用户名: 密码: 验证码:
加氢裂化装置工艺用能分析与优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界经济的快速发展,世界各国对石油,特别是轻质的燃料油的需求量猛增,然而世界的原油储量中,浅层好开采的轻质低硫原油越来越少,深层难开采的重质含硫原油越来越多,并且世界各国更加注重环保,对汽、柴油等轻质燃料油的品质要求越来越高。因此加氢裂化这一重要炼油手段越来越受重视,生产能力逐年上升。
     加氢裂化装置由于涉及高温高压反应,装置能耗较高,而国内的加氢裂化装置的用能水平更是参差不齐,用能水平最高与最低的装置能耗相差达两倍以上,节能潜力较大。
     本文以加氢裂化基准工艺流程(单段串联一次通过、冷高分)为研究对象,建立工艺流程模拟模型,通过模拟模型参数调整,如理论塔板数的折算,反应产物物性的调整等,使模拟能够准确再现实际生产情况。在此基础上,对装置进行“三环节”能量分析和分析,发现现有工艺流程的用能瓶颈在于冷高分部分,因为反应产物重复冷却、升温,造成极大的能量损失,限制了反应热进入分馏系统,导致分馏系统加热炉负荷过高,此外,反应流出物压力能没有回收利用也造成电能严重浪费。针对以上用能瓶颈,提出两种用能优化策略:基于冷高分流程用能优化和基于热高分流程用能优化。
     基于冷高分流程的用能优化策略是结合分馏系统优化,对换热网络进行优化改进以及通过提高回收环节的能量回收利用效率来减少转有效转换能。主要优化措施包括:分馏塔优化,脱丁烷塔优化,结合分馏系统改进的高、低压换热网络优化以及压力能的回收利用。通过模拟分析,改进后取得一定的节能效果,装置能耗减少约4kgEO/t。
     基于热高分流程的用能优化策略是通过反应分离等核心工艺流程的改进,把冷高分流程改为热高分流程,并对分馏系统流程进行优化改进,以及结合分馏系统的换热网络优化设计,通过工艺利用环节的优化从源头减少工艺总用能。通过模拟分析,装置能耗降低10kgEO/t以上。
With the rapid development of the world economy, the demand for light fuel oil, especially the high quality light fuel oil, increases rapidly. In the world's crude oil reserves, the shallow less sulfur and light crude become less and less, remaining the high sulfur heavy crude oil. While more and more attention was paid to environmental protection, the quality requirements of light fuel oil, such as gasoline and diesel is becoming higher and higher. Therefore, hydrocracking, such an important refining mean for processing heavy oil and producing high quality light fuel oil, is getting more and more attention, and the processing capacity of hydrocracking is increasing annually.
     Hydrocracking is a high energy consumption process as it involves high pressure and high temperature reactions. The energy-use level for domestic hydrocracking units is uneven, and the difference between the highest and the lowest energy-use level is up to more than two times, which indicates that the energy-saving potential is very large. Nowadays, the energy situation is so severe that it is important to save energy for hydrocracking units.
     In this paper, a hydrocracking benchmark process (single-stage, single pass, cold high pressure separation flowsheet) was used as the research object, to establish the process simulation, and adjust the parameters of simulation model (such as conversion of the theoretical plate number, the adjustment of properties of the reaction product), so the simulation can accurately reproduce the actual process. Based on the simulation, energy analysis and exergy analysis with "three-link model" were conducted. The results obtained show that the energy-use bottlenecks for the existing process flow is the cold high pressure separation flowsheet, in which the reaction products repeat the process of cooling and heating, which resulting in a great energy loss, and limiting the reaction heat getting into the distillation system.A higher distillation system heating load is required for the distillation separation. In addition, the high pressure energy of the high-temperature reaction products is not recycled also. Against to this bottleneck, two energy saving and optimizing strategies was proposed. One is based on the cold high pressure separation process and the other is based on hot high pressure separation process.
     The optimization strategy based on cold high pressure separation process is optimizing the heat exchanger network which combined with distillation system optimization, to improving the recovery part of the energy recovery efficiency to reduce energy conversion part of the output energy. The main optimization measures include: optimization of distillation tower, optimization of de-butanizer tower, optimization of the heat exchanger network which combined with the distillation system optimization and pressure energy recovery. Through simulation, the improved energy efficiency decreases the energy consumption by about 4kgEo/t.
     The optimization strategy based on cold high pressure separation process is to completely change the existing process, and improved distillation system optimization processes, as well as heat exchanger network optimization design. The energy save is obtained by reducing the total process energy consumption in fundamental aspects. The simulation results show that it has at least 10kgEO/t save potential by reduce fuel use.
引文
[1]姚国欣,朱和.迈向21世纪的炼油工业[J ].国际石油经济.1999,7(3):1-7
    [2]张德.加氢裂化装置的扩能改造[J].炼油设计.2000,30(1):13-15
    [3]邓茂广.茂名110万吨/年加氢裂化装置改造[J].当代化工.2006,35(6):262-264
    [4]汤尔林.四套引进加氢裂化装置技术改造[J].炼油设计.2000,30(9): 36-40
    [5]汤尔林.首套加氢裂化装置国产化及技术改造[J].炼油设计.2000,30(9):49-51
    [6]李正西.南京炼油厂加氢裂化装置的技术改造[J].石油炼制与化工. 2000,31(6):22-25
    [7]陈连财,沈春夜.高压加氢裂化装置的扩能改造[J].石油炼制与化工.2001, 32(3): 22-25
    [8]王洁.吉林石化分公司加氢裂化装置的搞通改造[J].炼油技术与工程.2005,35(4):23-25
    [9] D. B. Ackelson, V Thakkar, B Dziabala. Innovative Hydrocracking Applications for Conversion of Heavy Feedstocks. NRPA 2007 Meeting
    [10]李立权.加氢裂化装置工艺计算与技术分析[M].北京:中国石化出版社,2009
    [11]陈清林等.过程系统能量流结构模型及其应用[J].化工进展,2003,22(3):239-240
    [12]华贲.过程能量综合的研究进展与展望[J].石油化工,1996,25(1):62
    [13]华贲.工艺过程用能分析与综合[M].北京:烃加工出版社,1989
    [14]陈安民.石油化工过程节能方法和技术.北京:中国石化出版社,1995
    [15] Linnhoff, B. Flower, J.R.. Synthesis of Heat Exchanger Networks. Part I: Systematic Generation of Energy Optimal Networks [J]. AIChE J, 24(4): 633–642
    [16] Linnhoff, B. Flower, J.R.. Synthesis of Heat Exchanger Networks. Part II: Evolutionary Generation of Networks with Various Criteria of Optimality [J]. AIChEJ, 24(4): 642–654
    [17] Linnhoff, B., Hindmarsh, E.. The Pinch Design Method of Heat Exchanger Networks [J]. Chem Eng Sci, 38(5): 745–763
    [18] Linnhoff, B., Mason, D.R., Wardle, I.. Understanding Heat Exchanger Networks [J]. Comp Chem Eng, 3: 295
    [19] Linnhoff, B., Townsend, D.W., Boland, D. et al. User Guide on Process Integration for the Efficient Use of Energy [M]. 1st edition. IChemE, Rugby, UK. Revised 1st edition 1994
    [20] Linnhoff, B., Turner, J.A.. Heat-Recovery Networks: New Insights Yield Big Savings [J]. Chem Eng, (11): 56–70
    [21] Linnhoff, B., Vredeveld, D.R.. Pinch Technology Has Come of Age [J]. Chem Eng Prog, (7): 33–40
    [22] L. Tantimuratha, G. Asteris, D.K. Antonopoulos, A.C. Kokossis. A conceptual programming approach for the design of flexible HENs[J]. Computers and Chemical Engineering 25 (2001) 887–892
    [23] S. G Yoon a, J Lee b, S Park. Heat integration analysis for an industrial ethylbenzene plant using pinch analysis[J]. Applied Thermal Engineering 27 (2007) 886–893
    [24] K. Liebmann, V. R. Dhole, M. Jobson. Integrated Design of a Conventional Crude Oildistillation Tower Using Pinch Analysis[J]. Trans IChemE, 76,Part A:335-347
    [25] A. Lazzaretto, F. Segato. A thermodynamic approach to the definition of the HAT cycle plant structure[J]. Energy Conversion and Management 43 (2002) 1377-1391
    [26] P. Raskovic, S. Stoiljkovic. Pinch design method in the case of a limited number of process streams[J]. Energy, 34 (2009): 593–612
    [27] Ian C. Kemp. Pinch Analysis and Process Integration[M]. IChemE, 2007
    [28]张济民.夹点技术及其应用[J].化学工程师, 2004,(6): 45-46
    [29]杨秀奇等.理论发展综述[J].昆明理工大学学报(理工版), 2004, 29(2): 158-161
    [30]项新耀.工程分析方法[M].北京:石油工业出版社, 1990
    [31] Spiegelman E., George B., Jonah. Money as Social Exergy [J]. Journal of Bioeconomics, 2007, (9): 265-277
    [32]郑宏飞,吴裕远.分析方法在社会科学领域中的应用[J].西安交通大学学报(社会科学版), 2000, 20(2): 72-78
    [33]郑宏飞,吴裕远.分析方法论[J].西安交通大学学报(社会科学版), 2001, 21(2): 75-80
    [34]朱开宏.化工过程流程模拟[M].北京:中国石化出版社, 1993
    [35]陆恩锡.张惠娟,尹清华.化工过程模拟及相关高新技术(I)化工过程稳态模拟[J].化工进展, 1999, (4): 63-64
    [36]韩方煜,郑世清,荣本光.过程系统稳态模拟技术[M].北京,中国石化出版社, 1999
    [37]陆恩锡,张慧娟.化工过程模拟及相关高新技术(II)化工过程动态模拟[J].化工进展, 2000, (1): 76-78
    [38]韩崇仁.加氢裂化工艺与工程[M].北京:中国石化出版社,2007
    [39]李立权,师敬伟,曾茜.含硫蜡油加氢裂化装置分馏流程的优化设计[J].炼油技术与工程,33(1):44-50
    [40]李立权.加氢裂化装置工艺计算与技术分析[M].北京:中国石化出版社,2009
    [41]中国石化炼油事业部,中国石化节能技术中心.加氢裂化装置基准能耗.2004
    [42]李大东.加氢处理工艺与工程[M].北京:中国石化出版社,2004:576-577
    [43] Weekman V. W., Nace D. M. Kinetics of catalytic cracking selectivity in fixed, moving and fluid bed reactors[J]. AIChE J. 1970,16(3),397.
    [44] Mohanty S., Saraf D. N., Kunzru D. Modeling of a hydrocracking reactor[J]. Fuel Process Technol. 1991,29,1.
    [45] Laxminarasimhan C. S., Verma R. P., Ramachandran P. A. Continuous lumping model for simulation of hydrocracking. AIChE J. 1996,42,2645.
    [46] Fabiano A.N. Fernandes, Ulisses M. Teles. Modeling and optimization of Fischer–Tropsch products hydrocracking[J]. Fuel Processing Technology 88 (2007) 207-214.
    [47] A. Alvarez, J. Ancheyta. Modeling residue hydroprocessing in a multi-fixed-bed reactor system[J]. Applied Catalysis A: General 351 (2008) 148-158.
    [48]颜艺专,陈清林,张冰剑等.催化裂化主分馏塔模拟策略与用能优化研究[J].石油炼制与化工,36(9):35-40
    [49]颜艺专.具有化学转化的炼油装置模拟和用能优化研究[D].广州:华南理工大学,2008
    [50] Moysan J. M., Huron M. J., Paradowski H., et al. Prediction of solubility of hydrogen in hydrocarbon through Cubic Equation of state[J]. Chem Eng Sci, 1983,38:1085
    [51] Kabadi V. N., Danner R.P. A modified Soave-Redlich-Kwong equation of state for water-hydrocarbon phase equilibria[J]. Ind Eng Chem Process DesDev,1985,24:743
    [52] Twu C.H., Coon J.E., Harvey A.H., et al. An approach for the application of a Cubic Process to hydrogen-hydrocarbon systems[J]. Ind Eng Chem Process Des Dev,1996,25:905
    [53]韩崇仁.加氢裂化工艺与工程[M]北京,中国石化出版社,2007:527-528
    [54] SIMSCI. PRO/II Application Briefs. 1995
    [55]王洪江.流程模拟计算中关于塔板效率选择的技巧[J].石化技术,2003 ,10 (3) :31-33
    [56]杨科.催化裂化装置主分馏塔工艺模拟与分析[J].化工进展,2003,22(9):998-989
    [57]吴宇,颜世闯.3.5Mt/a重油催化裂化装置主分馏塔工艺模拟和操作状况分析.中外能源,2006,11(2):43-50
    [58]赵华,孟超鹏,李宏伟.Aspen Plus流程模拟软件在RFCCU主分馏塔的应用[J].石油炼制与化工,38(11):65-68
    [59]陈安民.石油化工过程节能方法和技术[M].北京:中国石化出版社,1995:77-138
    [60]李立权.加氢裂化装置工艺计算与技术分析[M].北京:中国石化出版社,2009:111-114
    [61]陆恩锡,罗明辉.蒸馏过程进料状态优化[J].化学工程,2008,36(6):75-78
    [62]陆恩锡,徐忠.蒸馏过程进料位置优化[J].化学工程,2008.07,36(7):74-78
    [63]陆恩锡,李小玲,吴震.蒸馏过程中间再沸器与中间冷凝器[J].化学工程,2008.11,36(11):74-78
    [64] Ian C. Kemp. Pinch analysis and process integration (2nd edition)[M]. ELSEVIER, 2007:114-116
    [65]李立权,师敬伟,曾茜.含硫蜡油加氢裂化装置分馏流程的优化设计[J].炼油技术与工程,33(1):44-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700