用户名: 密码: 验证码:
Skip参与经典Wnt信号通路的分子机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经典Wnt信号通路是一条非常保守的信号转导途径,在许多生理过程中都发挥着重要作用,因此,对经典Wnt信号通路的充分了解认识是非常必需的。在从非洲爪蟾胚胎cDNA文库中筛选能够影响经典Wnt信号的基因时,我们发现Skip(ski interacting protein)蛋白的C端缺失型(SkipΔC)能够很好地与经典Wnt信号特异的转录激活调控因子β-catenin协作,激活Wnt信号;而过量表达的野生型Skip却对β-catenin信号起抑制作用。对于Skip参与经典Wnt信号通路这一现象,本课题对其作用机制进行了初步的研究。我们使用免疫共沉淀的方法检测到SkipΔC能够与β-catenin相互作用并能稳定β-catenin蛋白,而全长的Skip与β-catenin之间没有相互作用存在。同时,我们也检测到Skip及SkipΔC与LEF1(经典Wnt信号特异的转录调控因子)之间的相互作用。我们还发现Skip不影响β-catenin与LEF1的结合,排除了Skip蛋白过量表达抑制β-catenin与LEF1的结合而起作用的可能性。利用RNA干扰技术,我们发现Skip对于经典Wnt信号通路的传递是必需的。在爪蟾胚胎中,我们发现SkipΔC能够一定程度上模拟经典Wnt信号抑制头部发育,而缺失Skip蛋白后的胚胎神经发育有严重缺陷,并且伴随着轻微的脊索发育缺陷。
Wnt signaling pathway is a conserved signaling pathway, playing very important roles in diverse physiological processes. Therefore, it is of great interesting for us to understand this pathway completely. In a functional screening of genes affecting Wnt signaling from a Xenopus embryonic cDNA library, we found that C terminal deleted Skip (ski interacting protein) can cooperate withβ-catenin, a specifical transcriptional activator, to active Wnt signaling, while overexpression of full-length Skip inhibitedβ-catenin induced Wnt signaling. In this study, we analysized the molecular mechanism of Skip in regulating Wnt signaling. Using Co-immunoprecipitation assay, we found that SkipΔC can interact withβ-catenin, and stabilizeβ-catenin in HEK293T cell. However, this interaction does not exist between full-length Skip andβ-catenin. Meanwhile, we also detected that both SkipΔC and Skip can interact with LEF1, the transcriptional factor of Wnt signaling pathway. Our results also indicated that Skip does not interfere with the interaction betweenβ-catenin and LEF1. Moreover, using RNAi we found that Skip is required for Wnt signaling pathway in culture cells. In Xenopus embryo, we found that SkipΔC, to some extend, can mimic the active of Wnt signal during anterio-posterior patternin, and the embryos without expressing Skip of which the develop of head is severely abnormal, frequently accompany with some defects in notochord.
引文
[1] Cadigan KM, Nusse R. Wnt Signaling: A Common Theme in Animal Development. (1997). Genes Dev. 11, 3286-3305
    [2] Logan CY, Nusse R. The Wnt Signaling Pathway in Development and Disease (2004). Annu. Rev. Cell Dev Biol. 20, 781-810
    [3] Huelsken J, Behrens J. The Wnt signaling pathway. (2002). J Cell Sci. 115, 3977-3978
    [4] Pandur P, Maurus D, Kühl M. Increasingly complex: new players enter the Wnt signaling network. (2002). BioEssays. 24, 881-884
    [5] Moon RT, Kohn AD, De Ferrari GV, et al. Wnt andβ-Catenin Signalling: Diseases and Therapies. (2004) Nat Rev Genet. 5:689-699
    [6] Akiyama T. Wnt/β-catenin signaling. Cytokine Growth Factor Rev. 11 (2000) 273-282
    [7] Reya T, Clevers H. Wnt signalling in stem cells and cancer. (2005) Nature vol 434.14.
    [8] Nusse R. Wnts and Hedgehogs: lipid-modified proteins and similarities in signaling mechanisms at the cell surface. Development 130, 5297-5305
    [9] Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. (2003) J Cell Sci 116, 2627-2634.
    [10] Liu C, Li Y, Semenov M, et al. Control of beta-catenin phosphorylation/ degradation by a dual-kinase mechanism. (2002) Cell.108:837–47.
    [11] Behrens J and Kühl M. Wnt Signal Transduction Pathways: An Overview. Wnt Signaling in Development, (2003) edited by Michael.
    [12] Tolwinski NS, Wieschaus E. Rethinking WNT signaling. (2004) Trends Genet. 20(4), 177-181.
    [13] He, X., Semenov, M., Tamai, K. et al. LDL receptor related proteins 5 and 6 in Wnt/β-catenin signaling: arrows point the way. (2004) Development 131, 1663–1677.
    [14] Wong HC, Bourdelas A, Krauss A, et al. Direct Binding of the PDZ Domain of Dishevelled to a Conserved Internal Sequence in the C-Terminal Region of Frizzled. (2003) Mol Cell, Vol. 12, 1251–1260.
    [15] Mao J, Wang J, Liu B, et al. Low-Density Lipoprotein Receptor-Related Protein-5 Binds to Axin and Regulates the Canonical Wnt Signaling Pathway. (2001) Mol Cell. Vol. 7, 801–809.
    [16] Yang J, Wu J, Tan C, Klein PS. PP2A:B56epsilon is required for Wnt/betacatenin signaling during embryonic development. (2003) Development. 130:5569–78
    [17] Liu X, Rubin JS, Kimmel AR, et al. Rapid, Wnt-Induced Changes in GSK3b Associationsthat Regulate b-Catenin Stabilization Are Mediated by Ga Proteins. (2005) Curr Biol, Vol. 15, 1989–1997.
    [18] Nelson WJ, Nusse R. Convergence of Wnt,β-Catenin and Cadherin Pathways. (2004) Science Vol 303 5.
    [19] Cavallo RA, Cox RT, Moline MM, et al.Drosophila Tcf and Groucho interact to repress Wingless signalling activity. (1998) Nature Vol 395.
    [20] Billin AN, Thirlwell H, Ayer DE, et al. b-Catenin–Histone Deacetylase Interactions Regulate the Transition of LEF1 from a Transcriptional Repressor to an Activator. (2000) Mol Cell Biol. p 6882–6890.
    [21] Hecht A, Vleminckx K, Stemmler MP, et al. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. (2000) EMBO J. 19:1839–50.
    [22] Barker N, Hurlstone A, Musisi H, et al. The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. (2001) EMBO J. 20, 4935–4943.
    [23] van Noort M, Clevers H. TCF Transcription Factors, Mediators of Wnt-Signaling in Development and Cancer. (2002) Dev Biol. 244, 1–8.
    [24] Kramps T, Peter O, Brunner E, et al. Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta catenin-TCF complex. (2002) Cell. 109:47–60.
    [25] Parker DS, Jemison J, Cadigan KM. Pygopus, a nuclear PHD-finger protein required forWingless signaling in Drosophila. (2002) Development. 129:2565–76.
    [26] Thompson B, Townsley F, Rosin-Arbesfeld R, et al. A new nuclear component of the Wnt signalling pathway. (2002) Nat. Cell Biol. 4:367–73
    [27] Tatyana Y. Belenkaya, Chun Han, Henrietta J, et al. pygopus encodes a nuclear protein essential for Wingless/Wnt signaling. (2002) Development 129, 4089-4101.
    [28] St?deli R, Hoffmans R, Basler K. Transcription under the Control Review of Nuclear Arm/b-Catenin. (2006) Curr Biol 16, R378–R385.
    [29] Hecht A, Kemler R. Curbing the nuclear activities ofβ-catenin. (2000) EMBO Rep, vol. 1, no.1, pp24-28.
    [30] Takemaru K, Yamaguchi S, Lee YS, et al. Chibby, a nuclear beta-catenin -associated antagonist of the Wnt/Wingless pathway. (2003) Nature.422:905–9.
    [31] Tago K, Nakamura T, Nishita M, et al. Inhibition of Wnt signaling by ICAT, a novel beta-catenin-interacting protein. (2000) Genes Dev. 14:1741–49.
    [32] Graham TA, Clements WK, Kimelman D, et al. The crystal structure of the beta catenin/ICAT complex reveals the inhibitory mechanism of ICAT. (2002) Mol. Cell. 10:563–71.
    [33] Sakamoto I, Kishida S, Fukui A, et al. A Novel b-Catenin- binding Protein Inhibits b-Catenin-dependent Tcf Activation and Axis Formation. J Biol Chem. Vol. 275, No. 42,(2000) Issue of October 20, 32871–32878.
    [34] Ishitani T, Ninomiya-Tsuji J, Nagai S, et al. The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. (1999) Nature. 399:798–802.
    [35] Kioussi C, Briata P, Baek SH, et al. Identification of a Wnt/Dvl/beta-Catenin- Pitx2 pathway mediating cell-type-specific proliferation during development. (2002) Cell.111:673–85.
    [36] Folk P, P?ta F, Skruzny M. Transcriptional coregulator SNW/SKIP: the concealed tie of dissimilar pathways. (2004) Cell. Mol. Life Sci. 61 629–640
    [37] Frasch M and Saumweber H. Two proteins from Drosophila nuclei are bound to chromatin and are detected in a series of puffs on polytene chromosomes. Chromosoma.(1989) 97(4):272-81.
    [38] Saumweber H, Frasch M and Korge G. Two puff-specific proteins bind within the 2.5 kb upstream region of the Drosophila melanogaster Sgs-4 gene. Chromosoma. 1990 Apr; 99(1):52-60.
    [39] Harris SD, Cheng J, Pugh TA, et al. Molecular analysis of Saccharomyces cerevisiae chromosome I. On the number of genes and the identification of essential genes using temperature-sensitive-lethal mutations. (1992) J Mol Biol. 225 (1): 53-65.
    [40] Albers M, Diment A, Muraru M, et al. Identification and characterization of Prp45p and Prp46p, essential pre-mRNA splicing factors. (2003) RNA, 9:138–150.
    [41] Folk P, P?ta F, KrpejsováL, et al. The homolog of chromatin binding protein Bx42 identified in Dictyostelium. (1996) Gene. 28.181(1-2):229-31.
    [42] Troy A. Baudino, Dennis M. Kraichely, Stephen C. Jefcoat, et al. Isolation and Characterization of a Novel Coactivator Protein, NCoA-62, Involved in Vitamin D- mediated Transcription. (1998) J Biol Chem. Vol. 273, No. 26, p 16434–16441.
    [43] Richard Dahl, Bushra Wani and Michael J Hayman. The Ski oncoprotein interacts with Skip, the human homolog of Drosophila Bx42. (1998) Oncogene 16.1579– 1586.
    [44] Marta Kostrouchova, Daniel Housa, Zdenek Kostrouch, et al. SKIP is an indispensable factor for Caenorhabditis elegans development. (2002) PNAS. vol. 99, no. 14.9254–9259.
    [45] Mintz P. J., Patterson S. D., Neuwald A. F., et al. Purification and biochemical characterization of interchromatin granule clusters. (1999) EMBO J. 18: 4308–4320.
    [46] Neubauer G., King A., Rappsilber J., et al. Mass spectrometry and EST-database searching allows characterization of the multi-protein spliceosome complex. (1998) Nat. Genet. 20: 46–50.
    [47] Jurica MS, Licklider LJ, Gygi SR, et al. Purification and characterization of native spliceosomes suitable for three-dimensional structural analysis. (2002) RNA. 8:426–439.
    [48] Skruzny M, AmbrozkováM, FukováI, et al. Cyclophilins of a novel subfamily interact withSNW/SKIP coregulator in Dictyostelium discoideum and Schizosaccharomyces pombe. (2001) Biochim Biophys Acta 1521.146- 151.
    [49] Figueroa JD, Hayman MJ. The human Ski-interacting protein functionally substitutes for the yeast PRP45 gene. (2004) Biochem Biophys Res Commun. 319 1105–1109
    [50] Xu C, Zhang J, Huang X, et al. Solution Structure of Human Peptidyl Prolyl Isomerase-like Protein 1 and Insights into Its Interaction with SKIP. (2006) J Biol Chem. Vol. 281, No. 23, p. 15900–15908.
    [51] AmbrozkováM, P?ta F, FukováI, et al. The Fission Yeast Ortholog of the Coregulator SKIP Interacts with the Small Subunit of U2AF. (2001) Biochem Biophys Res Commun. 284, 1148–1154.
    [52] Zhou S, Fujimuro M, Hsieh JJ, et al. A Role for SKIP in EBNA2 Activation of CBF1-Repressed Promoters. (2000) J Virol. p. 1939–1947.
    [53] Leong GM, Subramaniam N, Issa LL, et al. Ski-interacting protein, a bifunctional nuclear receptor coregulator that interacts with N-CoR/SMRT and p300. (2004) Biochem Biophys Res Commun. 315.1070–1076.
    [54] Nagai K, Yamaguchi T, Takami T, et al. SKIP modifies gene expression by affecting both transcription and splicing. (2004) Biochem Biophys Res Commun. 316.512–517.
    [55] Brès V, Gomes N, Pickle L, Jones KA, et al. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. (2005) Genes Dev. 19:1211–1226.
    [56] Leong GM, Subramaniam N, Figueroa J, et al. Ski-interacting Protein Interacts with Smad Proteins to Augment Transforming Growth Factor-b-dependent Transcription. (2001) J Biol Chem. Vol. 276, No. 21, p. 18243–18248.
    [57] Figueroa JD, Hayman MJ. Differential effects of the Ski-interacting protein (SKIP) on differentiation induced by transforming growth factor-h1 and bone morphogenetic protein-2 in C2C12 cells. (2004) Exp Cell Res. 296 163– 172
    [58] Zhou S, Fujimuro M, Hsieh JJ, et al. SKIP, a CBF1-Associated Protein, Interacts with the Ankyrin Repeat Domain of NotchIC To Facilitate NotchIC Function. (2000) Mol Cell Biol. p. 2400– 2410.
    [59] Negeri D, Eggert H, Gienapp R, et al. Inducible RNA interference uncovers the Drosophila protein Bx42 as an essential nuclear cofactor involved in Notch signal transduction. (2002) Mech Dev. 117 151–162.
    [60] Zhang C, Dowd DR, Staal A, et al. Nuclear Coactivator-62 kDa/Ski-interacting Protein Is a Nuclear Matrix-associated Coactivator That May Couple Vitamin D Receptor-mediated Transcription and RNA Splicing. (2003) J Biol Chem. Vol. 278, No. 37, p. 35325–35336.
    [61] Barry JB, Leong GM, Church WB, et al. Interactions of SKIP/NCoA-62, TFIIB, andRetinoid X Receptor with Vitamin D Receptor Helix H10 Residues. (2003) J Biol Chem. Vol. 278, No. 10. p. 8224–8228.
    [62] MacDonald PN, Dowd DR, Zhang C, et al. Emerging insights into the coactivator role of NCoA62/SKIP in Vitamin D-mediated transcription. (2004) J Steroid Biochem Mol Biol. 89–90 179–186.
    [63] Zhang C, Baudino TA, Dowd DR, et al. Ternary Complexes and Cooperative Interplay between NCoA-62/Ski-interacting Protein and Steroid Receptor Coactivators in Vitamin D Receptor-mediated Transcription. (2001) J Biol Chem. Vol. 276, No. 44. p. 40614–40620.
    [64] Kim YJ, Noguchi S, Hayashi YK, et al. The product of an oculopharyngeal muscular dystrophy gene, poly(A)-binding protein 2, interacts with SKIP and stimulates muscle-specific gene expression. (2001) Hum. Mol. Genet. 10: 1129– 1139.
    [65] Prathapam T, Kühne C, Banks L. The HPV-16 E7 oncoprotein binds Skip and suppresses its transcriptional activity. (2001) Oncogene 20, 7677– 7685.
    [66] Prathapam T, Kühne C, Banks L. Skip interacts with the retinoblastoma tumor suppressor and inhibits its transcriptional repression activity. (2002) Nucleic Acids Res. Vol. 30, No. 23 5261-5268.
    [67] Muller H. and Helin K. The E2F transcription factors: key regulators of cell proliferation. (2000) Biochim Biophys Acta. 1470: M1–M12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700