用户名: 密码: 验证码:
声动力疗法诱导S180腹水瘤细胞凋亡的信号转导通路及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2008年末,世界卫生组织发布报告称,2010年癌症将超越心脏病成为危害人类健康的头号杀手,而到2030年,全球可能将有2700万人罹患癌症,其中1700万人将死亡。基于这一严峻形势,科学家们日以继夜地探索新的抗癌方法,以期能够找到更多治疗癌症的有效途径。目前临床上常用的癌症治疗方法有外科手术、化疗、放疗等,对多种恶性肿瘤起到一定治愈作用。但这些方法都有自身的不足之处,甚至有较强的副作用,特别是对于深层组织肿瘤的治疗常常效果不佳。
     随着研究不断深入,学者们发现多因素综合治疗能够有效杀死肿瘤细胞。1989年,Yumita和Umemura等发现超声能够激活血卟啉产生抗癌作用,并将这一现象定义为声动力疗法(Sonodynamic Therapy,SDT)。超声能够穿透深层组织并聚焦于特定区域来激活肿瘤组织富集并长时间潴留的声敏药物,显著增强定位区域药物的细胞毒作用,而对周围正常组织的损伤降到最小,在非侵入性治疗深层组织肿瘤方面具有独特的优势。血卟啉在正常人体中为线粒体酶系催化乙酸和甘氨酸合成血红素的中间产物,在肿瘤组织中选择性聚积并能够长时间潴留。血卟啉的这一特性使声动力疗法的靶向性和针对性大大增加,且肿瘤细胞对血卟啉不产生耐受性,可接受多次声动力处理。因此,声动力疗法是一种十分有应用前景的抗癌方法。自声动力疗法提出至今,超声和各种声敏剂的协同杀伤效应已在多种细胞系中得到证实,并有学者初步开展了临床试验。但目前在国内外已报道的研究中,还没有人对声动力诱导细胞凋亡进行较系统的研究,声动力疗法产生细胞毒作用的确切化学机制和细胞学机制目前仍无定论。
     本研究应用频率为1.75 MHz、强度ISATA为1.4 W的超声,采用流式细胞仪、激光共聚焦显微镜、免疫印迹、单细胞凝胶电泳、反转录-聚合酶链式反应以及DNA测序等技术,研究了超声结合血卟啉处理腹水型S180肿瘤细胞后,细胞膜受体和线粒体凋亡通路的激活;讨论了Bcl-2家族促凋亡蛋白Bax, Bid以及抑凋亡蛋白Bcl-2在凋亡中的作用;分析了p53肿瘤抑制蛋白在凋亡中的活化及其与S180、H-22、EAC肿瘤细胞声动力敏感性之间的关系;并探讨了超声和声动力诱导S180细胞凋亡的机制。目前得到研究结果如下:
     1.本研究证实单纯超声和超声结合血卟啉均可诱导S180细胞凋亡,但在相同声照参数下20μg/ml血卟啉能够显著增强超声的细胞毒作用,超声和血卟啉对S180细胞具有协同杀伤效应。
     2..实验发现膜受体-和线粒体-caspase凋亡通路在声动力处理后的S180细胞中活化。声动力处理后,膜受体通路中的FADD和caspase-8转定位至细胞膜并且caspase-8被剪切活化。同时线粒体膜通透性改变、外膜去极化,cytochrome-c由线粒体释放至胞质内,caspase-9被剪切。活化的caspase-8和-9进而剪切caspase-3,caspase-3进入细胞核将PARP剪切,促使细胞凋亡。另外,膜受体凋亡通路活化是由声动力处理直接引起,而不是线粒体凋亡通路信号放大的结果,也没有通过Bid蛋白将凋亡信号传导至线粒体。
     3.声动力处理还可激活caspase非依赖模式的凋亡通路。AIF在声动力处理后由胞质转定位至核内,直接发挥促凋亡作用。
     4.本研究首次发现声动力处理能够激活凋亡相关蛋白表达。声动力处理后,死亡受体Fas的mRNA和蛋白表达上调;Bcl-2家族抑凋亡蛋白Bcl-2的mRNA和蛋白表达下调而促凋亡蛋白Bax转定位至线粒体,并且表达量上调,抑凋亡蛋白和促凋亡蛋白之间的平衡被打破,确保凋亡进行。
     5.在研究中首次发现肿瘤抑制蛋白p53在声动力诱导S180和H-22细胞凋亡中活化,通过转定位至线粒体开启转录非依赖模式和激活下游靶基因PUMA、Bax和Fas表达的转录依赖模式加速凋亡过程。而在EAC细胞中没有发现p53的转定位以及p53及其下游靶蛋白的活化。
     6.首次提出细胞的声动力敏感性与p53蛋白的活化相关,而与p53基因的状态无直接关系。S180细胞对声动力损伤的敏感性最高,p53最先活化,表达量上调并转定位至线粒体促进凋亡发生,同时激活下游靶基因PUMA、Bax和Fas的表达。H-22细胞的敏感性次之,其p53在声动力处理后表达量上调,并激活其下游多个蛋白,一段时间后p53转至线粒体。而EAC对声动力损伤敏感性最弱,其p53蛋白没有明显的表达量变化和转定位现象发生,其下游蛋白表达也没有显著改变。经p53基因测序,三种细胞株p53基因均为野生型,没有发现碱基缺失和突变,因此细胞的声敏性与p53基因的状态可能无直接关系。
     7.对声动力疗法和单纯超声诱导细胞凋亡机制的研究指出,声动力诱导S180细胞凋亡中存在多种可诱导凋亡途径同时发挥作用。声动力处理后,富集于线粒体的血卟啉被激活产生大量单线态氧,导致线粒体内膜通透性增加,外膜去极化,使线粒体内的促凋亡蛋白释放,启动caspase级联反应介导凋亡;另外,实验发现细胞膜也是损伤位点之一,caspase-8被活化启动下游死亡程序。本实验首次发现NF-κB在超声诱导S180细胞凋亡中起重要的调节作用。超声诱导S180细胞凋亡时,NF-κB快速活化,mRNA水平迅速升高,蛋白表达上调,并从胞质转定位至细胞核,而活性氧在这一过程中没有明显作用。
     本研究首次系统的对声动力疗法诱导肿瘤细胞凋亡进行分析探讨,在细胞和分子水平初步阐明凋亡信号转导过程,为声动力学抗癌理论的形成和发展,及临床治疗、仪器研制积累资料。
In 2008, World Health Organization reported that cancer will become the number one killer of human health in 2010. Even in 2030,27 million people may have cancer all over the world, and 17 million people will die for this disease. Therefore, scientists are exploring new anticancer therapy day after night in order to find out more effective ways. At present, clinical therapies in common use include surgical, chemotherapy and physiotherapy. These anticancer strategies can cure some kind of cancer, but their own shortages and side-effects restrict the application especially for cancer in deep.
     With the research carrying on, scholars find multifactor treatments can kill cancer cells in effect. In 1989, Yumita and Umemura discovered that ultrasound could activate hematoporphyrin to anticancer, and named this treatment as "Sonodynamic Therapy, SDT". Ultrasound can penetrate deep tissue and focus on certain area. This is a unique advantage when compared to electromagnetic modalities such as laser beams in the noninvasive treatment of nonsuperficial tumors in clinical treatment. Hematoporphyrin is a intermediate product in haemachrome synthesize in normal human body. It can selectively accumulate in tumor tissue and be reserved for a long time. SDT is a promising anticancer therapy with more pertinency and efficiency. Although the synergistic anticancer effect of ultrasound and sonosensitizers has been proved, and the clinical experiment has been carried out, there is little report about the SDT inducing apoptosis. The exact chemical and mechanism of ultrasonic cytotoxic effect is still unclear.
     In this research,1.75 MHz continuous-wave ultrasound was used to investigate that(1)whether death receptor-and mitochondria apoptosis signaling pathway are activated; (2) the regulation effect of Bcl-2 family members (Bax, Bid and Bcl-2) in SDT induced S180 cells apoptosis; (3) activation of tumor suppressor protein p53 and the relation between p53 and sonosensitivity of tumor cells;(4) the mechanism of ultrasound-and SDT-induced apoptosis. To analyze the protein and mRNA, flow cytometer, laser scanning confocal microscope, single cell gel electrophoresis, western blotting, RT-PCR and DNA sequencing were used. The results are as follow:
     (1) The ultrasound alone and SDT can induce S180 cells apoptosis at same condition, whereas 20μg/ml hematoporphyrin significantly enhances the cytotoxic effect of ultrasound. Ultrasound and hematoporphyrin have a synergistic antitumor effect.
     (2) The death receptor and mitochondria apoptosis signaling pathway are activated in SDT-induced S180 cells apoptosis. In this process, FADD and caspase-8 translocated from cytoplasm to plasma membrane, and caspase-8 was activated. At the same time, mitochondrial depolarization and permeabilization of the inner mitochondrial membrane were found. Cytochrome-c was released to cytoplasm to promote cleavage of caspase-9. Activated caspase-8 and-9 in turn cleave caspase-3, and PARP.The activation of death receptor signaling pathway was a direct consequence after SDT treatment but not a signaling magnification of mitochondria signaling pathway. The Bid which can transmit apoptosis signaling between death receptor and mitochondria signaling pathway did not be activated.
     (3)The SDT can also initiate caspase-independent pathway to mediate apoptosis. AIF was released and translocated to nuclear to promote apoptosis.
     (4) The SDT can regulate apoptosis-relative protein expression. After SDT treatment, the protein and mRNA level of Fas and Bax increased to promote apoptosis, whereas the level of apoptosis-inhibitor Bcl-2 declined.
     (5) In the SDT-induced S180 and H-22 cells apoptosis, tumor suppressor protein p53 expressed and translocated to mitochondria to accelerate apoptosis by transcription-dependent and transcription-independent way. The downstream protein PUMA,Bax and Fas were also activated. P53 was not involved in EAC cells apoptosis after SDT treatment.
     (6) There is a relationship between p53 protein activation and sonosensitivity of tumor cells. The S180 cells are the most sensitivity to SDT treatment. The level of p53 increased and p53 translocated to mitochondria. The sonosensitivity of H-22 cells was in the middle.After SDT treatment, p53 expressed, and translocated after a period of time. The p53 was not activated in the EAC cells, and the EAC cells were resistant to SDT treatment.
     (7) The mechanism of SDT-inducing apoptosis included multiform apoptosis pathway and death mode. After SDT, the death receptor and mitochondria apoptosis signaling pathway are activated, and initiate caspase cascade to mediate apoptosis. The nuclear factor NF-κB may play pivotal role in regulating ultrasound-induced apoptosis. When S180 cells underwent sonication,NF-κB expressed immediately and translocated to nuclear.
     In the present research, for the first time, we systemicly studied the apoptotic signaling pathway in SDT-induced tumor cell apoptosis and discussed the mechanism underline ultrasound-and SDT-induced apoptosis to provide a basis for explaining the synergistic effect of ultrasound and Hematoporphyrin and facilitate SDT application in clinical anticancer treatment.
引文
[1]F.P. Perera. Molecular epidemiology:On the path to prevention? J Natl Cancer Inst. 2000,92:602-612.
    [2]B.A. Ponder. Cancer genetics.Nature.2001,411(6835):336-341.
    [3]J. Peto.Cancer epidemiology in the last century and the next decade.Nature.2001, 411(6835):390-395.
    [4]A.G.Knudson. Cancer genetics.Am J Med Genet.2002,111(1):96-102.
    [5]H. Von Tappeiner, H. Jesionek. Therapeutische versuchemit fluoreszierenden stoffen. Munch Med Wochenschr.1903,47:2042-2044.
    [6]H. Von Tappeiner, A. Jodlbauer. Die sensibilisierende wirkung fluorescierender substanzen:gesammelte untersuchungen uber die photodynamische erscheinung. Leipzig. Germany:F.C.W. Vogel.1907:1-210.
    [7]T.J. Dougherty, G.B.Grindey, R. Fiel et al. Photoradiation therapy II:Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst.1975,55:115-121.
    [8]S.Umemura, N. Yumita, R. Nishigaki et al.Sonochemical activation of hematoporphyrin:A potential modality for cancer treatment. IEEE Ultrasonics Symosium.1989,9:955-960.
    [9]R.W. Wood, A.L. Loomis. The physical and biological effects of high frequency sound waves of great intensity. London:Edinburgh Dublin Philosophical Magazine J Sci.1927,4:417-36.
    [10]S.R. Young, M. Dyson. Effect of therapeutic ultrasound on the healing of full-thickness excised skin lesions.Ultrasonics.1990,28:175-80.
    [11]K.M. Quan, M. Shiran, D.J. Watmough. Applicators for generating ultrasound-induced hyperthermia in neoplastic tumours and for use in ultrasound physiotherapy. Phys Med Biol.1989,34:1719-31.
    [12]C.A. Speed. Therapeutic ultrasound in soft tissue lesions. Rheumatology. 2001,40:1331-1336.
    [13]S.B.Barnett, G. Kossoff. Safety of diagnostic ultrasound. Progress in obstetrics and gynecological sonography series. London:Parthenon Publishing Group.1998.
    [14]F.J. Fry. Precision high-intensity focusing ultrasonic machines for surgery. Am J Phys Med.1958,37:152-6.
    [15]Kloster-Banz. Symposium on safety of ultrasound in medicine.Conclusions and recommendations on thermal and non-thermal mechanisms for biological effects of ultrasound. WFUMB Germany:World Federation for Ultrasound in Medicine and Biology.1996:14-19.
    [16]M.F. Docker, F.A. Duck. The safe use of diagnostic ultrasound. London:British Institute of Radiology.1991.
    [17]J E KENNEDY, MBBS,MRCS et al.High intensity focused ultrasound:surgery of the future? The British Journal of Radiology.2003,76:590-599.
    [18]M.M. Horder, S.B.Barnett, G.J. Vella et al.Ultrasound-induced temperature increase in guinea-pig fetal brain in utero:third-trimester gestation. Ultrasound Med Biol.1998,24:1501-10.
    [19]L. Josza, P. Kannus. Human tendons.Anatomy, physiology and pathology. Champaign, IL,1997.
    [20]马芳,李发琪,王智彪.超声空化效应的研究进展.临床超声医学杂志.2003,5(5):292-294.
    [21]J.Debus, J.Spoo, J.Jenne et al.Sonochemically induced radicals generated by pulsed high-energy ultrasound in vitro and in vivo.Ultrasound Med Biol.1999,25(2): 301-6.
    [22]P.E. Huber, J.Debus. Tumor cytotoxicity in vivo and radical formation in vitro depend on the shock wave-induced cavitation dose.Radiat Res.2001,156(3):301-9.
    [23]A.R. Williams. Production and transmission of ultrasound. Physiotherapy. 1987,73:113-6.
    [24]M. Dyson, J. Suckling.Stimulation of tissue repair by ultrasound:a survey of the mechanisms involved. Physiotherapy.1978,64:105-8.
    [25]D.F. Webster, W. Harvey, M. Dyson et al.The role of ultrasound-induced cavitation in the'in vitro'stimulation of collagen synthesis in human fibroblasts. Ultrasonics. 1980,18:33-7.
    [26]M. Dyson, D.A. Luke. Induction of mast cell degranulation in skin by ultrasound. IEEE Trans Ultrasonics Ferroelectrics Frequency Control.1986,UFFC-33:194.
    [27]D.F. Webster. The effect of ultrasound on wound healing. PhD thesis.London: University of London.1980.
    [28]N.N. Byl, A.L.McKenzie, J.M. West et al.Low dose ultrasound effect on wound healing:a controlled study with Yucatan pigs.Arch Phys Med Rehab.1992,73:656-64.
    [29]M. Dyson, D.A. Luke. Induction of mast cell degranulation in skin by ultrasound. IEEE Trans Ultrasonics Ferroelectrics Frequency Control.1986,UFFC-33:194.
    [30]A.A. Pilla, M. Figueiredo, P. Nasser et al.Non-invasive low intensity pulsed ultrasound:a potent accelerator of bone repair. Proceedings.New Orleans:Orthopaedics Research Society.1990.
    [31]S.R. Young, M. Dyson. Effect of therapeutic ultrasound on the healing of full-thickness excised skin lesions.Ultrasonics.1990,28:175-80.
    [32]D.Harpaz, X. Chen, C.W. Francis et al.Ultrasound enhancement of thrombolysis and reperfusion in vitro.J Am Coll Cardiol.1993,2:1507-11.
    [33]C.W.Francis, P.T. Onundarson, E.L. Cartensen et al.Enhancement of fibrinolysis by ultrasound. J Clin Invest.1992,90:2063-8.
    [34]S.R. Young, M. Dyson. The effect of therapeutic ultrasound on angiogenesis. Ultrasound Med Biol.1990,16:261-9.
    [35]N.N. Byl, A.L. McKenzie, T. Wong et al. Incisional wound healing:a controlled study of low and high dose ultrasound. J Orth Sports Phys Ther.1993,18:619-28.
    [36]V.H. Frankel, M. Nordin. Basic biomechanics of the skeletal system. Philadelphia: Lea& Febiger.1980,15-20.
    [37]L.B.Feril Jr.,T. Kondo.Biological effects of low intensity ultrasound:the mechanism involved, and its implications on therapy and on biosafety of ultrasound. Journal of Radiation Research.2004,45(4):479-489.
    [38]L.B.Feril Jr.,T. Kondo.Major factors involved in the inhibition of ultrasound-induced free radical production and cell killing by presonication incubation or by high cell density. Ultrasonics Sonochemistry.2005,12(5):353-357.
    [39]L.B.Feril Jr.,T. Kondo, Z.G..Cui et al.Apoptosis induced by the sonomechanical effects of low intensity pulsed ultrasound in a human leukemia cell line.Cancer Letters. 2005,221(2):145-152.
    [40]H. Honda, T. Kondo, Q.L. Zhao et al.Role of intracellular calcium ions and reactive oxygen species in apoptosis induced by ultrasound. Ultrasound in Medicine and Biology.2004,30(5):683-692.
    [41]K. Tachibana, L.B.Feril Jr.,Y. Ikeda-Dantsuji.Sonodynamic therapy. Ultrasonics. 2008,48(4):253-9.
    [42]H.Ando, L.B.Feril Jr.,T. Kondo et al.An echo-contrast agent, Levovist, lowers the ultrasound intensity required to induce apoptosis of human leukemia cells.Cancer Letters.2006,242:37-45.
    [43]L.B.Feril Jr.,T. Kondo, S.Umemura et al.Sound waves and antineoplastic drugs: the possibility of an enhanced combined anticancer therapy. Journal of Medical Ultrasonics.2002,29:173-187.
    [44]L.B.Feril Jr.,Y. Tsuda, T. Kondo et al.Ultrasound-induced killing of monocytic U937 cells enhanced by 2,20-azobis(2-amidinopropane) dihydrochloride. Cancer Science.2004,95(2):181-185.
    [45]L.B.Feril Jr.,T. Kondo,K. Takaya et al.Enhanced ultrasound-induced apoptosis and cell lysis by a hypotonic medium. International Journal of Radiation Biology. 2004,80(2):165-175.
    [46]K.T. Zondervan, L.R. Cardon. The complex interplay among factors that influence allelic association. Nature Reviews Genetics.2004,5(2):89-100.
    [47]C.M.Newman, A. Lawrie, A.F. Brisken et al.Ultrasound gene therapy:on the road from concept to reality. Echocardiography.2001,18(4):339-347.
    [48]W.J.Greenleaf, M.E. Bolander, G. Sarkar et al.Artificial cavitation nuclei significantly enhance acoustically induced cell transfection. Ultrasound in Medicine and Biology.1998,24(4):587-595.
    [49]S.Bao, B.D.Thrall, D.L. Miller. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound in Medicine and Biology. 1997,23(6):953-959.
    [50]B.E. Ward, S.L. Gersen, M.P. Carelli et al.Rapid prenatal diagnosis of chromosomal aneuploidies by fluorescence in situ hybridization:clinical experience with 4,500 specimens. American Journal of Human Genetics.1993,52(5):854-865.
    [51]K. Tachibana, S.Tachibana. Application of ultrasound energy as a new drug delivery system. Japanese Journal of Applied Physics.1999,38:3014-3019.
    [52]E.C.Unger, T. Porter, W. Culp et al.Therapeutic applications of lipid-coated microbubbles.Advanced Drug Delivery Reviews.2004,56(9):1291-1314.
    [53]L.B.Feril Jr.,R. Ogawa, H. Kobayashi et al. Ultrasound enhances liposome-mediated gene transfection. Ultrasonics Sonochemistry.2005,12(6):489-493.
    [54]S.Levi.The history of ultrasound in gynecology 1950-1980.Ultrasound Med Biol. 1997,23:481-552.
    [55]F. Wu, W.Z. Chen, J. Bai et al.Tumor vessel destruction resulting from high-intensity focused ultrasound in patients with solid malignancies. Ultrasound Med Biol.2002,28:535-42.
    [56]M.L. Noble, S.Vaezy, A. Keshavarzi et al.Spleen hemostasis using high-intensity ultrasound:survival and healing. J Trauma.2002,53:1115-20.
    [57]G.T. Clement. Perspectives in clinical uses of high-intensity focused ultrasound. Ultrasonics.2004,42:1087-93.
    [58]D.Marinac-Dabic, C.J. Krulewitch, R.M.Moore Jr. The safety of prenatal ultrasound exposure in human studies.Epidemiology.2002,13(3 Suppl):S 19-22.
    [59]L.L.Barr. Clinical concerns in the ultrasound exposure of the developing central nervous system. Ultrasound Med Biol.2001,27:889-92.
    [60]S.B.Barnett, D. Maulik. International Perinatal Doppler Society. Guidelines and recommendations for safe use of Doppler ultrasound in perinatal applications.J Matern Fetal Med.2001,10:75-84.
    [61]N. Gann. Ultrasound:current concepts. Clin Manage.1991,11:64-9.
    [62]M. Ziskin, T. McDiarmid, S.Michlovitz. Therapeutic ultrasound. Thermal agents in rehabilitation. Philadelphia:F. A. Davis.1990.
    [63]M. Dyson. Mechanisms involved in therapeutic ultrasound.Physiotherapy. 1987,73:116-20.
    [64]A.R. Williams.Production and transmission of ultrasound. Physiotherapy. 1987,73:113-6.
    [65]Martijn Triesscheijn, Paul Baas, Jan H. M. Schellens et al.Photodynamic therapy in oncology. Oncologist.2006,11:1034-1044.
    [66]Z.Luksiene. Photodynamic therapym:echanism of action and ways to improve the efficiency of treatment. Medicina (Kaunas).2003,39(12):1137-50.
    [67]李环.血卟啉及其衍生物(HPD)对癌症的诊治.药学通报,1984,19(1):45-48.
    [68]Q.Peng, J. Moan, J.M. Nesland et al. Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features afterphotodynamic therapy. Ultrastruct Pathol.1996,20(2):109-129.
    [69]W.J. Hagan, D.C.Barber, D.G.Whitter et al.Picket-fence piephrins as potentional phototherapeutic agents.Cancer Res.1988,48(5):1148-1152.
    [70]向洋.激光生物学.湖南:湖南科学技术出版社.1995.
    [71]I. Rosenthal, J.Z. Sostaric, P. Riesz. Sonodynamic therapy-a review of the synergistic effects of drugs and ultrasound. Ultrason Sonochem.2004,11(6):349-63.
    [72]D. Ethan. Sternberg, David Dolphin. Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron.1998,54:4151-4202.
    [73]田泽丹,许川山,全学模.声敏剂与光敏剂的研究进展.临床超声医学杂志,2008,10(1):39-42.
    [74]R.L. Lipson, E.J. Baldes, A.M. Olsen. The use of a derivative of hematoporphyrin in tumor detection. J Natl Cancer Inst.1961,26:1-11.
    [75]T.J. Dougherty, J.E. Kaufman, A. Goldfarb et al. Photoradiation therapy for the treatment of malignant tumors. Cancer Res.1978,38:2628-2635.
    [76]J.F. Kelly, M.E. Snell.Hematoporphyrin derivative:a possible aid in the diagnosis and therapy of carcinoma of the bladder. J Urol.1976,115:150-151.
    [77]M.M. Sharabasy, A.M.Waseef, M.M. Hafez et al. Porphyrin metabolism in some malignant diseases. Br J Cancer.1992,65:409-412.
    [78]D.X. Divaris, J.C.Kennedy, R.H.Pottier. Phototoxic damage to sebaceous glands and hair follicles of mice after systemic administration of 5-aminolevulinic acid correlates with localized protoporphyrin IX fluorescence. Am J Pathol. 1990,136:891-897.
    [79]I.P. van Geel, H. Oppelaar, Y.G.Oussoren et al.Photosensitizing efficacy of MTHPC-PDT compared to Photofrin-PDT in the RIF1 mouse tumour and normal skin. Int J Cancer.1995,60:388-394.
    [80]C.M. Yow, J.Y. Chen, N.K. Mak et al.Cellular uptake, subcellular localization and photodamaging effect of temoporfin (mTHPC) in nasopharyngeal carcinoma cells: comparison with hematoporphyrin derivative.Cancer Lett.2000,157:123-131.
    [81]Laurent Miccoli, Arnaud Beurdeley-Thomas, Gonzague De Pinieux et al. Light-induced photoactivation of hypericin affects the energy metabolism of human glioma cells by inhibiting hexokinase bound to mitochondria. Cancer Res. 1998,58:5777-86.
    [82]Nico Hendrickx, Cedric Volanti, Ugo Moens et al.Up-regulation of cyclooxygenase-2 and apoptosis resistance by p38 mAPK in hypericin-mediated photodynamic therapy of human cancer cells.J.Biol.Chem.2003,278:52231-39.
    [83]Chiyo Komori, Kyoji Okada, Koichi Kawamura et al. Sonodynamic effects of lomefloxacin derivatives conjugated with methoxy polyethylene glycol on sarcoma 180 cells.Anticancer Res.2009,29:243-248.
    [84]L. Zhang, Y.Guo, J. Wang et al.Assisted sonodynamic damage of bovine serum albumin by metronidazole under ultrasonic irradiation combined with photosensitive antitumor drug-Amsacrine.J Photochem Photobiol B.2010,98(1):61-8.
    [85]Katarzyna Milowska, Teresa Gabryelak. Synergistic effect of ultrasound and phthalocyanines on nucleated erythrocytes in vitro.Ultrasound in Medicine and Biology. 2005,31(12):1707-1712.
    [86]A.L. Chan, M. Juarez, R. Allen et al.Pharmacokinetics and clinical effects of mono-L-aspartyl chlorin e6 (NPe6) photodynamic therapy in adult patients with primary or secondary cancer of the skin and mucosal surfaces. Photodermatol Photoimmunol Photomed.2005,21:72-78.
    [87]M.J.Kaplan, R.G. Somers, R.H. Greenberg et al.Photodynamic therapy in the management of metastatic cutaneous adenocarcinomas:case reports from phase 1/2 studies using tin ethyl etiopurpurin (SnET2).J Surg Oncol.1998,67:121-125.
    [88]Q.Peng, J. Moan, J.M. Nesland. Correlation of subcellular and intratumoral photosensitizer localization with ultrastructural features after photodynamic therapy. Ultrastruct Pathol.1996,20:109-29.
    [89]B.W. Henderson, T.J.Dougherty. How does photodynamic therapy work? Photochem Photobiol.1992,55:145-57.
    [90]J.Moan, K. Berg. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol.1991,53:549-53.
    [91]C.Salet. Hematoporphyrin and hematoporphyrin-derivative photosensitization of mitochondria. Biochimie.1986;68:865-8.
    [92]R.S.Murant, S.L. Gibson, R. Hilf. Photosensitizing effects of Photofrin Ⅱ on the site-selected mitochondrial enzymes adenylate kinase and monoamine oxidase.Cancer Res.1987,47:4323-8.
    [93]S.M. Sharkey, B.C.Wilson, R. Moorehead et al.Mitochondrial alterations in photodynamic therapy-resistant cells. Cancer Res.1993,53:4994-9.
    [94]B.W. Henderson, D.A. Bellnier, W.R. Greco et al.An in vivo quantitative structure-activity relationship for a congeneric series of pyropheophorbide derivatives as photosensitizers for photodynamic therapy. Cancer Res.1997,57:4000-7.
    [95]T. Tsuchida, G.Zheng, R.K. Pandey et al.Correlation between site Ⅱ-specific human serum albumin (HSA) binding affinity and murine in vivo photosensitizing efficacy of some Photofrin components. Photochem Photobiol.1997,66:224-8.
    [96]K. Hachimine, H. Shibaguchi, M. Kuroki et al. Sonodynamic therapy of cancer using a novel porphyrin derivative, DCPH-P-Na(I), which is devoid of photosensitivity. Cancer Sci.2007,98(6):916-20.
    [97]G.H. Harrison, E.K. Balcer-Kubiczek, P.L. Gutierrez. In vitro mechanisms of chemopotentiation by tone-burst ultrasound. Ultrasound Med Biol.1996,22(3):355-62.
    [98]A.H. Saad, G.M. Hahn. Ultrasound-enhanced effects of adriamycin against murine tumors.Ultrasound Med Biol.1992,18(8):715-23.
    [99]T. Yu, Z. Wang, S.Jiang.Potentiation of cytotoxicity of adriamycin on human ovarian carcinoma cell line 3AO by low-level ultrasound. Ultrasonics. 2001,39(4):307-9.
    [100]T. Yu, K. Hu, J. Bai et al. Reversal of adriamycin resistance in ovarian carcinoma cell line by combination of verapamil and low-level ultrasound. Ultrason Sonochem. 2003,10(1):37-40.
    [101]K. Makino, M.M. Mossoba, P. Riesz. Formation of.OH and.H in aqueous solutions by ultrasound using clinical equipment. Radiat Res.1983,96(2):416-21.
    [102]T. Kondo, C.Murali Krishna, P. Riesz. Sonolysis, radiolysis, and hydrogen peroxide photolysis of pyrimidine derivatives in aqueous solutions:a spin-trapping study.Radiat Res.1988,116(1):56-73.
    [103]T. Kondo, C.M. Krishna, P. Riesz. Free radical generation by ultrasound in aqueous solutions of nucleic acid bases and nucleosides:an ESR and spin-trapping study. Int J Radiat Biol Relat Stud Phys Chem Med.1988,53(2):331-42.
    [104]P.R. Clarke, C.R. Hill. Physical and chemical aspects of ultrasonic disruption of cells.J Acoust Soc Am.1970,47(2):649-53.
    [105]D.L. Miller, R.M. Thomas, R.L. Buschbom. Comet assay reveals DNA strand breaks induced by ultrasonic cavitation in vitro.Ultrasound Med Biol. 1995,21(6):841-8.
    [106]D.L.Miller, R.M. Thomas, M.E. Frazier.Ultrasonic cavitation indirectly induces single strand breaks in DNA of viable cells in vitro by the action of residual hydrogen peroxide. Ultrasound Med Biol.1991,17(7):729-35.
    [107]V.Misik, P. Riesz. EPR characterization of free radical intermediates formed during ultrasound exposure of cell culture media. Free Radic Biol Med. 1999,26(7-8):936-43.
    [108]T. Kondo, J. Gamson, J.B.Mitchell et al.Free radical formation and cell lysis induced by ultrasound in the presence of different rare gases. Int J Radiat Biol. 1988,54(6):955-62.
    [109]P. Riesz, T. Kondo.Free radical formation induced by ultrasound and its biological implications. Free Radic Biol Med.1992,13(3):247-70.
    [110]A.F. Fuciarelli, E.C.Sisk, R.M. Thomas. Induction of base damage in DNA solutions by ultrasonic cavitation. Free Radic Biol Med.1995,18(2):231-8.
    [111]N. Yumita, S.Umemura, R. Nishigaki. Ultrasonically induced cell damage enhanced by photofrin Ⅱ:mechanism of sonodynamic activation. In Vivo. 2000,14(3):425-9.
    [112]S.Umemura, N. Yumita, R. Nishigaki. Enhancement of ultrasonically induced cell damage by a gallium-porphyrin complex, ATX-70.Jpn J Cancer Res.1993,84(5):582-8.
    [113]N.Yumita, R. Nishigaki, I. Sakata et al. Sonodynamically induced antitumor effect of 4-formyloximethylidene-3-hydroxy-2-vinyl-deuterio-porphynyl(IX)-6,7-dia spartic acid (ATX-S10).Jpn J Cancer Res.2000,91(2):255-60.
    [114]N. Yumita, I.Sakata, S.Nakajima et al.Ultrasonically induced cell damage and active oxygen generation by 4-formyloximeetylidene-3-hydroxyl-2-vinyl-deuterio-porphynyl(IX)-6-7-diaspartic acid:on the mechanism of sonodynamic activation. Biochim Biophys Acta.2003,1620(1-3):179-84.
    [115]K. Umemura, N. Yumita, R. Nishigaki et al.Sonodynamically induced antitumor effect of pheophorbide a. Cancer Lett.1996,102(1-2):151-7.
    [116]N. Yumita, M. Kaneuchi, Y.Okano et al.Sonodynamically induced cell damage with 4'-O-tetrahydropyranyladriamycin, THP. Anticancer Res.1999,19(1A):281-4.
    [117]S.Umemura, N. Yumita, Y.Okano et al. Sonodynamically-induced in vitro cell damage enhanced by adriamycin. Cancer Lett.1997,121(2):195-201.
    [118]S.Umemura, N. Yumita, K. Umemura et al.Sonodynamically induced effect of rose bengal on isolated sarcoma 180 cells. Cancer Chemother Pharmacol. 1999,43(5):389-93.
    [119]N. Yumita, K. Kawabata, K. Sasaki et al.Sonodynamic effect of erythrosin B on sarcoma 180 cells in vitro.Ultrason Sonochem.2002,9(5):259-65.
    [120]N. Sakusabe, K. Okada, K. Sato et al.Enhanced sonodynamic antitumor effect of ultrasound in the presence of nonsteroidal anti-inflammatory drugs. Jpn J Cancer Res. 1999,90(10):1146-51.
    [121]K. Okada, E. Itoi, N. Miyakoshi et al. Enhanced antitumor effect of ultrasound in the presence of piroxicam in a mouse air pouch model. Jpn J Cancer Res. 2002,93(2):216-22.
    [122]N. Miyoshi, V. Misik, M. Fukuda et al. Effect of gallium-porphyrin analogue ATX-70 on nitroxide formation from a cyclic secondary amine by ultrasound:on the mechanism of sonodynamic activation. Radiat Res.1995,143(2):194-202.
    [123]A.E.Worthington, J. Thompson, A.M. Rauth Mechanism of ultrasound enhanced porphyrin cytotoxicity. Part Ⅰ:A search for free radical effects. Ultrasound Med Biol. 1997,23(7):1095-105.
    [124]R.W.Redmond, J.N. Gamlin. A compilation of singlet oxygen yields from biologically relevant molecules.Photochem Photobiol.1999,70(4):391-475.
    [125]D.Kessel, R. Jeffers, J.B.Fowlkes et al.Porphyrin-induced enhancement of ultrasound cytotoxicity. Int J Radiat Biol.1994,66(2):221-8.
    [126]M.W. Miller, D.L. Miller, A.A. Brayman. A review of in vitro bioeffects of inertial ultrasonic cavitation from a mechanistic perspective. Ultrasound Med Biol. 1996,22(9):1131-54.
    [127]N.Miyoshi, V.Misik, P. Riesz. Sonodynamic toxicity of gallium-porphyrin analogue ATX-70 in human leukemia cells.Radiat Res.1997,148(1):43-7.
    [128]V.Misik, P.Riesz. Free radical intermediates in sonodynamic therapy. Ann N Y Acad Sci.2000,899:335-48.
    [129]N. Yumita, S.Umemura, N. Magario et al.Membrane lipid peroxidation as a mechanism of sonodynamically induced erythrocyte lysis. Int J Radiat Biol. 1996,69(3):397-404.
    [130]V.Misik, N. Miyoshi, P. Riesz. EPR spin trapping study of the decomposition of azo compounds in aqueous solutions by ultrasound:potential for use as sonodynamic sensitizers for cell killing. Free Radic Res.1996,25(1):13-22.
    [131]V.Misik, P. Riesz. Peroxyl radical formation in aqueous solutions of N,N-dimethylformamide, N-methylformamide, and dimethylsulfoxide by ultrasound: implications for sonosensitized cell killing. Free Radic Biol Med.1996,20(1):129-38.
    [132]L.B.Feril Jr.,Y.Tsuda, T. Kondo et al.Ultrasound-induced killing of monocytic U937 cells enhanced by 2,2'-azobis(2-amidinopropane) dihydrochloride.Cancer Sci. 2004,95(2):181-5.
    [133]P.R. Clarke, C.R. Hill.Physical and chemical aspects of ultrasonic disruption of cells. J Acoust Soc Am.1970,47(2):649-53.
    [134]M.W.Miller, A.E. Luque, L.F. Battaglia et al. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro:1. HIV macrocytosis (cell size). Ultrasound Med Biol.2003,29(1):77-91.
    [135]M.W. Miller, E.C.Everbach, W.M. Miller et al.Biological and environmental factors affecting ultrasound-induced hemolysis in vitro:2.Medium dissolved gas (pO2) content. Ultrasound Med Biol.2003,29(1):93-102.
    [136]M.W. Miller, L.F. Battaglia, S.Mazza. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro:medium tonicity. Ultrasound Med Biol. 2003,29(5):713-24.
    [137]M.W. Miller, W.M. Miller, LF Battaglia. Biological and environmental factors affecting ultrasound-induced hemolysis in vitro:3.Antioxidant (Trolox) inclusion. Ultrasound Med Biol.2003,29(1):103-12.
    [138]W.S.Chen, A.A. Brayman, T.J. Matula et al.The pulse length-dependence of inertial cavitation dose and hemolysis. Ultrasound Med Biol.2003,29(5):739-48.
    [139]N. Yumita, R. Nishigaki, K. Umemura et al.Hematoporphyrin as a sensitizer of cell-damaging effect of ultrasound. Jpn J Cancer Res.1989,80(3):219-22.
    [140]Xiao Bing Wang, Quan Hong Liu, Pan Wang et al.Study of cell killing effect on S180 by ultrasound activating protoporphyrin IX. Ultrasonics.2008,48:135-140.
    [141]X. Li, L. Xiao, P. Wang et al.Effect of ultrasound activating hematoporphyrin on the activities of antioxidative enzymes in mouse hepatoma 22.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi.2009,26(4):825-8,841.
    [142]D.Kessel, R. Jeffers, J.B.Fowlkes et al. Effects of sonodynamic and photodynamic treatment on cellular thiol levels.J Photochem Photobiol B. 1996,32(1-2):103-6.
    [143]T. Uchida,K. Tachibana,S.Hisano et al.Elimination of adult T cell leukemia cells by ultrasound in the presence of porfimer sodium. Anticancer Drugs.1997, 8(4):329-35.
    [144]N. Mi, Q. Liu, X. Wang et al. Induction of sonodynamic effect with protoporphyrin IX on isolate hepatoma-22 cells.Ultrasound Med Biol. 2009,35(4):680-6.
    [145]P. Wang, C.S.Xu, J. Xu et al.Hypocrellin B enhances ultrasound-induced cell death of nasopharyngeal carcinoma cells.Ultrasound Med Biol.2010,36(2):336-42.
    [146]X. Zhao, Q.Liu, W. Tang et al.Damage effects of protoporphyrin IX-sonodynamic therapy on the cytoskeletal F-actin of Ehrlich ascites carcinoma cells. Ultrason Sonochem.2009,16(1):50-6.
    [147]Xiaofang Wang, Dazhen Xiong, Jun Wang et al.Investigation on damage of DNA molecules under irradiation of low frequency ultrasound in the presence of hematoporphyrin-gallium (HP-Ga) complex. Ultrasonics Sonochemistry. 2008,15:761-767.
    [148]Quanhong Liu, Xiaoying Li, Lina Xiao et al. Sonodynamically induced antitumor effect of hematoporphyrin on Hepatoma 22.Ultrasonics Sonochemistry. 2008,15:943-948.
    [149]D. Huang, K. Okada, C.Komori.Ultrastructure of sarcoma 180 cells after ultrasound irradiation in the presence of sparfloxacin. Anticancer Res. 2004,24(3a):1553-9.
    [150]K. Tomankova, H. Kolarova, P. Kolar et al.Study of cytotoxic effect of photodynamically and sonodynamically activated sensitizers in vitro.Toxicol In Vitro. 2009,23(8):1465-71.
    [151]刘全宏,王攀,李萌等.声化学激活血卟啉诱导艾氏腹水肿瘤细胞凋亡.动物学报,2003,49(5):620-628.
    [152]Q.H. Liu, S.H. Sun, Y.P. Xiao et al. Study of cell killing and morphology on S180 by ultrasound activating hematoporphyrin derivatives. SCIENCE IN CHINA (Series C). 2003,46(3):253-262.
    [153]S.Dai, S.Hu, C. Wu. Apoptotic effect of sonodynamic therapy mediated by hematoporphyrin monomethyl ether on C6 glioma cells in vitro.Acta Neurochir (Wien). 2009.
    [154]N. Yumita, K. Sasaki, S.Umemura. Sonodynamically induced antitumor effect of gallium-porphyrin complex by focused ultrasound on experimental kidney tumor. Cancer Letters.1997,112:79-86.
    [155]N. Yumita, S.Umemura. Sonodynamic therapy with photofrin Ⅱ on AH130 solid tumor:Pharmacokinetics, tissue distribution and sonodynamic antitumoral efficacy of photofrin Ⅱ. Cancer Chemother Pharmacol.2003,51:174-178.
    [156]N.Yumita, N. Okuyama, K. Sasaki et al.Sonodynamic therapy on chemically induced mammary tumor:pharmacokinetics, tissue distribution and sonodynamically induced antitumor effect of porfimer sodium. Cancer Sci.2004,95(9):765-9.
    [157]N. Yumita, N. Okuyama, K. Sasaki et al. Sonodynamic therapy on chemically induced mammary tumor:pharmacokinetics, tissue distribution and sonodynamically induced antitumor effect of gallium-porphyrin complex ATX-70. Cancer Chemother Pharmacol.2007,11:891-897.
    [158]N. Yumita, S.Umemura. Sonodynamic antitumour effect of chloroaluminum phthalocyanine tetrasulfonate on murine solid tumour. J Pharm Pharmacol. 2004,56(1):85-90.
    [159]K. Sasaki, K. Kawabata, N. Yumita et al. Sonodynamic treatment of murine tumor through second-harmonic superimposition. Ultrasound Med Biol.2004,30(9):1233-38.
    [160]A.H. Barati, M. Mokhtari-Dizaji, H. Mozdarani et al. Effect of exposure parameters on cavitation induced by low-level dual-frequency ultrasound. Ultrason Sonochem.2007,23.
    [161]Q.Liu, X. Wang, P. Wang et al.Sonodynamic antitumor effect of protoporphyrin IX disodium salt on S180 solid tumor. Chemotherapy.2007,53(6):429-36.
    [162]Q.Liu, X. Wang, P. Wang et al. Comparison between sonodynamic effect with protoporphyrin IX and hematoporphyrin on sarcoma 180.Cancer Chemother Pharmacol. 2007,2.
    [163]M. Nonaka, M. Yamamoto, S.Yoshino.Sonodynamic therapy consisting of focused ultrasound and a photosensitizer causes a selective antitumor effect in a rat intracranial glioma model.Anticancer Research.2009,(29):3943-50.
    [164]伊兰茹,张春丽.超声血卟啉治疗肝癌的护理.武警医学院学报,2002,11(2):116.
    [165]Y. Yamashita, Y. Kai, T. Shirakusa. Clinical use of photodynamic therapy for patients with cancer. International Congress Series.2004,1274:169-174.
    [166]X.H. Wang, W.M. Zhang, Z.Y. Xu et al.Sonodynamic and photodynamic therapy in advanced breast carcinoma:A report of 3 cases.Integr Cancer Ther.2009,8:283-287.
    [167]Stephen M. Hahn, Mary E. Putt, James Metz et al.Photofrin uptake in the tumor and normal tissues of patients receiving intraperitoneal photodynamic therapy. Clinical Cancer Research.2006,12:5464-70.
    [168]K. Arakawa, K. Hagisawa, H. Kusano et al. Sonodynamic therapy decreased neointimal hyperplasia after stenting in the rabbit. Circulation.2002,105:149-151.
    [169]X. Ma, H. Pan, G.Wu et al. Ultrasound may be exploited for the treatment of microbial diseases.Med Hypotheses.2009,73(1):18-19.
    [170]Shin-Ichro Yoshino, Takeo Fukushima, Shuji Hayashi et al.Effects of focused ultrasound sonodynamic treatment on the rat blood-brain barrier. Anticancer Research. 2009,29:3889-95.
    [171]X. Ma, H. Pan, J. Yi.Combination sonodynamic therapy with immunoadjuvant may be a promising new modality for cancer treatment. Med Hypotheses. 2009,72(4):418-20.
    [172]Po-ki Ho, J. Christine, Hawkins.Mammalian initiator apoptotic caspases. FEBS Journal.2005,272:5436-53.
    [173]D.E.Bredesen, P. Mehlen, S.Rabizadeh. Apoptosis and dependence receptors:A molecular basis for cellular addiction. Physiol Rev.2004,84:411-430.
    [174]Irene M. Ghobrial, Thomas E. Witzig, Alex A. Adjei.Targeting apoptosis pathways in cancer therapy. CA Cancer J Clin.2005,55:178-194.
    [175]Jerry M. Adams.Ways of dying:multiple pathways to apoptosis.Genes & Dev. 2003,17:2481-95.
    [176]Kyoung Joon Oh, Scott Barbuto, Natalie Meyer et al. Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. The Journal of Biological Chemistry.2005,280(1):753-67.
    [177]N. Ahmad, S.Gupta, D.K. Feyes et al.Involvement of Fas (APO-1/CD-95) during photodynamic-therapy-mediated apoptosis in human epidermoid carcinoma A431 cells.J. Invest. Dermatol.2000,115:1041-46.
    [178]S.M.Ali, S.K. Chee, G.Y. Yuen et al.Photodynamic therapy induced Fas-mediated apoptosis in human carcinoma cells.Int J Mol Med.2002,9:257-70.
    [179]K.H. Tan, W. Hunziker. Compartmentalization of Fas and Fas ligand may prevent auto-or paracrine apoptosis in epithelial cells. Exp Cell Res.2003,284:283-90.
    [180]A. Hajri, S.Coffy, F.Vallat et al. Human pancreatic carcinoma cells are sensitive to photodynamic therapy in vitro and in vivo.Br. J. Surg.1999,86:899-906.
    [181]S.Zhuang, J.T. Demirs, I.E. Kochevar. P38 mitogen-activated protein kinase mediates Bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide.J. Biol.Chem. 2000,275:25939-48.
    [182]S. Zhuang, M.C.Lynch, I.E. Kochevar. Caspase-8 mediates caspase-3 activation and cytochrome c release during singlet oxygen-induced apoptosis of HL-60 cells.Exp. Cell Res.1999,250:203-12.
    [183]H. Takahashi, Y. Itoh, Y.Miyauchi et al.Activation of two caspase cascades, caspase 8/3/6 and caspase 9/3/6, during photodynamic therapy using a novel photosensitizer, ATX-S10(Na), in normal human keratinocytes. Arch. Dermatol. Res. 2003,295:242-48.
    [184]N. Ahmad, S.Gupta, D.K. Feyes et al.Involvement of Fas (APO-1/CD-95) during photodynamic-therapy-mediated apoptosis in human epidermoid carcinoma A431 cells. J. Invest. Dermatol.2000,115:1041-46.
    [185]Debabrata Mandal, Arindam Mazumder, Pradeep Das et al.Fas-,caspase 8-,and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in Human Erythrocytes. The journal of Biological Chemistry.2005,280(47):39460-67
    [186]S.M. Ali, S.K. Chee, G.Y. Yuen et al.Hypericin induced death receptor-mediated apoptosis in photoactivated tumor cells.Int. J.Mol. Med.2002,9:601-616.
    [187]D.J. Granville, H.Jiang, B.M. McManus et al.Fas ligand and TRAIL augment the effect of photodynamic therapy on the induction of apoptosis in JURKA T cells. Int. Immunopharmacol.2001,1:1831-40.
    [188]J.Y. Matroule, C.M. Carthy, D.J. Granville et al. Mechanism of colon cancer cell apoptosis mediated by pyropheophorbide-A methylester photosensitization. Oncogene. 2001,20:4070-84.
    [189]D.J.Granville, C.M.Carthy,H. Jiang et al. Rapid cytochrome c release, activation of caspases 3,6,7 and 8 followed by Bap31 cleavage in HeLa cells treated with photodynamic therapy. FEBS Lett.1998,437:5-10.
    [190]A. Vantieghem, Z. Assefa, P.Vandenabeele et al.Hypericin-induced photosensitization of HeLa cells leads to apoptosis or necrosis.Involvement of cytochrome c and procaspase-3 activation in the mechanism of apoptosis. FEBS Lett. 1998,440:19-24.
    [191]A. Vantieghem, Y. Xu, W. Declercq et al. Different pathways mediate cytochrome c release after photodynamic therapy with hypericin. Photochem. Photobiol. 2001,74:133-142.
    [192]E.Gulbins, S.Dreschers, J.Bock. Role of mitochondria in apoptosis.Exp Physiol. 2003,88:85.
    [193]Paola Costantini, Etienne Jacotot, Didier Decaudin et al. Mitochondrion as a novel target of anticancer. Chemotherapy Journal of the National Cancer Institute. 2000,92(13):5.
    [194]Michael T. Crow, Kartik Mani, Young-Jae Nam et al. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ. Res.2004,95:957-70.
    [195]Michael R. Duchen. Mitochondria and calcium:from cell signalling to cell death. Journal of Physiology.2000,529(1):57-68.
    [196]McDonnell, J. Stanley, Atan Gross et al. BCL-2 family members and the mitochondria in apoptosis.Genes & Dev.1999,13:1899-1911.
    [197]Joslyn K. Brunelle, Anthony Letai. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell Sci.2009,122:437-41.
    [198]Asa B.Gustafsson, Roberta A. Gottlieb.Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol.2007,292:45-51.
    [199]John C.Reed. Bcl-2-family proteins and hematologic malignancies:history and future prospects. Blood.2008,111:3322-30.
    [200]J. Moan, K. Berg. The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen. Photochem Photobiol.1991,53:549-53.
    [201]T.J. Dougherty, C.J. Gomer, B.W.Henderson et al.Photodynamic therapy. J Natl Cancer Inst.1998,90:889-905.
    [202]Minh Lam, Nancy L. Oleinick, Anna-Liisa Nieminen. Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells.J.Biol.Chem. 2001,276:47379-386.
    [203]R.D. Almeida, B.J. Manadas, A.P. Carvalho et al.Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta.2004,1704(2):59-86.
    [204]P.Agostinis, E. Buytaert, H. Breyssens et al.Regulatory pathways in photodynamic therapy induced apoptosis.Photochem. Photobiol.Sci.2004,3:721-29.
    [205]R.D. Almeida, B.J. Manadas, A.P. Carvalho et al.Intracellular signaling mechanisms in photodynamic therapy. Biochim. Biophys. Acta.2004,1704:59-86.
    [206]A.C.Moor. Signaling pathways in cell death and survival after photodynamic therapy. J.Photochem. Photobiol.2000,57:1-13.
    [207]N.L. Oleinick, R.L.Morris, I. Belichenko et al. The role of apoptosis in response to photodynamic therapy:what, where, why, and how. Photochem. Photobiol.Sci. 2002,(1):1-21.
    [208]S.Ichinose, J. Usuda, T. Hirata et al. Lysosomal cathepsin initiates apoptosis, which is regulated by photodamage to Bcl-2 at mitochondria in photodynamic therapy using a novel photosensitizer, ATX-s10 (Na).Int. J. Oncol.2006,29:349-355.
    [209]V. Carre, C.Jayat, R. Granet et al.Chronology of the apoptotic events induced in the K562 cell line by photodynamic treatment with hematoporphyrin and monoglucosylporphyrin. Photochem Photobiol.1999,69(1):55-60.
    [210]M.E.Varnes, S.M. Chiu, L.Y. Xue et al. Photodynamic therapy-induced apoptosis in lymphoma cells:translocation of cytochrome-c causes inhibition of respiration as well as caspase activation. Biochem. Biophys.Res.1999,255:673-79.
    [211]D.Kessel, Y. Luo.Photodynamic therapy:a mitochondrial inducer of apoptosis. Cell Death Differ.1999,6:28-35.
    [212]M.Lam, N.L.Oleinick, A.L.Nieminen. Photodynamic therapy-induced apoptosis in epidermoid carcinoma cells.J. Biol.Chem.2001,276:47379-86.
    [213]J. He, M.L.Agarwal, H.E. Larkin et al.The induction of partial resistance to photodynamic therapy by the protooncogene BCL-2.Photochem. Photobiol. 1996,64:845-852.
    [214]D.J.Granville, H. Jiang, M.T. An et al.Bcl-2 overexpression blocks caspase activation and downstream apoptotic events instigated by photodynamic therapy. Br. J. Cancer.1999,79:95-100.
    [215]X.D. Wang. The expanding role of mitochondria in apoptosis.Genes & Dev. 2001,15:2922-33.
    [216]A. Vantieghem, Y. Xu, Z. Assefa et al.Phosphorylation of BCL-2 in G2/M phase arrested cells following photodynamic therapy with hypericin involves a CDK1-mediated signal and delays the onset of apoptosis.J. Biol.Chem. 2002,M204348200.
    [217]H.R. Kim, Y. Luo, G. Li et al.Enhanced apoptotic response to photodynamic therapy after Bcl-2 transfection. Cancer Res.1999,59:3429:32.
    [218]B.Antonsson, J.C.Martinou. The Bcl-2 protein family. Exp.Cell Res. 2000,256:50-57.
    [219]M.H. Harris, C.B.Thompson. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ.2000,7:1182-91.
    [220]S.Cory,J.M. Adams.The Bcl-2 family:regulators of the cellular life or death switch. Nat. Rev. Cancer.2002,2:647-56.
    [221]M.Srivastava, N. Ahmad, S.Gupta et al.Involvement of Bcl-2 and Bax in photodynamic therapy-mediated apoptosis. Antisense Bcl-2 oligonucleotide sensitizes RIF1 cells to photodynamic therapy apoptosis. J. Biol.Chem.2001,276:15481-88.
    [222]L.Y. Xue, S.M. Chiu, A. Fiebiget al.Photodamage to multiple Bcl-xL isoforms by photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene. 2003,22:9197-204.
    [223]J. Usuda, S.M. Chiu, E.S.Murphy et al.Domain dependent photodamage to Bcl-2. A membrane anchorage region is needed to form the target of phthalocyanine photosensitization. J. Biol.Chem.2003,278:2021-29.
    [224]D.Kessel, M. Castelli.Evidence that bcl-2 is the target of three photosensitizers that induce a rapid apoptotic response. Photochem. Photobiol.2001,74:318-22.
    [225]D.Kessel, M. Castelli, J.J. Reiners Jr. Apoptotic response to photodynamic therapy versus the Bcl-2 antagonist HA14-1.Photochem. Photobiol.2002,76:314-19.
    [226]L.Y. Xue,S.M. Chiu,N.L. Oleinick. Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene.2001,20:3420-27.
    [227]Hagit Ashush, Leon A. Rozenszajn, Michal Blass et al.Apoptosis induction of human myeloid leukemic cells by ultrasound exposure. Cancer Res.2000,60:1014-20.
    [228]L.Lagneaux, E..C de Meulenaer, A. Delforge et al. Ultrasonic low-energy treatment:a novel approach to induce apoptosis in human leukemic cells.Exp.Hematol. 2002,30:1293-301.
    [229]H. Honda, Q.L. Zhao, T. Kondo et al.Effects of dissolved gases and an echo contrast agent on apoptosis induced by ultrasound and its mechanism via the mitochondria-caspase pathway. Ultrasound Med. Biol.2002,28:673-82.
    [230]F. Firestein, L.A. Rozenszajn, L. Shemesh-Darvish et al.Induction of apoptosis by ultrasound application in human malignant lymphoid cells:role of mitochondria-caspase pathway activation. Ann N Y Acad Sci.2003,1010:163-66.
    [231]G.X. Ren, W. Guo, D.X. Ye et al. A study on the mechanism of inducing apoptosis of Tca8113 cells by means of ultrasound hyperthermia. Shanghai Kou Qiang Yi Xue. 2006,15(5):507-11.
    [232]Z.M. Tian, M.X.Wan, M.Z. Lu et al.The alteration of protein profile of Walker 256 carinosarcoma cells during the apoptotic process induced by ultrasound. Ultrasound Med Biol.2005,31(1):121-28.
    [233]M.K. inoshita, Y.Eguchi, K.H. ynynen et al. Activation of Bak in ultrasound-induced, JNK-and p38-independent apoptosis and its inhibition by Bcl-2. Biochem Biophys Res Commun.2007,353(2):515-21.
    [234]J. KoL, C.Prives.P53:puzzle and paradigm. Genes & Dev.1996,10:1054-72.
    [235]C.J. Sherr. Tumor surveillance via the ARF-p53 pathway. Genes & Dev. 1998,12:2984-91.
    [236]A.J.Giaccia, M.B.Kastan. The complexity of p53modulation:emerging patterns from divergent signals. Genes & Dev.1998,12:2973-83.
    [237]C.Asker, K.G.Wiman, G.Selivanova. P53-induced apoptosis as a safeguard against cancer. Biochem Biophys Res Commun.1999,265:1-6.
    [238]Susan Haupt, Michael Berger, Zehavit Goldberg et al.Apoptosis-the p53 network. Journal of Cell Science.2003,116:4077-85.
    [239]Emily A. Bassett, Wenge Wang, Farzan Rastinejad et al. Structural and functional basis for therapeutic modulation of p53 signaling. Clin Cancer Res.2008,14(20):15.
    [240]N. D. Marchenko, A. Zaika, U. M. Moll.Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 2000,275:16202-12.
    [241]M. Mihara, S.Erster, A. Zaika et al.P53 has a direct apoptogenic role at the mitochondria. Mol.Cell.2003,11:577-90.
    [242]Y.Haupt, S.Rowan, E.Shaulian et al.Induction of apoptosis in HeLa cells by trans-activation-deficient p53.Genes & Dev.1995,9:2170-83.
    [243]M. Barberi-Heyob, P.O. Vedrine, J.L. Merlin et al.Wild-type p53 gene transfer into mutated p53 HT29 cells improves sensitivity to photodynamic therapy via induction of apoptosis. Int J Oncol.2004,24(4):951-8.
    [244]A.M. Fisher, N. Rucker, S.Wong et al. Differential photosensitivity in wildtype and mutant p53 human colon carcinoma cell lines. J. Photochem. Photobiol. B.Biol. 1998,42(2):104-07.
    [245]A.M. Fisher, A. Ferrario, N.Rucker et al.Photodynamic therapy sensitivity is not altered in human tumor cells after abrogation of p53 function. Cancer Res. 1999,59(2):331-35.
    [246]J.E. Landers, S.L. Cassel, D.L. George et al.Translational enhancement of mdm2 oncogene expression in human tumor cells containing a stabilized wild-type p53 protein. Cancer Res.1997,57(16):3562-68.
    [247]X. Wang, Q.Liu, P. Wang et al. Comparisons among sensitivities of different tumor cells to focused ultrasound in vitro.Ultrasonics.2009,49(6-7):558-64.
    [248]C.Caelles, A. Helmberg, M. Karin. P53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature.1994,370:220-23.
    [249]C.M. Yow, C.K. Wong, Z. Huang et al.Study of the efficacy and mechanism of ALA-mediated photodynamic therapy on human hepatocellular carcinoma cell. Liver Int.2007,27(2):201-8.
    [250]M. Mitsunaga, A. Tsubota, K. Nariai et al.Early apoptosis and cell death induced by ATX-S10Na (Ⅱ)-mediated photodynamic therapy are Bax-and p53-dependent in human colon cancer cells.World J Gastroenterol.2007,13(5):692-98.
    [251]J. Zawacka-Pankau, J. Krachulec, I.Grulkowski. The p53-mediated cytotoxicity of photodynamic therapy of cancer:recent advances. Toxicol Appl Pharmacol. 2008,232(3):487-97.
    [252]X.Y.Shen, N. Zacal, G.Singh. Alterations in mitochondrial and apoptosis-regulating gene expression in photodynamic therapy-resistant variants of HT29 colon carcinoma cells.Photochem Photobiol.2005,81(2):306-13.
    [253]M.Muller, S.Wilder, D. Bannasch et al.P53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs.J.Exp. Med.1998,188:2033-45.
    [254]E.C.Thornborrow, S.Patel, A.E. Mastropietro et al. A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes.Oncogene.2002,21:990-99.
    [255]M.A. Sheard. Ionizing radiation as a response-enhancing agent for CD95-mediated apoptosis. Int J Cancer.2001,96(3):213-220.
    [256]M. Schuler, D.R. Green. Mechanisms of p53-dependent apoptosis.Bio chem Soc Trans.2001,29(5):684-688.
    [257]X. Wu, Y. Deng. Bax and BH3 domain only proteins in p53 mediated apoptosis. Front Bio Sci.2002,7(4):151-156.
    [258]Q.B.She, N. Chen, Z. Dong. Erks and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem.2000,275(25):20444-49.
    [259]X.Y. Shen, N. Zacal, G.Singh et al.Alterations in mitochondrial and apoptosis-regulating gene expression in photodynamic therapy-resistant variants of HT29 colon carcinoma cells. Photochem Photobiol.2005,81(2):306-13.
    [260]A.M. Fisher, K. Danenberg, D. Banerjee et al. Increased photosensitivity in HL60 cells expressing wild-type p53.Photochem Photobiol.1997,66(2):265-70.
    [261]H.B.Lee, A.S.Ho, S.H. Teo.P53 status does not affect photodynamic cell killing induced by hypericin. Cancer Chemother. Pharmacol.2006,58(1):91-98.
    [262]J.Victor. Thannickal, L. Barry. Fanburg. Reactive oxygen species in cell signaling Am J Physiol Lung Cell Mol Physiol.2000,279:1005.
    [263]I.A. Gamaley, I.V. Klyubin. Roles of reactive oxygen species:Signaling and regulation of cellular functions.Int Rev Cytol.1999,188:203-38.
    [264]H. Nakamura, K. Nakamura, J. Yodoi. Redox regulation of cellular activation. Annu Rev Immunol.1997,15:351-69.
    [265]S.Loukides, I. Horvath, T. Wodehouse et al. Elevated levels of expired breath hydrogen peroxide in bronchiectasis. Am.J. Respir. Crit. Care Med.1998,158:991-994.
    [266]P. N. Dekhuijzen, K. K. Aben, I. Dekker et al.Increased exhalation of hydrogen peroxide in patients with stable and unstable chronic obstructive pulmonary disease.Am. J. Respir. Crit. Care Med.1996,154:813-816.
    [267]S.Ghosh, M.J. May, E.B.Kopp.NF-kappa B and Rel proteins:Evolutionarily conserved mediators of immune responses.Annu. Rev. Immunol.1998,16:225-260.
    [268]M. Karin, Y. Ben-Neriah. Phosphorylation meets ubiquitination:The control of NF-[kappa]B activity. Annu. Rev. Immunol.2000,18:621-663.
    [269]J. El. Maalouf, J.C.Bera, L.Alberti.In vitro sonodynamic cytotoxicity in regulated cavitation conditions. Ultrasonics.2009,49(2):238-43.
    [270]Andre Tanel, Diana A. Averill-Bates.Inhibition of acrolein-induced apoptosis by the antioxidant N-acetylcysteine.J. Pharmacol.Exp. Ther.2007,321:73-83.
    [271]E. Buytaert, M. Dewaele, P. Agostinis.Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta. 2007,1776(1):86-107.
    [272]L.B.Feril Jr.,T. Kondo, Q.L.Zhao et al.Enhancement of ultrasound-induced apoptosis and cell lysis by echo-contrast agents. Ultrasound Med. Biol.2003,29:331-37.
    [273]Amir Abdollahi, Sophie Domhan, Juergen W. Jenne et al.Apoptosis signals in lymphoblasts induced by focused ultrasound. FASEB 2004,10,1096/fj.04-1601fje.
    [274]Fei Chen, Vince Castranova. Nuclear factor-kappa B,an unappreciated tumor suppressor. Cancer Res.2007,67:11093-98.
    [275]S.C.Hsu, M.A. Gavrilin, H.H. Lee.NF-kappa B dependent Fas ligand expression. Eur J Immunol.1999,29:2948-56.
    [276]K. Matsui, A. Fine, B.Zhu et al.Identification of two NF-kappa B sites in mouse CD95 ligand (Fas ligand) promoter:functional analysis in T cell hybridoma. J Immunol. 1998,161:3469-73.
    [277]E.C.LaCasse, S.Baird, R.G. Korneluk et al.The inhibitors of apoptosis (IAPs) and their emerging role in cancer. Oncogene.1998,17:3247-59.
    [278]J.C.Reed. Bcl-2 family proteins.Oncogene.1998,17:3225-36.
    [279]A.M. Dahl, C.Klein, P.G. Andres et al.Expression of bcl-x(L) restores cell survival, but not proliferation off effector differentiation, in CD28-deficient T lymphocytes.J Exp Med.2000,191:2031-38.
    [280]B.Levkau, M. Scatena, C.M. Giachelli et al.Apoptosis overrides survival signals through a caspase-mediated dominantnegative NF-kB loop.Nat Cell Biol. 1999,1:227-33.
    [281]M.Barkett, D.Xue, H.R. Horvitz et al. Phosphorylation of IkB-inhibits its cleavage by caspase CPP32 in vitro. J Biol Chem.1997,272:29419-22.
    [282]J.Y. Reuther, A.S.Baldwin Jr. Apoptosis:promotes a caspase-induced amino-terminal truncation of IkB that functions as a stable inhibitor of NF-kB.J Biol Chem.1999,274:20664-70.
    [283]D.H. Lee, K.S.Cho, S.G.Park et al.Cellular death mediated by nuclear factor kappa B (NF-kappaB) translocation in cultured human lens epithelial cells after ultraviolet-B irradiation. J Cataract Refract Surg.2005,31(3):614-19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700