用户名: 密码: 验证码:
超声波辅助珩齿加工工件对系统谐振频率影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声波辅助珩齿加工技术是将超声振动引入齿轮珩齿加工中而发展起来的齿轮加工新工艺。该技术利用超声波和珩齿进行复合加工,由于超声空化现象与切削液的共同作用,强化了珩磨轮的实时动态清洗,更加有效地减小了珩磨轮堵塞,提高了加工效率,因此,超声波辅助珩齿加工技术具有良好的应用前景。近年来,该项技术研究得到国家自然科学基金(基金号5097519)的资助,也取得了很多阶段性成果,但还存在一些技术难题,急需尽快研究解决。
     由换能器、变幅杆和被加工工件(齿轮)组成的超声振动系统是超声波辅助珩齿加工系统的核心,换能器的正确选用、变幅杆的正确设计及它们与工件的正确连接,是使超声振动系统有效工作的关键;在超声波辅助珩齿加工中,被加工工件物理参数的不同,势必导致超声振动系统谐振频率的变化;因此,在设计过程中,必须考虑由于安装工件而造成的超声振动系统谐振频率、振幅等参数的变化,从而使变幅杆参数的设计计算更为合理,保证整个振动系统处于最佳谐振状态。
     本文研究的目的是分析总结出这种影响的规律,为超声波辅助珩齿振动传递系统的设计提供一定的理论依据。本文的主要研究内容如下:
     (1)概述超声加工技术、齿轮加工技术,特别是珩齿加工技术的研究状况,重点阐述由它们结合形成的超声波辅助珩齿加工技术的现状与发展趋势。
     (2)综合应用圆锥型变幅杆的纵振动位移方程、圆盘弯曲振动方程及边界条件、耦合条件以及圆锥型变幅器的频率方程,将它们在mathematics软件上编程计算,得出了超声波辅助珩齿加工工件半径和厚度等参数的变化对振动系统谐振频率的影响规律。
     (3)基于工件参数的变化对系统谐振频率的影响规律,研究圆锥型变幅杆的设计理论,进一步得出圆锥型变幅杆长度随工件参数的变化规律,对变幅杆的合理设计具有一定的理论指导意义。
     (4)将上述理论指导下设计的变幅杆与给定工件组合,用ANSYS软件进行模态分析,得出变幅杆纵振动、工件轴向振动及变幅器的谐振频率,其结果验证了所得规律的正确性。
     (5)分析变幅杆和工件组合前后它们各自轴向振动的位移幅值曲线,对组合前后的节点、节线位置进行比较,研究得到变幅杆和工件在位移振幅方面的相互影响关系。
     (6)本文研究了超声波辅助珩齿加工工件对系统谐振频率的影响规律并以此为依据进行了变幅杆的设计,但在变幅器的简化、工件参数的选择等方面仍存在一定的不足之处。
Ultrasonic assisted gear-honing processing technology is a kind of new gear processing developed through the application of ultrasonic vibration in gear honing. This technology applies ultrasound and gear honing. The real-time dynamic cleaning of gear honing wheels can be strengthened because of the ultrasonic cavitations'phenomenon and cutting fluid, which effectively reduces the honing force and honing wheel jams, and increases efficiency. Accordingly, ultrasonic assisted gear-honing processing technology has a good application prospect. In recent years, the research of this technology was supported by the National Natural Science Fundation of China(Grant No. 5097519), and had also made a lot of achievements. However, there are still some technical problems in dire need for solving.
     Ultrasonic vibration system, consisted of transducer, horn and machined gear, is the core of ultrasonic gear-honing system. The correctness of transducer selection, horn design and the connection of them, is the key to make ultrasonic vibration system work effectively. In ultrasonic assisted gear-honing processing, the difference of the physical parameters of processed gears certainly will cause the ultrasonic vibration system resonant frequency changes. Accordingly, it is necessary to consider the change caused by installation work piece resulting ultrasonic vibration system resonant frequency, amplitude and other parameters. Consequently, the design of ultrasonic horn is more rational, to guarantee the vibration system in best resonant state.
     The purpose of this dissertation is to draw this influence regularity, and to provide certain theoretical basis for ultrasonic assisted gear-honing vibration transmission system design. In this paper, the main research contents are listed as follows:
     (1) Research activities of ultrasonic machining technology, gear processing technology, especially gear-honing technology are summarized. The present status and development trend of ultrasonic gear-honing processing technology are emphatically introduced.
     (2) By the programming of the longitudinal vibration displacement equation of cone horn, bending vibration equation of disc, and boundary conditions and the force-coupling conditions and the frequency equation of cone transformer in mathematics, the influence law of gear's radius and thickness on vibration system resonant frequency is obtained.
     (3) Based on the influence of work piece parameters on system resonant frequency, the theory of design on cone horn is researched. Further, the changing trend of length of horn with work piece parameters is obtained, which have great theoretical signification in the reasonable design of horn.
     (4) Combining the horn designed with the theory and work piece, through modal analysis with ANSYS, the resonant frequency of the horn longitudinal vibration, work piece axial vibration and ultrasonic transformer, is obtained. The results verify the correctness of the derivation results.
     (5) Analyzing the displacement amplitude curve of the axial vibration of ultrasonic horn and work piece, before and after installation, the position of nodes and lines are compared. The relationships between ultrasonic horn and work piece on displacement amplitude are obtained.
     (6) In this paper, the influence of work piece on resonant frequency in ultrasonic assisted gear-honing is studied, and some conclusions are obtained. However, it still needs to be improved in the simplification of transformers and so on.
引文
[1]Lv M., Ma H.M., Xu Z.L.. Study on New Manufacturing Process of Gear-Honing-Tool Used for Hardened Gear[J]. Key Engineering Materials, Vols.259-260(2004):10-13.
    [2]《圆柱齿轮加工》编写组.圆柱齿轮加工[M].上海:上海科学技术出版社,1979,11:1-2.
    [3]徐德红.超声波平行轴珩齿工艺进行了基础性研究[D].太原:太原理工大学.2006.
    [4]Hsueh-Ming, Steve Wang. Analysis of the effect of process parameters on material removal rate in ultrasonic machining[M]. Ph.D.thesis in Ind.&Manu.Sys.Eng.of U.of Lehigh,1998.
    [5]岳军,刘混举.工程陶瓷的旋转超声加工方法[J].电子工艺技术,2008,29(1):49-52.
    [6]张云电.超声加工及其应用[M].北京:国防工业出版社,1995:1-2.
    [7]李祥林,薛万夫等.振动切削及其在机械加工中的应用[M].北京:北京科学技术出版社,1985.
    [8]J.A.Gallego-Juarez, G.Rodriguez-Corral, E.Riera-Franco de Sarabia, C. Campos-Pozuelo, F.Vazquez-Martinez, V.M.Acosta Aparicio. Recent developmentsin vibrating-plate macrosonic transducers[J]. Ultrasonics.2002, 40:889-893.
    [9]J.A.Gallego-Juarez, G.Rodriguez-Corral, E.Riera-Franco de Sarabia, C. Campos-Pozuelo, F. Vazquez-Martinez, V.M. Acosta Aparicio. A macrosonic system for industrial processing[J]. Ultrasonics,2000,38:331-336.
    [10]姜大志,孙俊兰.振动切削技术与零件加工表面完整性[J].工具技术.2001,35(5):19-22.
    [11]陈日耀.金属切削原理[M].北京:机械工业出版社,1985.
    [12]P.N.T. Wells, Njong, N.Bom EN.T.Wells, N.Jong, N.Bom. Transducers in medical ultrasound. Ultrasounds,1986,24(4):230-232.
    [13]段忠福.超声波振动辅助车削加工机理分析[D].上海:上海交通大学,2010.
    [14]林仲茂.超声变幅杆的原理和设计[M].北京:科学出版社,1987.
    [15]江甫炎.近代齿轮制造工艺学[M].北京:航空工业出版社,1994.
    [16]宋永刚.激光钎焊镀膜CBN珩轮数值模拟与实验研究[D].太原:太原理工大学,2009.
    [17]黄天铭,梁锡昌.齿轮加工技术的现状及进展[J].机械工艺师,1994,4:29-31.
    [18]L.Ma, M.Lv, G.X.Liang. The Analysis for Materials Removal Mechanism of Ultrasonic Auxiliary Gear Honing[A]. Shengqiang Yang. Surface Finishing Technology and Surface Engineering [C]. Zuerich:Trans Tech Publications Ltd, 2008.179-184.
    [19]Ma Lin, Zhang Ruiliang, Lv Ming. The Study of Supersonic Hard-tooth-flank GearHoning Mechanism[A]. T. D. Wen.6TH INTERNATIONAL SYMPOSIUM ON TEST AND MEASUREMENT CONFERENCE PROCEEDINGS[C]. Beijing: International Academic Publishers/Beijing World Publishing Corporation2005.9149-9151.
    [20]梁国星,徐灵岩,张宇.超声波珩齿加工机理的研究[J].应用技术,2007,4:71-74.
    [21]马麟,吕明,梁国星等.超声振动辅助珩齿装置的结构设计与振动状态分析[EB/OL]. http://www.paper.edu.cn/index.php/default/releasepaper/content/200811-41, 2008-11-03/2010-01-05.
    [22]吕明,马麟,梁国星.超声振动辅助珩齿装置的谐振频率测量[EB/OL]http://www.paper.edu.cn/index.php/default/releasepaper/content/200811-825, 2008-11-27/2010-01-05.
    [23]王时英,吕明,轧刚.非谐环盘及变幅杆组成的变幅器动力学特性研究[J].声学学报,2008,33(5):462-468.
    [24]王时英,吕明,轧刚.超声珩齿指数型变幅器的动力学特性[J].机械工程学报,2007,6(43):190-193.
    [25]王时英,吕明,轧刚.圆锥过渡复合变幅杆动力学特性研究[J].太原理工大学学报,2007,38(2):95-97.
    [26]王时英,吕明,轧刚.弯曲振动圆盘变幅器的动力学特性研究[J].太原理工大学学报,2008,3(39):253-256.
    [27]赵莉,王时英,轧刚.超声加工中变幅杆的动力学分析[J].电加工与模具,2005,2:35-38.
    [28]张振华.超声波珩齿传递系统的振动特性及结构设计[D].太原:太原理工大学,2006.
    [29]李玉梅.超声波平行轴珩齿微观切削过程的研究及其接触变形分析[D].太原:太原理工大学,2006.
    [30]宫晓琴.超声波珩齿加工理论与实验的初步研究[D].太原:太原理工大学,2006.
    [31]高晓旭.超声辅助珩齿加工的理论分析与实验研究[D].太原:太原理工大学,2010.
    [32]庞明鑫.非接触式超声电能传递装置的设计理论及实验研究[D].太原:太原理工大学,2010.
    [33]张云电,喻家英,王纯.珩磨负载对超声珩磨振动系统谐振频率的影响[J].声学学报,1994,19(5):367-371.
    [34]万德安,刘春节.超声变幅杆的模态分析[J].机械与电子,2004,4:10-12.
    [35]季远,张德远.超声复合振动中“局部共振”现象实验研究[J].应用声学,2003,22(6):6-9.
    [36]蒋日鹏,李晓谦,刘荣光,胡仕成.超声振动系统fs和Qm的实测定及对比研究[J].压电与声光,2008,30(6):779-782.
    [37]冯冬菊,赵福令,徐占国,郭东明.超声波加工工具对复合变幅杆谐振性能的影响[J].大连理工大学学报,2004,44(5):685-688.
    [38]王捷,高洁.变幅杆共振频率与力抗负载关系数值分析[J].陕西师范大学学报(自然科学版),2005,33(4):33-35.
    [39]刘晋春,赵家齐,赵万生.特种加工第四版[M].北京:机械工业出版社,2005.
    [40]邢兵锁.超声波清洗技术在陶瓷过滤机中的应用[J].矿山机械,2007,34(1):148-149.
    [41]何祚镛,赵玉芳.声学理论基础[M].北京:国防工业出版社,1981.
    [42]曹志远.板壳振动理论[M].北京:中国铁道出版社,1989.
    [43]邓凡平.ANSYS 10.0有限元分析从入门到精通[M].北京:中国邮电出版社,2007.
    [44]康国政等.大型有限元程序的原理、结构与使用[M].西安:西安交通大学出版社,2004.
    [45]高旭,曾国英,李婷婷.基于ANSYS的螺纹连接法兰结构模态分析fJ].信号与系统,2009,6:33-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700