用户名: 密码: 验证码:
柴油机四效催化转化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柴油机以其优越的动力性和燃油经济性,近年来得到更普遍的应用。柴油机排气的主要有害成分包括微粒、NO_x、HC、CO,其中HC与CO浓度较低且易在富氧环境中氧化,所以柴油机排气控制的重点是微粒与NO_x。目前,柴油机机内控制技术已经使柴油机排放降低到较低的水平,但仍不能满足未来严格的排放法规,迫切需要排气后处理新技术,以及多种现有技术的有机集成来同时对柴油机的有害排放物进行净化。
     本文首先分析了国内外车用柴油机四效催化转化装置的研究进展,认为国内外已经发展了许多用于柴油机排气后处理的技术,但各自又都面临一些问题,尚没有开发出较好的排气后处理技术。低温等离子体技术与催化转化技术的集成技术,因其理论上有可能达到较好的效果,而且避免了其他四效催化转化装置的主要问题,诸如要求排气温度较高,需要复杂的还原剂供应装置等,具有重要的研究价值。
     本文研究了催化剂的制各,结果显示,烧结法和溶胶-凝胶法都能制备La_(0.9)K_(0.1)CoO_3钙钛矿型复合氧化物。通过提高烧结温度,都能进一步提高产物的纯度,同时晶粒粒度会增大,比表面积减小。在相同烧结温度下,溶胶-凝胶法生成的产物与烧结法相比更纯一些,粒度更小,比表面积和孔径更大。因而,溶胶-凝胶法是制备La_(0.9)K_(0.1)CoO_3钙钛矿型复合氧化物的较理想方法。
     在小样试验中,发现用溶胶-凝胶法在1050℃烧结温度下制备的La_(0.9)K_(0.1)CoO_3钙钛矿型复合氧化物催化剂,具有更低的碳烟点火温度、更低的NO_x起始反应温度,更低的反应副产物CO浓度,因而催化性能优于烧结法制备的催化剂;通过适当提高烧结温度和采用溶胶-凝胶法可以提高催化剂净化PM和NO_x的性能。然后尝试分别利用贵金属Pt、La_(0.9)K_(0.1)CoO_3、Pt和La_(0.9)K_(0.1)CoO_3共同,三种方案作为PM和NO_x反应的催化剂。结果Pt和La_(0.9)K_(0.1)CoO_3共同应用则效果不佳;Pt催化剂在各反应温度指标上都略优于La_(0.9)K_(0.1)CoO_3,但它也有一定的缺陷,包括对NO_x的转化效率较低,最后残余CO、HC等污染气体没有反应,使用贵金属,成本较高等;因而综合考虑溶胶-凝胶法在1050℃烧结温度下制备的La_(0.9)K_(0.1)CoO_3是较理想的净化PM和NO_x的催化剂。最后研究了这种催化剂的工作条件,与发动机高速大负荷运转时的排气状况相符合。
     在柴油机台架试验中,La_(0.9)K_(0.1)CoO_3催化剂在一定温度下不仅能够同时降低柴油机排气中的PM和NO_x,还可以降低HC和CO的排放,但是对PM和NO_x的转化效率还比较低,在最好的情况下只有15%~20%;需与低温等离子体技术技术协同作用,以提高净化效果。
     在对低温等离子体技术的理论分析中,重点分析了低温等离子体技术的能耗问题,设计了并联式的介质阻挡放电反应器,以及确定了与之相匹配的高压脉冲电源参数,用经验公式计算了反应器的功率。
     研究了等离子体技术与钙钛矿型催化剂技术的协同作用,与单独用催化剂技术相比,可提高对柴油机排气净化效果,但对反应温度降低较小,仍然在300℃左右。
     在低温等离子体台架实验中,所设计的并联式的介质阻挡放电反应器,可正常工作,并达到净化柴油机排气的效果;采用催化剂后置,低温等离子体发生器前置的布置形式,难以达到催化剂工作温度;催化剂前置,低温等离子体发生器后置的布置形式,有利于满足催化剂的工作条件,使催化剂有效发挥作用。低温等离子体辅助柴油机四效催化转化技术对NO_x和微粒有较好的净化效果,尤其是对NO_x,净化率最蒿可达81.2%。对于固定式柴油机改进后基本具备实际应用的条件;对于车载柴油机,在解决高压脉冲电源小型化、可移动的问题后,也具有较广阔的应用前景。
Because of its excellent power and economy in fuel, diesel is widely applied in recentl years. The main noxious contents of diesel emission are particles, CO, HC, and NO_x, and the concentration of HC and CO is relatively slow and they can easily be oxidized when oxygen is enough. So the focous of diesel emission control is NO_x and particles. At present, internal measures can reduce the emission to be relatevely low, but it can not meet the regulation in future. The after-treatment and combining various technoque together to purify the diesel exhausts are needed.
     The development of four-way catalyst all over the world is analyzed. Many purifying techniques in diesel have been developed but there still exist some shortcomings. Combine the technology of low-temperature plasma technology with catalytic conversion technology can obtain better effect theoretically, and the main problems existed in other four-way catalyst can be overcome, such as high emission temperature,complex supply equipment for reducer, which is of important value.
     Then the catalyst the perovskite type La_(0.9)K_(0.1)CoO_3 was prepared through bothcalcination and sol-gel method. The purity of La_(0.9)K_(0.1)CoO_3 powders can be increasedby raising the calcining temperature, at the same time, the particle diameter increased,BET surface area decrease. Under the same calcining temperature, the charactic properties of the La_(0.9)K_(0.1)CoO_3 powders synthesized by sol-gel, method is better than those synthesized by solid state reaction method, such as purer phase, smaller particle diameter, which can be used as a satisfactory catalyst in diesel waste gas cleaning.
     In small sample experiment, the catalytic performance of the La_(0.9)K_(0.1)CoO_3 Perovskite Composite Oxide catalyst synthesized by sol-gel, method sintered at 1050℃is better than that of the catalyst synthesized by solid state reaction method catalyst, such as lower ignition temperature of the diesel soot particulates, lower start temperature of NO_x treatment, creating lower concentration of byproduct CO, so it has better catalyzing effect. By increasing the sintering tempetature appropriately and using the sol-gel method, the effect of catalyst to purify PM and NO_x can be improved. Three measures, i e ,using Pt and La_(0.9)K_(0.1)CoO_3 respectively and both as catalyst to clear PM and NO_x were taken. It is indicated that it is not efficient using Pt and La_(0.9)K_(0.1)CoO_3 both, the effcet of Pt is a little superior to La_(0.9)K_(0.1)CoO_3,but the conversion rate to NO_x is slow and it can not treat with CO and HC, at the same time ,it is expensive. Considering the whole conditions, the better catalyst was chosen as La_(0.9)K_(0.1)CoO_3 prepared by sol-gel method and sintered at 1050℃. The working conditions of the catalyst was investigated, which is coincident with the exhaust gas when the engine is in high speed and large load.
     In the diesel test bench experimental, La_(0.9)K_(0.1)CoO_3 catalyst can not only reduce the PM and NO_x, but also reduce HC and CO emission. The conversion rate to PM and NO_x is still low, which is about 15%-20% on the optinum condition, so it is nessissary to combine with low-thermal plasms technique to improve the purifying effect.
     Then energy, consumption of low-thermal plasma technique was analyzed as focous, and the shunt dielectric barrier discharge plasma reactor was designed, then the corresponding high-pulse power parameters were determined. The power of the reactor was calculated by experiential formula. The calculation results indicate the reactor's power is in the lower range of the diesel engine.
     The low-thermal plasma technique was combined with the La_(0.9)K_(0.1)CoO_3 Perovskite Composite Oxide catalyst for the first time. Compared with using single catalyst, the combined technique can improve the clearing effect, but it reduce the reaction temperature little, which is still at about 300℃.
     In the emplace bench experimental, the designed shunt dielectric barrier discharge plasma reactor can work well-balanced, and the diesel exhaust can be treated. When catalyst were emplaced behind and low-thermal plasma reactor were emplaced frontal, the temperature was not high enough for the catalyst to work. While When catalyst were emplaced frontal and low-thermal plasma reactor were emplaced behind, the catalyst can work efficiently. Four-way catalyst technique combimed with low-thermal plasms technique can purify PM and NO_x more efficiently, especially for PM, the purifying rate can reach 81.2%. This technique is feasible for improved fixed diesel engine,'and for mobile diesel engine, when the volume of the high voltage pulse power can be reduced and it can be locomotive, the technique may be widely applied in the future.
引文
[1]张国材.我国汽车产销2007年首次突破800万辆.[EB/OL]www.worldbydate.com.2008.2.14
    
    [2] D. S. Sua, J.-O. Muller, R.E. Jentoft, et al. Fullerene-like soot from EuroIV diesel engine: consequences for catalytic automotive pollution control. Topics in Catalysis , 2004, 30-31(1/4): 241-245
    
    [3]Timoth V. Johnson. Diesel Emission Control in Review-The Last 12 Months, SAE Paper 2003-01-0039,2003
    
    [4]刘双喜,高继东,景晓军.车用发动机颗粒物测量和评价方法的发展研究.小型内燃机与 摩托车,2005,34(2):43-46
    
    [5] Warner James R. , Johnson John H. , Bagley Susan T. et al. Effect of a Catalyzed Particualte Filter on Emissions from a Diesel Engine :Chemical Charaterization Data and Particulate Emissions Measured with Thermal Optical and Gravimentric Methods. SAE Paper 2003-01-0049, 2003
    
    [6] L. E. Murr, E. V. Esquivel, J. J. Bang. Characterization of Nanostructure Phenomena in Airborne Particulate Aggregates and Their Potential for Respiratory Health Effect. Materials in Medicine, 2004,15 (3): 237-247
    
    [7]秦文新,程熙,叶霭云等.排气净化与噪声控制.北京:人民交通出版社,2000.208-296
    
    [8]李兴虎.汽车环境保护技术.北京:北京航空航天大学出版社,2004.120-190
    
    [9]洪敦麟.内燃机排放控制标准简介.柴油机,2000,22(4):50-57
    
    [10]杨吟.柴油轿车:车战新高地.[EB/OL]www.zjol.com.cn.2005.8.31
    
    [11]陈光明.中投证券:威孚高科,公司排放标准升级带来成长机遇.[EB/OL] www.gutx.com.2007.9.28
    
    [12]胡群.车用柴油机排放物有害成分的分析与控制.内燃机,2003,19(6):24-33
    
    [13]刘翼俊.内燃机的排放与控制.北京:机械工业出版社,2003.11-168
    
    [14] Hacham, H.Akiyama. Air pollution control by electrical discharges. IEEE TransactionDielectrics and Electrical Insulation, 2000,7(5):654-683
    
    [15] J. O. Chae. Non-thermal plasma for diesel exhaust treatment. Journal of Electrostatics, 2003,57 (3): 251-262
    
    [16]郭春文.低温等离子体法净化汽车尾气.重庆三峡学院学报,2003,19(6):113-115
    
    [17]杜愎刚,朱会田,许力.车用柴油机排放控制现状与技术进展.内燃机工程,2004,25(3): 71-74
    
    [18] Brian Scamegie, William R. Miller, Bemd Ballmert, et al. Recent DPF/SCR Results Targeting US2007and Euro 4/5 HD Emissions. SAE Paper 2003-01-0774,2003
    
    [19]田柳青,叶代启.柴油车排气颗粒物的后处理技术.环境污染治理技术与设备,2003,4 (10):74-77.
    
    [20] Agus Setiabudi, Michiel Makkee, Jacob A. MoulijnAn. Optimal Usage of NO_x in aCombined Pt/Ceramic Foam and a Wall-Flow Monolith Filter for an Effective NO_x -AssistedDiesel Soot Oxidation. SAE Paper 2003-01-0379,2003
    
    [21] A. D. Tuteja, M. B. Hoffman, J. M. Lopez-Crevillen, et al. Selection and Development of aParticulate Trap System for a Light Duty Diesel Engine. SAE Paper 920142. 101(4): 140-172
    
    [22]韩炜,徐鹏,龚依民等.柴油机尾气净化装置的微波加热催化再生技术.吉林大学学报 (理学版),2004,42(2):311-315.
    
    [23] Ryan Shirk, Richard L. Bloom, Yasuhisa Kitahara et al. Fiber Wound Electrically Regenerate Diesel Particulate Filter Cartridge for Small Diesel Engines. SAE Paper 950153. 104(3): 383-394
    
    [24]宁智,资新运.柴油机排气微粒过滤器微波再生试验研究.内燃机学报,1998,16(4): 492-496.
    
    [25] Taroh Uchiyama, Satoshi Enamito, Kazuhiko Takesa, et al. Development of Particulate TrapSystem with Cross Flow Ceramic Filter and Reverse Flow Cleaning Regeneration. SAE Paper940463,1994
    
    [26] Ulrich Pfahl, Werner Hirtler, Thomas Cartus. Passenger Car Investigations of NO_x -Adsorberand DPF Combination to Fulfill Future Diesel Emission Limits. SAE Paper 2003-01-0043,2003.
    
    [27] Konstandopoulos A. G, Zarvalis D., Papaioannou E., et al. The Diesel ExhaustAftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate EmissionControl in Europe. SAE Paper 2004-01-0694,2004
    
    [28]曾科,龙学明,刘兵等.采用低温等离子体技术降低柴油机有害排放物的研究.内燃机学 报,2003,21(1):45-48.
    
    [29]刘圣华,肖福民,周龙保等.低温等离子技术在柴油机颗粒排放控制中的应用.内燃机学 报,2001,19(4):304-304
    
    [30] Toshiaki Yamamoto, Masaaki Okubo, Tomoyuki Kuroki, et al. Nonthermal Plasma Regeneration of Diesel Particulate Filter. SAE Paper 2003-01-1182,2003
    
    [31]于秀敏,杨世春,高莹.降低汽车发动机排放的技术.汽车工程,2002,24(5):445-450
    
    [32] Koutarou Wakamoto, Toshihiko Nishiyama. System Evaluation of the HC deNO_x Catalyst for Industrial Heavy-Duty Diesel Engine. SAE Paper 2003-01-0044,2003.
    
    [33] Shimizu, K. , Saeki, S., Yamada, G, et al. Emission Spectrometry of NO or Activated Nitrogen Species in Non-thermal Plasma. Industry Applications Conference, 2002. 37th IAS Annual Meeting. Conference, 2002,3(3): 1802-1809
    
    [34]冯志宏,吕保和.低温等离子体净化汽车尾气中NO的研究.车用发动机,2005,28(5): 57-60
    
    [35] Yukimura, K., Kawamura, K., Kambara, S., et al. Correlation of Energy Efficiency of NO Removal by Intermittent DBD Radical Injection Method, DEEE TRANSACTIONS ON PLASMA SCIENCE, 2005,33(2): 763-770
    
    [36]赵文华,张旭东.反应器特征参数对介质阻挡放电去除NO的影响.清华大学学报,2003, 43(11):1515-1518
    
    [37] Itoh Yoshihiko, UedaMatsuei, Shinjoh Hirohumi. et al. NO_x Reduction Behavior onCatalysts With Non-Thermal Plasma in Simulated Oxidizing Exhaust Gas. SAE Paper2004-01-1833,2004
    
    [38] B. S. Rajanikanth, P. K. Srinivas Knmar, V. Ravi. Non-Conventional Plasma AssistedCatalysts for Diesel Exhaust Treatment: A Case Study. Plasma Science technology, 2002,4(1):1119-1126
    
    [39] M.L. Balmer, R.G Tonkyn, S. Yoon, et al. NO_x Destruction Behavior of Select MaterialsWhen Combined with a Non-Thermal Plasma. SAE Paper 1999-01-3640,1999
    
    [40]裴梅香.等离子体/催化同时去除氮氧化物和微粒的基础研究:[博士学位论文].上海:上 海交通大学,2004
    
    [41] H H Kim, K Takashima, S Katsura, et al. Low-temperature NO reduction processes usingcombined systems of pulsed corona discharge and catalysts. Journal of Physics D:AppliedPhysics, 2001,34(4): 604-613
    
    [42] Ueda Matsuei, Itoh Yoshihiko, Shinjoh Hirofumi Matsuei, et al. A Concept of AssistedCatalyst System Using a DeNO_x Catalyst for an Automobile Diesel Engine. SAE Paper2004-01-1834,2004
    
    [43] Yoshida K, Makino S, Sumiya S, et al. Simultaneous Reduction of NO_x and ParticulateEmissions from Diesel Engine Exhaust. SAE Paper 892046, 1989
    
    [44] Cooper BarryJ, ThossJames E. Role of NO in Diesel Particulate Emission Control. SAEPaper 890404,1989
    
    [45] Teraoka Y, Nakano K, Kagawa K, et al. Simultaneous Removal of Nitrogen Oxides andDiesel Soot Particulates Catalyzed by Perovskite Type Oxides. A ppl Catal B, 1995, 5(3):181-185
    
    [46] Teraoka Y, Nakano K, Shangguan W F, et al. Simultaneous Catalytic Removal of NitrogenOxide and Diesel Soot Particulate over Perovskite Related Oxides. Catal Today, 1996,27(1-2):107- 113
    
    [47] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NO_x and dieselsoot particulates over ternary AB_2O_4 spinel-type oxides. A ppl Catal B, 1996,8 (2) :217-227
    
    [48] Shangguan W F, Teraoka Y, Kagawa S. Promotion effect of potassium on the catalyticproperty of CuFe_2O_4 for the simultaneous removal of NO, and diesel soot particulate. ApplCatal B, 1998,16 (2) :149-154
    
    [49] Teraoka Y, Shangguan W F, Kagawa S. Reaction Mechanism of Simultaneous Catalyticremoval of NOx and Diesel Soot Particulates. Research on Chemical Intermediates, 2000,26(2): 201-206
    
    [50] Michel Deeba, Joseph C. Dettling, Yiu Kwan Lui. Four-way diesel exhaust catalyst andmethod of use. USA, Patent, 6093378. 2000-07-25
    
    [51] Steven J. Schmieg, Byong K. Cho, Se H. Oh. Hydrocarbon Reactivity in a Plasma-CatalystSystem: Thermal Versus Plasma-Assisted Lean NO_x Reduction. SAE Paper 2003-01-3565,2003
    
    [52]王伟,杜传进,徐翔.等离子体净化柴油车尾气的能耗研究.武汉理工大学学报,2005, 27(12):93-95
    
    [53] B. M. Penetrante, R. M. Brusasco, B. T. Merritt. Feasibility of Plasma Aftertreatment forSimultaneous Control of NO_x and Particulates. SAE Paper 1999-01-363,1999
    
    [54] S.E. Thomas, J.T. Shawcross, R.A. Morgan, et al. Non Thermal Plasma Aftertreatment ofParticulates -Theoretical Limits and Impact on Reactor Design. SAE Paper 2000-01-1926,2001
    
    [55] Yoshihiko Matsui, et al. Simultaneous Removal of NO_x and Particles from Diesel EngineExhaust Using Plasma and Oxidative Catalyst, SAE 2003-01-1185
    
    [56]王尚弟,孙俊权.催化剂工程导论.北京:化学工业出版社,2001.2-38
    
    [57]郑育英,邓淑华,黄慧民等.三效催化剂中助剂的研究进展.三峡大学学报(自然科学版), 2004,26(1):93-96
    
    [58]刘菊荣,宋绍富.汽车尾气净化技术及催化剂的发展.石油化工高等学校学报.2004,17(1): 31-36
    
    [59]恩格尔哈德公司.四元柴油尾气催化剂和应用方法.中国专利,98806200,2002-07-31
    
    [60] Milt V G, Pissarello M L, Miro E E, et al. Abatement of diesel-exhaust pollutants: NO_xstorage and soot combustion on K/La_2O_3 catalysts. Appl. Catal. B: Environment, 2003, 41(4):397-414
    
    [61] Ileana D. Lick, Alfredo Carrascull, Marta Ponzi, et al. The Catalytic Activity of Co/ZrO_2 forNO reduction with Propane in O_2 presence. Catalysis Letters. 2003, 89(34): 179-184
    
    [62] Liu Sh T, Obuchi A, Uchisawal J, et al. Synergistic catalysis of carbon black oxidation by Ptwith MoO_3 or V_2O_5. Applied Catalysis B: Environmental, 2001, 30(3-4): 3259-265
    
    [63]刘光辉,黄震,上官文峰等.同时催化去除柴油机微粒和NO_x的试验研究(1).内燃机学报, 2003,21(1):40-44
    
    [64]刘光辉,黄震,上官文峰等.同时催化去除柴油机微粒和NO_x的试验研究(2).内燃机学 报,2003,21(2):111-114
    
    [65]冯长根,张江山,王亚军.钙钛矿型复合氧化物用于汽车尾气催化净化的研究进展(一). 安全与环境学报,2004,4(3):81-84
    
    [66]冯长根,张江山,王亚军.钙钛矿型复合氧化物用于汽车尾气催化净化的研究进展(二). 安全与环境学报,2004,4(4):56-59
    
    [67] Shangguan W F, Teraoka Y, Kagawa S. Simultaneous catalytic removal of NO_x and diesel soot particulates over ternary AB_2O_4 spinel-type oxides. Appl Catal B, 1996, 8: 217-227
    
    [68] Hong S S, Lee G D. Simultaneous removal of NO and carbon particulates over lanthanoid perovskite-type catalysts. Catal Today, 2000,63: 397-404
    
    [69]王虹,赵震,徐春明.同时消除柴油机尾气排放炭颗粒和NO_x催化剂的研究进展.化工进 展,2004,23(7):723-726
    
    [70] WANG Wei, DU Chuanjin, XU Xiang, et al. Preparation of La_(0.9)K_(0.1)CoO_3 PerovskiteComposite Oxide. Journal of Wuhan University of Technology-Materials Science Edition.2005,20(4): 32-34
    
    [71] WANG Wei, DU Chuanjin, XU Xiang, et al. Removel of NO, and Diesel Soot ParticulatesCatalyzed by Perovskite-type Oxide La_(0.9)K_(0.1)CoO_3. Journal of Wuhan University ofTechnology-Materials Science Edition. 2006, 21(1): 57-59
    
    [72] Agus Setiabudi, Michiel Makkee and Jacob, A MoulijnAn. Optimal Usage of NO_x in aCombined Pt/Ceramic Foam and a Wall-Flow Monolith Filter for an Effective NO_x -AssistedDiesel Soot Oxidation. SAE Paper 2003-01-23,2003
    
    [73]王燕.常压DBD的演变过程及其在合成氨研究中的应用:[硕士学位论文].大连:大连海 事大学,2003
    
    [74]桑宏.介质阻挡放电的参量研究:[硕士学位论文].上海:复旦大学,2001
    
    [75]张芝涛.大气压窄间隙DBD等离子体源与应用基础研究:[博士学位论文].沈阳:东北大 学,2003
    
    [76]庄洪春,孙鹞鸿,彭燕昌等介质阻挡放电产生等离子体技术研究.高电压技术,2002,28 (12):57-58
    
    [77]柳晶晶,袁志兵,袁兴成等.低温等离子体去除空气中NO_2技术的研究.高电压技术,2005, 31(2):67-69
    
    [78] Kogelschatz U. Dielectric-barrier discharges:their history,discharge physics,and industrialapplications.Plasma Chem.Plasma Proc. 2003,23 (1):1-46
    
    [79] Zhang Qiang, Xu Shisen, Gu Fan. An Experimental Study on Removal of NO_x in Flue Gas atThe Nonequilibrium Plasma. ACADEMIC JOURNAL OF XI'AN JIAOTONGUNIVERSITY(ENGLISH EDITION), 2004,16(1): 15-17
    
    [80]马利,吕保和,蔡忆昔等.脉冲放电等离子体净化汽车尾气中的NO_x的影响因素.车用发 动机,2005,28(1):35-40
    
    [81]孙琪.富氧条件下等离子体与催化活化协同脱除氮氧化物研究:[博士学位论文].大连:大 连理工大学,2004
    
    [82] Yamamoto, T., Yang, C.-L., Beltran, M.R.. et al. Plasma-Assisted Chemical Process for NO_xControl. EEEETRANSACnONS ON INDUSTRY APPLICATIONS, 2000,3 (3) :923-927
    
    [83] Yamamoto, T., Rajanikanth, B.S., Okubo, M. et al. Performance Evaluation of NonthermalPlasma Reactors for NO Oxidation in Diesel Engine Exhaust Gas Treatmen. IEEETRANSACTIONS ON INDUSTRY APPLICATIONS, 2003, (6): 1608-1613
    
    [84] Rajanikanth.BS, Srinivasan. AD, Ravi.V. Discharge Plasma Treatment for NO_x Reductionfrom Diesel Engine Exhaust, IEEE Transactions on Dielectrics and Electrical Insulation, 2005,12 (1): 72-80
    
    [85] Akishev, Y.S. Aponin, GI. Grushin, M.E., et al.Discharge Structure on the DielectricSurface of a Pin-to-Plane DBD in Argon at Atmospheric Pressure. IEEE TRANSACTIONSON PLASMA SCIENCE, 2005, 33 (2), 332-333
    
    [86] C. L. Aardahl, K. G Rappe, P. W. Park et al. Steady-State Engine Testing of γ-AluminaCatalysts Under Plasma Assist for NO, Control in Heavy-Duty Diesel Exhaust. SAE Paper2003-01-1186,2003
    
    [87] Yoshihiko Matsui, Satoshi Sato, Kazunori Takashima, et al .Yoshihiko Matsui. SimultaneousRemoval of NO_x and Particles from Diesel Engine Exhaust Using Plasma and OxidativeCatalyst. SAE paper 2003-01-1185,2003
    
    [88]管井秀郎.等离子体电子工程学.北京:科学出版社,2002.76-102.
    
    [89]徐学基,诸定昌.气体放电物理.上海:复旦大学出版社,1996.312-323
    
    [90]江宪庆,邓新模,陶相国等.大学物理学(下).上海:上海科学技术文献出版社,1989.67- 69.
    
    [91]裴梅香,林赫,黄震.柴油机排气后处理技术及发展方向小型内燃机与摩托车,2003, 32(2):35-38.
    
    [92]孙岩洲,邱毓昌。丁卫东.电源频率对介质阻挡放电的影响.高电压技术,2002,28(11): 43, 53
    
    [93] Takaki, K. ,Shimizu, M., Mukaigawa, S. , et al .Effect of Electrode Shape in Dielectric Barrier Discharge Plasma Reactor for NO, Removal. IEEE TRANSACTIONS ON PLASMA SCIENCE. 2004, 32 (1): 32-38
    
    [94]大连理工大学静电与特种电源研究所.HP-60型脉冲高压电源使用说明书.大连理工大 学静电与特种电源研究所,2006
    
    [95] M Koebel, M Elsener, O Krocher, et al. NO, reduction in the exhaust of mobile heavy-duty diesel engines by urea-SCR, Topics in Catalysis. 2004,30-31(1):43-48
    
    [96] R. Sankaranarayanan, B. Pashaie, S. K. Dhali. Charateristics of a barrier discharge in monatomic and molecular gase. Applied Physics Letters, 1999,74 (21): 3119-3121
    
    [97]徐学基.气体放电物理.上海:复旦大学出版社,1998.312-335
    
    [98]刘钟阳,吴彦,王宁会.DBD离子体反应器放电功率测量的研究.仪器仪表学报,2001, 22(3):78-83
    
    [99]杨波,王燕,初庆东等.测量介质阻挡放电功率的一种新方法.大连海事大学学报,2002, 28(1):92-96
    
    [100]黄桂兵.强电离放电强化内燃机燃烧及尾气治理研究:[硕士学位论文].大连:大连海事 大学,2004
    
    [101]田晓梅,何翔,乇喜眉.介质阻挡放电.光催化净化汽车尾气中的NO.环境监测管理与 技术,2006,18(2):11-14.
    
    [102]蔡忆昔,王军,赵卫东等.低温等离子体技术在降低柴油机排放中的应用.中国机械工 程,2005,16(24):2238-2241.
    
    [103]董淑玲.介质阻挡放电脱除NO的研究:[硕士学位论文].南京:南京理工大学,2007
    
    [104]叶丽华,施爱平,吴春笃等.低温等离子体净化汽车尾气的实验研究.拖拉机与农用运 输车,2005,32(1):19-23
    
    [105] S Tsukamoto, T Namihira, Wang D Y, et al. Effects of Fly Ash on NO_x Removal by PulsedStreamers. IEEE Trans. Plasma Scinece, 2001,29 (1): 29-36
    
    [106] T Namihira, S Tsukamoto, Wang D Y, et al. Influence of Gas Flow Rate and Reactor Lengthon NO Removal Using Pulse Power. IEEE Trans. Plasma Scinece, 2001,29 (4) : 592-598
    
    [107] T Namihira, S Tsukamoto, Wang D Y, et al. Improvement of NO_x Removal Efficiency UsingShort-width Pulsed Power. IEEE Trans. Plasma Scinece, 2000,28 (2) : 434-442
    
    [108]郭广勇.介质阻挡放电治理内燃机尾气治理NO_x的实验研究:[硕士学位论文].大连:大 连海事大学,2002
    
    [109]施耀,谭天恩,李松.高压脉冲放电脱氮技术的研究,化学反应工程与工艺,2001,17 (1):5-9
    
    [110]马志民.脉冲放电等离子体消除NO_x的实验研究.黑龙江大学自然科学学报,1997,14 (3):80-84
    
    [111]杨新桦,李小红,卢义玉等.高压脉冲电晕处理发动机尾气中的NO的实验研究.环境 污染治理技术与装备,2002,3(3):56-59
    
    [112]王华定.非平衡等离子体改善柴油机排放的研究,中国水运(学术版),2006,6(9): 68-70

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700