用户名: 密码: 验证码:
Wnt对Connexin43表达及其功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缝隙连接蛋白43(connexin43,Cx43)是连接蛋白家族的成员之一,在心脏发育中具有重要作用,其表达水平的异常增高和减低均会导致小鼠心脏畸形,并且这种畸形主要位于右室流出道区域,即Cx43缺陷可能是先天性心脏畸形(Congenital Malformation of Heart,CHM)的重要病因之一。
     研究表明Cx43可能通过影响细胞迁移产生作用,其缺陷引起心脏畸形的可能机制:神经嵴细胞异常及心肌细胞异常。
     Wnt家族参与了细胞增殖、分化、凋亡和细胞定位控制等过程。Wnt-frizzled信号转导通路是在无脊椎动物和脊椎动物的发育过程中的一条重要通路,对体轴、中枢神经系统以及肢体的成型过程尤为重要。在脊椎动物的心脏发育过程中,也发现了该信号转导途径的几个成员的表达。
     有学者提出,Wnt1(Wnt1家族成员)信号能够调节Cx43,这种信号转导路径可能涉及wnt1/β-catenin信号通路。Wnt1信号的变化可以改变Cx43,导致缝隙连接(Gap junction;GJ)通道构造的改变,直接或间接干扰GJ通道的活性;而对该家族中另一成员Wnt-3a的研究则鲜有报道。
     本研究拟在细胞水平初步探讨Wnt1家族另一成员Wnt-3a信号通路对Cx43的表达调控及相关细胞生物学行为的影响,从而为进一步研究其与在心脏发育中的作用奠定基础。
     我们首先构建Wnt-3a高表达和低表达的真核表达载体。在此基础上,分别以PC12和H9c2细胞进行研究。大鼠肾上腺嗜铬细胞瘤细胞(PC12)是最常用的神经生物和神经化学研究的细胞模型;同时建立大鼠心肌细胞系H9c2细胞模型,探讨转染后相应细胞模型中Cx43的表达变化及其意义。应用RT-PCR、Western blot、免疫细胞化学等方法研究其表达变化,并用Transwell小室实验对不同细胞模型迁移能力的变化进行检测。结果表明:与对照相比,Wnt-3a高表达模型中Cx43 mRNA和蛋白表达水平明显升高,与此相对应,细胞迁移率也高于对照组;两组低表达模型中,Cx43 mRNA和蛋白表达显著降低,细胞迁移率相应降低,表明Cx43表达的异常引发了细胞迁移率的改变。
     进一步检测Wnt通路对H9c2相应细胞模型Cx43的表达调控作用下相应细胞生物学行为的变化,通过激光共聚焦显微镜观察胞内钙离子浓度的改变,并用RT-PCR方法对心脏发育相关的两个基因GATA4、Nkx2.5的表达变化进行研究。结果表明:MTT以及流式细胞仪检测说明稳定转染Wnt-3a后细胞增殖率明显高于正常对照细胞,进入G2期的细胞增多,细胞增殖分裂能力增强;与对照相比,Wnt-3a高表达细胞模型中激光共聚焦结果揭示胞内钙离子浓度明显升高;两组低表达模型中,胞内钙离子浓度低于正常对照组。此外,在过表达Wnt-3a的H9c2细胞中,与心脏发育相关的GATA4、Nkx2.5基因的表达明显提高,而在低表达细胞中明显降低。
     作为Wnt信号通路中的重要分子,β-catenin在胞内的表达水平被认为与细胞的增殖和迁移密切相关。另外,在心肌细胞连接处缺乏β-catenin将导致心脏结构完整性的损害;且研究发现其与胞膜亦有联系,发挥一定的胞间连接功能。探讨β-catenin与Cx43的关系将有助于揭示Wnt-3a对Cx43调控及细胞迁移能力改变的分子机制。本文在H9c2细胞模型中,通过免疫共沉淀实验证实Cx43与β-catenin存在一定的相互作用。免疫荧光观察显示在Cx43高表达细胞中,β-catenin广泛分布于胞质、细胞核中,以及胞膜附近;而低表达Cx43细胞β-catenin表达量低,而且主要定位于胞膜附近。这一结果表明Cx43表达的改变可能涉及β-catenin的定位,多方面的协同作用共同影响了相应细胞的迁移。
     综上,本研究在体外证实了Wnt经典信号通路对Cx43的表达调控及由之引起的细胞生物学行为的改变,为将来可能的一些临床干预提供了理论依据。
Being a member of connexin family, Connexin43 plays a crucial role in cardiac development. Studies in mouse pointed out the abnormal expression of Cx43 could result in cardiac anomalies, mainly with right outflow tract. The impairment of Cx43 may be an important reason for Congenital Malformation of Heart.
     Cx43 may be one of the leading causes of cardiac anomalies. It has been suggestted that the abnormal migration of cells, including neural crest cells and cardiac myocytes, may contribute to these processes.
     The Wnt signaling pathways is though to be functionally conserved in vertebrates and invertebrates and plays an important role in cell proliferation, differentiation, organogenesis and oncogenesis. And several members of the Wnt-frizzled signal transduction pathways were found to be expressed during cardiac development in vertebrates.
     Wnt 1 of the Wnt 1 family member signaling has been shown to be an important modulator of Cx43-dependent intercellular coupling in the heart. The Wnt-1/β-catenin signaling pathway could change the expression of Cx43, which affected the structure and function of gap junctional intercellular communication. Few reports are concerned about Wnt-3a, which is another member of the family.
     To clarify the molecular mechanism that the expression of Cx43 may control the growth and several phenotypes of neural crest cells and cardiac myocytes by regulation of Wn-3at, and my be involved in the CHM, we designed in vitro experiments.
     In first part, we constructed high-expressed and low-expressed eukaryotic vector of Wnt-3a.Then we chose PC12 and H9c2 cells to take further research. Rat adrenal pheochromocytoma(PC12) cell line is a well established model for the nerve system research. Rat heart cell-line H9c2 cells were also good models. Then we detected the expression profile of Cx43 in cell models. The Reverse transcription-polymerase chain action (RT-PCR), Western blot and immunocytochemistry were performed, and the method of Transwell migration assay was taken in the experiments. The results indicated that mRNA and protein level of Cx43 were increased in the cells high expressed Wnt-3a.Ferthermore, The migration ability of those cells were also improved compared to the non-transfected cells As for the situation in the cells low expressed Wnt-3a group , mRNA,protein level of Cx43 and the migration ability were reduced in siWnt-3a-l and siWnt-3a-2. Thus, the dysfunction of Cx43 expression could induce the change for migration ability of those cells.
     Then we investigated the regulation of Wnt signaling pathway to Cx43 and severalphenotypes of Rat heart cell-line H9c2 cells. To investigate the change of the intracellular [Ca~(2+)], we examined it by LSCM with fluorescent dye Fluo-3/AM labeling cells, and [Ca~(2+)] changes were represented by fluorescent intensities. The expression levels of two genes related to cardiac development were also detected by RT-PCR. The results of MTT assay and FCM analysis indicated that more Wnt-3a~+-H9c2 cells enter into G2-phase and the proliferation rate of the cells increased significantly compared to the non-transfected cells..Ferthermore, The intracellular [Ca~(2+)] of those cells were also improved compared to the non-transfected cells As for the situation in the cells low expressed Wnt-3a group, intracellular [Ca~(2+)] were reduced in pSilencer/siWnt-3a-1 and pSilencer/siWnt-3a-2. The two genes (GATA4,Nkx2.5) related to cardiac development were even increased in the Wnt-3a~+-H9c2 cells, while those of siWnt-3a-1-H9c2 and siWnt-3a-2-H9c2 were all reduced compared to the control.
     Being the important part in Wnt signaling pathway, the expression ofβ-catenin took responsibility for the proliferation and migration of the cell. Furthermore, the lack ofβ-catenin in the intercellular junction of cardiac myocytes would result in the impairment of the whole structure in heart. It's reported that the relationship betweenβ-catenin and cytoplasmic membrane was so important that it was responsible for the intercellular junction. The relation ofβ-catenin and Cx43 could reveal the assumption that the regulation of Cx43 and the change of cell migration by Wnt-3a. In this paper we detected Cx43-β-catenin interaction by coimmunoprecipitaton, and observed the location of them both in Wnt-3a overexpressed and low expressed H9c2 cells by immunofluorescence analysis. The results showed that.β-catenin existed widely in cytoplasm, nuclera, even near the cytoplasmic membrane in Cx43 high expressed H9c2 cells. The expression of
     β-catenin were reduced greatly and located only near the cytoplasmic membrane in Cx43 low expressed H9c2 cells. There was direct interaction between them by coimmunoprecipitaton assay. All these indicated that the change of Cx43 may affect the location ofβ-catenin. Cooperation effect of several aspects changed the migration of the cell together.
     For all the above, this research work verified the regulation of Wnt-3a on Cx43 and the corresponding change of cell phenotypes. And thus offers potential opportunities for further therapeutic interventions.
引文
[1] Stains JP, Civitelli R. Gap junctions regulate extracellular signal-regulated kinase signaling to affect gene transcription [J]. Molecular Biology of the Cell, 2005, 16:64-72.
    [2] Gros DB, Jongsma HJ. Connexins in mammalian heart function [J]. BioEssays, 1996,18: 719-730.
    [3] Ozog MA, Bernier SM, Bates DC et al. The complex of ciliary neurotrophic factor-ciliary neurotrophic factor receptor α up-regulates connexin43 and intercellular coupling in astrocytes via the Janus. Tyrosine kinase/signal transducer and activator of transcription pathway. [J]. Molecular Biology of the Cell, 2004, 15: 4761-4774.
    [4] Reaume AG, de Sousa PA, Kulkarni S, et al. Cardiac malformation in neonatal mice lacking connexin43 [J]. Science, 1995, 267: 1831-1834.
    [5].Ewart JL, Cohen MF, Meyer RA, et al. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene [J]. Development, 1997, 124: 1281-1292.
    [6] Sullivan R, Huang GY, Meyer RA, et al. Heart malformations in transgenic mice exhibiting dominant negative inhibition of gap junctional communication in neural crest cells [J]. Dev Biol, 1998, 204: 224-234.
    [7] Danik SB. Liu F, Zhang J, et al. Modulation of cardiac gap junction expression and arrhythmic susceptibility [J]. Circulation Research, 2004, 12: 1035-1041.
    [8] Ya J, Erdtsieck-Ernste EB, de Boer PA et al. Heart defects in connexin43-deficient mice [J]. Circ Res, 1998, 82: 360-366.
    [9] Yao JA, Gutstein DE, Liu F et al. Cell coupling between ventricular myocyte pairs from connexin43-deficient murine hearts [J]. Circ Res, 2003, 93: 736-743.
    [10] Cadigan KM, Nusse R. Wnt signaling: a common theme in animal development [J]. Genes Dev, 1997, 11: 3286-3305.
    [11] Wodarz A, Nusse R. Mechanisms of Wnt signaling in development [J]. Annu Rev Cell Dev Bio, 1998, 14: 59-88.
    [12] Wright M, Aikawa M, Szeto W, et al. Identification of a Wnt-responsive signal transduction pathway in primary endothelial cells [J]. Biochem Biophys Res Commun, 1999,263:384-388.
    [13] Ai Z, Fischer A, Spray DC, et al. Wnt-1 regulation of connexin43 in cardiac myocytes [J]. J Clin Invest, 2000, 105: 161-171.
    [14] Xu X, Li WE, Huang GY, et al. Modulation of mouse neural crest motility by N-cadherin and connexin43 gap junctions [J]. J Cell Biol, 2002, 154: 217-230.
    [15] Huelsken J, Vogel R, Brinkmann V, et al. Requirement for beta-catenin in anterior-posterior axis formation in mice [J] . J Cell Biol, 2000, 148: 567-578.
    [16] Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, et al. Dickkopfl is required for embryonic head induction and limb morphogenesis in the mouse [J]. Dev Cell, 2001,1:423-434.
    [17] Heisenberg CP, Houart C, Take-Uchi M, et al. A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axinl leads to a fate transformation of telencephalonand eyes to diencephalons [J] . Genes Dev, 2001, 15: 1427-1434.
    [18] Kuhl M, Sheldahl LC, Park M, et al. The Wnt /Ca~(2+)pathway: a new vertebrate Wnt signaling pathway takes shape [J] . Trends Genet, 2000, 16: 279-283.
    [19] Willert K, Brown JD, Danenberg E, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors [J]. Nature, 2003, 423: 448-452.
    [20] Tan C, Xuan B, Hong J, et al RNA interference against hepatitis B virus with endoribonuclerase-prerared si RNA despite of the target seguence variations. [J] . Virus Res, 2007
    [21] Triboulet R, Mari B, Lin Y L, et al Surpression of microRNA-silencing pathway by HIV-1 during virus replication. [J]. Science, 2007, 315(5818): 1579-1582
    [22] Krol J, Fiszer A,Mykowska A, et al Ribonuclerase dicer cleaves triplet repeat haipins into shorter repeats that silence specific targets. [J] . Mol Cell, 2007, 25(4): 575-586
    [1] Nusse, R. and Varmus, H. E. Many tumours induced by the mouse mammary tumour virus contain provirus integrated in the same region of the host genome [J] . Cell, 1982, 31:99-109.
    [2] Aulehla A, Wehrle C, Brand-Saberi B, et al. Wnt3a plays a major rolein the segmentation clock controlling somitogenesis [J]. Dev Cell, 2003, 4: 395-406.
    [3] Habas R, Dawid IB, He X, et al. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation [J] . Genes Dev, 2003, 1: 295-309.
    [4] Yao JA, Gutstein DE, Liu F, et al. Cell coupling between ventricular myocyte pairs from connexin43-deficient murine hearts [J]. Circ Res, 2003, 93: 736-743.
    [5] Liu S, Liu F, Schneider AE St, et al. Distinct cardiac malformations caused by absence of connexin 43 in the neural crest and in the non-crest neural tube [J]. Development, 2006,133: 2063-2073.
    [6] Chen L, Wu Q, Guo F, et al. Expression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration [J]. Journal of Cellular and Molecular Medicine, 2004, 8: 257-264.
    [7] Ai Z, Fischer A, Spray DC, et al. Wnt-1 regulation of connexin43 in cardiac myocytes [J]. J Clin Invest, 2000, 105: 161-171.
    [8] Yamada Y, Sakuradaa K, Takeda Y, et al. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells [J]. Experimental Cell Research, 2007, 313:698-706.
    [9] Arceci RJ, King AA, Simon MC, et al. Mouse GATA -4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart [J]. Mol Cell Biol, 1993, 13: 2235-2246.
    [10] Komuro I, Izumo S. Csx: a murine homeobox-containing gene specifically expressed in the developing heart [J]. Proc Natl Acad Sci USA, 1993, 90: 8145-8149.
    [11] Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-dipHenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction [J]. Arch Biochem BiopHys, 1993, 303: 474-482.
    [12] Young CS, Kitamura M, Hardy S, et al. Wnt-1 Induces growth, cytosolic β-Catenin, and Tcf/Lef transcriptional activation in Rat-1 fibroblasts [J]. Molecular and Cellular Biology, 1998, 18: 2474-2485.
    [13] Toyofuku T, Hong Z, Kuzuya T, et al. Wnt/Frizzled-2 signaling induces aggregation and adhesion among cardiac myocytes by increased cadherin-beta-catenin complex [J]. J Cell Biol, 2000, 150(1): 225-241.
    [14] Patel PM, Plotnikov A, Kanagaratnam P, et al. Altering ventricular activation remodels gap junction distribution in canine heart [J]. J Cardiovasc Electrophysiol, 2001,1:2570-2577.
    [15] Francis D, Stergiopoulos K, Ek-Vitorin JF, et al. Connexin diversity and gap junction regulation by pHi [J]. Dev Genet, 1999, 24: 123-136.
    [16] D'A ndrea P,V ittur F. Gap junction mediate intercellular calcium signaling in cultured articular chondrocyte [J]. Cell Calcium, 1996, 20(5): 389-397.
    [17] Winkfein RJ, Pearson B, Ward R, et al. Molecular characterization, functional expression and tissue distribution of a second NCKX Na~+/Ca~(2+)-K~+ exchanger from Drosophila [J]. Cell Calcium, 2004, 36(2): 147-155.
    [18] Daniel Zaldivar, Maria C. Garcia, Jorge A. Sanchez. Ciliary neurotrophic factor promotes inactivation of muscle Ca~(2+) channels via PKC [J]. Biochemical and Biophysical Research Communications, 2005, 338(3): 1572-1577.
    [19] etsu Hamamoto, Hideo Tanaka, Hiroki Mani, et al. In situ Ca~(2+) dynamics of Purkinje fibers and its interconnection with subjacent ventricular myocytes [J]. Journal of Molecular and Cellular Cardiology, 2005, 38(4): 561-569.
    [20] Jinhui Wang, Xudong Huang, Weidong Huang. A quantitative kinetic model for ATP-induced intracellular Ca~(2+) oscillations [J]. Journal of Theoretical Biology, 2007, 245(3): 510-519.
    [21] Quintanar-Escorza MA, Gonzalez-Martinez MT, Navarro L, et al. Intracellular free calcium concentration and calcium transport in human erythrocytes of lead -exposed workers [J]. Toxicology and Applied Pharmacology, 2007, 220(1): 1-8.
    [22] Habas R, Dawid IB, He X, et al. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation [J] . Genes Dev, 2003, 1: 295-309.
    [23] Alexis Menteyne, Anton Burdakov, Gilles Charpentier, et al. Generation of specific Ca~(2+) signals from Ca~(2+) stores and endocytosis by differential coupling to messengers [J]. Current Biology, 2006, 16(19): 1931-1937.
    [24] Maria A. Farre-Castany, Beat Schwaller, et al. Differences in locomotor behavior revealed in mice deficient for the calcium-binding proteins parvalbumin, calbindin D-28k or both [J]. Behavioural Brairn Research, 2007, 178(2): 250-261.
    [25] Chun-Jen Huang, He-Hsiung Cheng, Chiang-Ting Chou, et al. Desipramine-induced Ca~(2+) movement and cytotoxicity in PC3 human prostate cancer cells [J]. Toxicology In Vitro, 2007, 21(3): 449-456.
    [1] 黄华艺,农朝赞,查锡良.新癌基因p.catenin研究进展[J].中华消化杂志,2002,22(8):497-498.
    [2] Gumbiner BM. Carcinogenesis: a balance between b-catenin and APC [J]. Curr Biol 1997, (7):R443-R446.
    [3] Adithi Mohan, Venkatesan Nalini, Kandalam Mallikarjuna, et al. Expression of motility-related protein MRP1/CD9, N-cadherin, E-cadherin, α-catenin and β-catenin in retinoblastoma [J]. Experimental Eye Research, 2007, 84(4): 781-789.
    [4] Murphy G, Gavrilovic J. Proteolysis and cell migration: creating a path? [J] Curr Opin Cell Biol, 1999, 11: 614-621.
    [5] Trine Husuy, V eronique Cruciani, Helle K.Knutsen, et al. Cells heterozygous for the ApcMin mutation have decreased gap junctional intercellular communication and connexin43 level, and reduced microtubule polymerization [J]. Carcinogenesis, 2001, 24(4): 643-650.
    [6] Danik SB, Liu F, Zhang J, et al. Modulation of cardiac gap junction expression and arrhythmic susceptibility [J]. Circ Res, 2004, 95: 1035-1041.
    [7] Petrich BG, Gong X, Lerner DL, et al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes [J]. Circ Res, 2002, 91: 640-647.
    [8] Aulehla A, Wehrle C, Brand-Saberi B, et al. Wnt3a plays a major rolein the segmentation clock controlling somitogenesis [J]. Dev Cell, 2003, 4: 395-406.
    [9] Habas R, Dawid IB, He X, et al. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation [J]. Genes Dev, 2003, 1: 295-309.
    [10] Smalley M J, Dale TC. Wnt signalling in mammalian development and cancer [J]. Cancer Metastasis Rev, 1999, 18: 215-230.
    [11] Anderton BH. Alzheimer's disease: clues from flies and worms [J]. Curr Biol, 1999, 9: R106-R109.
    [12] Bryja Vitezslav, Schulte Gunnar, Arenas Ernest. Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate β-catenin [J]. Cellular Signalling, 2007, 19(3): 610-616.
    [13] Young CS, Kitamura Marina, Hardy Stephen, et al. Wnt-1 Induces growth, cytosolic b-Catenin, and Tcf/Lef transcriptional activation in Rat-1 fibroblasts [J]. Molecular and Cellular Biology, 1998, 18(5): 2474-2485.
    [14] Jaroslaw Jozwiak, Katarzyna Kotulska, Wieslawa Grajkowska, et al. Upregulation of the WNT pathway in tuberous sclerosis-associated subependymalgiant cell astrocytomas [J]. Brain and Development, 2007, 29(5): 273-280.
    [15] Chen LJ, Zuo J, Wu QF, et al. Wnt signalling pathway regulates the growth and several phenotypes of Rat-1 cells [J]. Acta Physiologica Sinica, 2005, 57(4): 505-510.
    [1] Iacobas DA, Iacobas S, Spray DC. Connexin43 and the brain transcriptome of newborn mice [J]. Genomics, 2007, 89(1): 113-123.
    [2] Knabb MT, Danielsen CA, McShane-Kay K, et al. Herpes simplex virus-type 2 infectivity and agents that block gap junctional intercellular communication [J]. Virus Research, 2007,124(1-2): 212-219.
    [3] Simon AM, Goodenough DA, Paul DL. Mice lacking connexin40 have cardiac conduction abnormalities characteristic of atrioventricular block and bundle branch block [J]. Curr Biol, 1998, 8: 295-298.
    [4] Willecke K, Eiberger J, Degen J, et al. Structural and functional diversity of connexin genes in the mouse and human genome [J]. Biol Chem, 2002, 383: 725-737.
    [5] Saez JC, Berthoud VM, Branes MC, Martinez AD, Beyer EC. Plasma membrane channels formed by connexins: their regulation and functions [J]. Physiol Rev, 2003, 83: 1359-1400.
    [6] Goodenough DA, Paul DL. Beyond the gap: functions of unpaired connexon channels [J]. Nat Rev Mol Cell Biol, 2003, 4: 285-294.
    [7] Li WEI, Waldo K, Linask KL, Chen T. An essential role for connexin43 gap junctions in mouse coronary artery development [J]. Development, 2002, 129: 2031-2042.
    [8] Malassine A, Cronier L. Involvement of gap junctions in placental functions and development [J]. Biochimica et Biophysica Acta (BBA)-Biomembranes, 2005, 1719(1-2): 117-124.
    [9] Rama A, Matsushita T, Charolidi N, et al. Up-regulation of connexin43 correlates with increased synthetic activity and enhanced contractile differentiation in TGF-β-treated human aortic smooth muscle cells [J]. European Journal of Cell Biology, 2006, 85(5): 375-386.
    [10] Wang XJ, Robbins J, Schuessler RB, et al. Remodeling of gap junctions and slow conduction in a mouse model of desmin-related cardiomyopathy [J]. Cardiovascular Research, 2005, 67(3): 539-547.
    [11] Sohl G, Willecke K. Gap junctions and the connexin protein family [J]. Cardiovascular Research, 2004, 62(2): 228-232.
    [12] Baptista Maria Joao, Recaman Maria Joao, Melo-Rocha Gustavo, et al. Myocardium expression of connexin 43, SERCA2a, and myosin heavy chain isoforms are preserved in nitrofen-induced congenital diaphragmatic hernia rat model [J]. Journal of Pediatric Surgery, 2006, 41(9): 1532-1538.
    [13] Xun A, Steven M. Pogwizd Connexin 43 Downregulation and dephosphorylation in nonischemic heart failure is associated with enhanced colocalized protein phosphatase type 2A [J]. Circulation Research,2005, 1:7-21.
    [14] Duthe F, Plaisance I, Sarrouilhe D, Herve JC. Endogenous protein phosphatase 1 runs down gap junctional communication of rat ventricular myocytes [J]. Am J Physiol Cell Physiol, 2001, 281: C1648-C1656.
    [15] Kwak BR, Jongsma H. Regulation of cardiac gap junction channel permeability and conductance by several phosphorylating conditions [J]. Mol Cell Biochem, 1996, 157:93-99.
    [16] Musil LS, Goodenough DA. Biochemical analysis of connexin43 intracellular transport, phosphorylation, and assembly into gap junctional plaques [J]. J Cell Biol, 1991,115: 1357-1374.
    [17] Morley GE, Vaidya D, Samie FH, Lo C, Delmar M, Jalife J. Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping [J]. J Cardiovasc Electrophysiol, 1999,10: 1361-1375.
    [18] Solan JL, Paul DL. Connexin phosphorylation as a regulatory event gap junction channel assembly [J]. Biochimica et Biophysica Acta, 2005, 1711: 154-163.
    [19] Reaume AG, de Sousa PA, Kulkarni S, et al. Cardiac malformation in neonatal mice lacking connexin43 [J]. Science, 1995, 267: 1831-1834.
    [20].Ewart JL, Cohen MF, Meyer RA, et al. Heart and neural tube defects in transgenic mice overexpressing the Cx43 gap junction gene [J]. Development, 1997, 124: 1281-1292.
    [21] Huang GY, Wessels A, Smith BR, et al. Alterations in connexin43 gap junction gene dosage impair heart development [J]. Dev Biol, 1998, 198: 32-42.
    [22] Levin M, Mercola M. Gap junctions are involved in the early generation of left-right asymmetry [J]. Dev Biol, 1998, 203: 90-105.
    [23] Britz-Cunningham SH, Shah MM, Zuppan CW, Fletcher WH. Mutations of the connexin43 gap junction gene in patients with heart malformations and defects of laterality [J]. N Engl J Med, 1995, 332: 1323-1329.
    [24] Dasgupta C, Martines AM, Zuppan CW, et al. Identification of connexin43 gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel of laterality [J]. Mut Res, 2001, 479: 173-186.
    [25]. Severs NJ. The cardiac muscle cell [J]. Bioessays, 2000, 22: 188-199.
    [26]. Gros DB, Jongsma HJ. Connexins in mammalian heart function [J]. Bioessays, 1996,18:719-730.
    [27]. Gourdie RG, Lo CW. Cx43 gap junctions in cardiac development and disease [A]. In: C Perrachia, ed. Current Topics in Membranes: Gap Junctions [M], vol 49. New York: Academic Press, 2000: 581-602.
    [28]. Spray DC, Suadciani M, Srinivas M, et al. Gap junctions of the cardiovascular system [A]. In: Page E, Fozzard HA, Solaro J, eds. Handbook of Physiology: The Cardiovascular System: The Heart [M]. 2002: 169-212.
    [29]. Kleber AG, Janse MJ, Fast VG. Normal and Abnormal Conduction in the Heart [A]. In: Page E, Fozzard HA, Solaro J, eds. Handbook of Physiology: The Cardiovascular System: The Heart [M]. 2002: 455-530.
    [30] Chatterjee B, Chin AJ, Valdimarsson G, et al. Developmental regulation and expression of the zebrafish connexin43 gene [J]. Dev Dyn, 2005, 233(3): 890-906.
    [31] Petrich BG, Gong X, Lerner DL, et al. c-Jun N-terminal kinase activation mediates downregulation of connexin43 in cardiomyocytes [J]. Circ Res, 2002, 91: 640-647.
    [32] Wang XJ, Gerdes AM. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: III. Intercalated disc remodeling [J]. J Mol Cell Cardiol, 1999, 31:333-343.
    [33] Kostin S, Rieger M, Dammer S, et al. Gap junction remodeling and altered connexin43 expression in the failing human heart [J]. Mol Cell Biochem, 2003,242: 135-144.
    [34] Nusse R, Varmus HE. Many tumours induced by the mouse mammary tumour virus contain provirus integrated in the same region of the host genome [J]. Cell, 1982,31:99-109.
    [35] Aulehla A, Wehrle C, Brand-Saberi B, et al. Wnt3a plays a major rolein the segmentation clock controlling somitogenesis [J]. Dev Cell, 2003, 4: 395-406.
    [36] Habas R, Dawid IB, He X, et al. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation [J]. Genes Dev, 2003, 1: 295-309.
    [37] Marcel AG, van der Heyden, Rook MB, et al. Identification of connexin43 as a functional target for Wnt signaling [J]. Journal of Cell Science, 1998, 111: 1741-1749.
    [38] 黄华艺,农朝赞,查锡良.新癌基因p—catenin研究进展[J].中华消化杂志,2002,22(8):497-498.
    [39] Gumbiner BM. Carcinogenesis: a balance between b-catenin and APC [J]. Curr Biol, 1997, (7): R443-R446.
    [40] Adithi Mohan, Venkatesan Nalini, Kandalam Mallikarjuna, et al. Expression of motility-related protein MRP 1/CD9, N-cadherin, E-cadherin, α-catenin and β-catenin in retinoblastoma [J]. Experimental Eye Research, 2007, 84(4): 781-789.
    [41] Murphy G, Gavrilovic J. Proteolysis and cell migration: creating a path? [J] Curr Opin Cell Biol, 1999, 11: 614-621.
    [42] Trine Husuy, V eronique Cruciani, Helle K. Knutsen, et al. Cells heterozygous for the ApcMin mutation have decreased gap junctional intercellular communication and connexin43 level, and reduced microtubule polymerization [J]. Carcinogenesis, 2003, 24(4): 643-650.
    [43] Giepmans BN, Verlaan I, Hengeveld T, et al. Gap junction protein connexin-43 interacts directly with microtubules [J]. Curr Biol, 2001, 11: 1364-1368.
    [44] Kanno S, Saffitz JE. The role of myocardial gap junctions in electrical conduction and arrhythmogenesis [J]. Cardiovasc Pathol, 2001, 10: 169-177.
    [45] Wang X, Gerdes AM. Chronic pressure overload cardiac hypertrophy and failure in guinea pigs, Ⅲ: intercalated disc remodeling [J]. J Mol Cell Cardiol, 1999, 31: 333-343.
    [46] Huang XD, Sandusky GE, Zipes DP. Heterogeneous loss of connexin43 protein in ischemic dog hearts [J]. J Cardiovasc Electrophysiol, 1999, 10:79-91.
    [47] Peters NS, Green CR, Poole-Wilson PA, et al. Reduced content of connexin43 gap junctions in ventricular myocardium from hypertrophied and ischemic human hearts [J]. Circulation, 1993, 88: 864-875.
    [48] Lerner DL, Yamada KA, Schuessler RB, Saffitz JE. Accelerated onset and increased incidence of ventricular arrhythmias induced by ischemia in Cx43-deficient mice [J]. Circulation, 2000, 101: 547-552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700