces cell death with nuclear accumulation[J]. J Med Dent Sci, 2005, 52(1): 1-7.
    [86] Clayberger C, and Krensky AM. Granulysin[J]. Curr Opin Immunol, 2003, 15(5): 560-565.
    [87] Gansert JL, Kiessler V, Engele M, et al. Human NKT cells express granulysin and exhibit antimycobacterial activity[J]. J Immunol, 2003, 170(6): 3154-3161.
    [88] Saigusa S, Ichikura T, Tsujimoto H, et al. Serum granulysin level as a novel prognostic marker in patients with gastric carcinoma[J]. J Gastroenterol Hepatol, 2007, 22(8): 1322-1327.
    [89] Wargnier A, Sasportes M, Lagrange PH. Granulysin: antimicrobial molecule of innate and acquired immunity in human tuberculosis[J]. Pathol Biol (Paris), 2005, 53(8-9): 516-521.
    [90]钱峥,陈孙孝,周晔.颗粒溶素的表达纯化及生物学活性分析[J].第二军医大学学报,2006,27(8):829-833.
    [91] Krensky AM, Clayberger C. Granulysin: a novel host defense molecule[J]. Am J Transplant, 2005, 5(8): 1789-1792.
    [92] Latinovic-Golic S, Walch M, Sundstrom H, et al. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes[J]. BMC Immunol, 2007, 8: 9.
    [93] Hanson DA, Ziegler SF. Fusion of green fluorescent protein to the C-terminus of granulysin alters its intracellular localization in comparison to the native molecule[J]. J Negat Results Biomed, 2004, 3: 2.
    [94] Okada S, Li Q, Whitin JC, et al. Intracellular mediators of granulysin-induced cell death[J]. J Immunol, 2003, 171(5): 2556-2562.
    [95] Hata A, Zerboni L, Sommer M, el a1. Granulysin blocks replication of varicella-zoster virus and triggers apoptosis of infected cells[J]. Viral Immunol, 2001, 14(2): 125-133.
    [96] Mackewicz CE, Ridha S, Levy JA. H1V virions and H1V replication are unafected by granulysin[J]. AIDS, 2000, 14(3): 328-330.
    [97] Jongstra J, Schall TJ, Dyer BJ, et al. The isolation and sequence of a novel gene from a human functional T cell line[J]. J Exp Med, 1987, 165(3):601-614.
    [98]吴建祥,陈天佳,周雪平.抗GST单克隆抗体的制备及应用[J].浙江大学学报(农业与生命科学版),2006,32(4):383-386.
    [99]徐猛,卫军,严明.谷胱甘肽转硫酶多克隆抗体的制备及应用[J].华东理工大学学报,2002,28(2):153-156.
    [100]张海峰,吕合作,李柏青.人颗粒溶解素cDNA克隆及在大肠埃希菌中的表达[J].蚌埠医学院学报,2003,28(4):283-285.
    [101]刘斌波,李向群,曹晓春等. Granulysin真核表达载体的构建与鉴定[J].武汉大学学报(医学版),26(6):804-807.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700