用户名: 密码: 验证码:
RBM5调控凋亡相关基因的表达及对肺腺癌耐药影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在世界范围内,肺癌的发病率和死亡率居恶性肿瘤前列,肺癌也是发病率增长最快的恶性肿瘤之一。非小细胞肺癌(non-small cell lungcancer, NSCLC)占肺癌的80%以上,以铂类为基础联合其他药物是NSCLC的标准化疗方案之一。顺铂是临床最常用、最基本的铂类药物,而肺癌的顺铂耐药严重影响了化疗的临床治疗效果,也是肺癌预后不良、生存率低的重要原因。肺癌的化疗耐药是肿瘤治疗的世界性难题,所以阐明化疗耐药的机制、找到逆转化疗耐药的有效途径已成为临床亟待解决的问题。
     顺铂主要通过与肿瘤细胞DNA结合形成顺铂-DNA加合物发挥抗癌作用。肿瘤的顺铂耐药机制复杂,研究证明,促凋亡基因与抗凋亡基因表达失衡引起的凋亡缺陷是顺铂耐药的主要机制之一,但引起凋亡缺陷的具体分子机制及调控途径仍需进一步明确。目前,以选择性诱导肿瘤细胞凋亡为目标开展联合基因治疗已成为肿瘤研究中的热点。
     RNA结合基序蛋白-5(RNA binding motif protein5, RBM5)是新近发现的肿瘤抑制基因,位于肺癌的常见基因缺失区人类3号染色体短臂2区1带3亚带(3p21.3);目前的研究表明RBM5与肺癌的发生、发展关系密切。RBM5能调控多个基因的选择性剪切,调控细胞增殖、分化及凋亡,其最重要的特征是调控细胞凋亡的过程。本研究旨在探讨RBM5是否作为凋亡相关基因的上游调控基因,通过促凋亡途径诱导耐药肺癌细胞凋亡,从而逆转肺癌耐药。
     本实验以人肺腺癌细胞A549及其顺铂耐药细胞株A549/DDP为研究对象,以RBM5为靶点,探讨RBM5在体内、体外调控凋亡相关基因表达及对人肺腺癌细胞顺铂耐药的影响,为明确肺癌耐药逆转机制和临床基因靶向治疗提供科学依据。
     方法
     (1)采用半定量RT-PCR、Western blot法检测人肺腺癌细胞A549及其耐药细胞A549/DDP中RBM5的mRNA及蛋白表达水平。
     (2) MTT法检测顺铂作用下人肺腺癌细胞的生存率;DAPI染色观察细胞核形态;Annexin V-FITC与PI双染法流式细胞术检测细胞凋亡率。Western blot分析细胞凋亡相关蛋白胞浆细胞色素c、cleavedcaspase-9、cleaved caspase-3的表达。
     (3)脂质体法瞬时转染pcDNA3.1-RBM5至A549/DDP细胞,获得高表达RBM5的体外细胞研究模型。
     (4)根据RBM5的mRNA序列以及RNAi设计原理,设计si-RBM5及si-Scramble,采用RT-PCR、Western blot等技术验证下调RBM5的效果。
     (5)将A549/DDP、A549细胞接种于裸鼠皮下获得移植瘤模型。顺铂组隔天经腹腔给予顺铂2.5mg/kg,A549/DDP联合治疗组隔天注射顺铂并在治疗第1、7天和14天3次经尾静脉注射携带质粒的减毒沙门氏菌;A549移植瘤siRNA联合治疗组给予siRNA及脂质体局部肿瘤注射,一周2次。
     (6)开始治疗后21天处死裸鼠,取肿瘤组织,称重、拍照,比较生长曲线,免疫组化法检测肿瘤组织中RBM5、PCNA、cleaved-caspase-9及cleaved-caspase-3的蛋白表达;TUNEL法检测肿瘤组织凋亡情况。
     (7) PCRArray筛查体内、体外上调、下调RBM5表达后,凋亡基因在mRNA水平的表达变化。
     结果
     (1)与A549/DDP细胞相比,A549细胞对顺铂更敏感;顺铂可诱导A549细胞发生凋亡。与A549相比,耐药细胞A549/DDP中RBM5表达下调。
     (2)转染pcDNA3.1-RBM5后,A549/DDP细胞凋亡增加,耐药逆转。在6μg/ml顺铂作用下,与空载体pcDNA3.1组及空白组相比,转染pcDNA3.1-RBM5组A549/DDP细胞中cleaved caspase-9、cleavedcaspase-3及胞浆细胞色素c表达明显增强。
     (3)成功建立肺腺癌耐药细胞裸鼠移植瘤模型。给予以减毒沙门氏菌为载体的pcDNA3.1-RBM5后,RT-PCR、Western blot、免疫组化法测得RBM5mRNA及蛋白在肺腺癌耐药细胞移植瘤组织中表达上调;移植瘤的生长明显抑制,凋亡增加,凋亡基因表达呈促凋亡效应,联合应用时,显著增强顺铂的肿瘤抑制作用。
     (4)设计、合成RBM5的靶向siRNA,并证实转染后A549细胞中RBM5的mRNA及蛋白表达下调。与si-Scramble组相比,转染si-RBM5组A549细胞对顺铂敏感性下降;在6μg/ml的顺铂作用下,转染si-RBM5组细胞的凋亡发生率明显减低,cleaved caspase-9及cleaved caspase-3、胞浆细胞色素c表达明显减弱,凋亡基因表达呈抗凋亡效应。
     (5)给予si-RBM5组,移植瘤组织中RBM5mRNA及蛋白表达均下调;移植瘤组织的凋亡基因表达呈抗凋亡效应。各组小鼠肿瘤随时间延长体积均逐渐增大,与mock(PBS)组、control(si-Scramble)组、si-RBM5组相比,顺铂治疗组肿瘤体积显著缩小,差异具有统计学意义。但与mock组、control组相比,si-RBM5组肿瘤生长无显著差异。
     结论
     (1)与亲代人肺腺癌细胞A549相比,RBM5在其耐药细胞A549/DDP中表达下调,提示RBM5与肺癌化疗耐药有关。
     (2)在体内、体外实验中,将RBM5基因导入人肺腺癌耐药细胞A549/DDP后,A549/DDP细胞凋亡增加,对顺铂的敏感性显著增加,促凋亡基因表达上调,抗凋亡基因表达下调,提示RBM5可能通过调控抗/促凋亡基因的表达逆转肺腺癌耐药细胞的顺铂耐药性。
     (3)在体外实验中,采用靶向siRNA下调肺腺癌细胞A549细胞中内源性RBM5的表达水平后,顺铂诱导的A549细胞凋亡减少,对顺铂敏感性下降;下调RBM5基因表达后,促凋亡基因表达下调,抗凋亡基因表达上调,进一步证实RBM5可通过调控凋亡相关基因的表达影响肺腺癌的顺铂敏感性。而体内实验中,A549移植瘤局部注射RBM5-siRNA及转染试剂,虽然肿瘤组织RBM5表达水平下调,但是并未影响顺铂对移植瘤的治疗效果,提示在体内,采用siRNA下调RBM5不足以影响顺铂对移植瘤的治疗效果,体内对顺铂的反应可能存在复杂的调控机制。
     (4)本研究表明,RBM5通过调控凋亡相关基因的表达影响肺癌细胞耐药;RBM5可作为预测肺癌患者对顺铂治疗敏感性的潜在分子标志物,并可能成为提高肺癌患者化疗敏感性的潜在治疗靶点。本研究也进一步明确和发现了与耐药密切相关的凋亡基因。
Lung cancer is one of the malignant tumors seriously threatening humanhealth and life worldwide. The incidence rate of lung cancer increasedrapidly year by year. Non-small cell lung cancer (NSCLC) accounts forapproximately85%of primary lung cancer cases. Platinum-basedcombination chemotherapy is the standard therapy for NSCLC. Despite therecent introduction of new platinum chemotherapeutic compounds, cisplatinremains widely used for the treatment of lung cancer. Cisplatin exertsanticancer effects via multiple mechanisms, yet its most prominent mode ofaction involves the generation of DNA lesions followed by the activation ofthe DNA damage response and the induction of apoptosis. However, theefficacy of cisplatin treatment is often impaired by the emergence of tumorcell resistance to this drug. As in some clinical settings cisplatin constitutesthe major therapeutic option, the development of chemosensitizationstrategies constitute a goal with important clinical implications. To improve the efficacy of cisplatin in clinical oncology, it is important to elucidate themechanisms by which lung cancer cells acquire the ability to evadecisplatin-induced cell death.
     Complicated mechanisms account for the cisplatin-resistance of tumorcells. One important mechanism by which tumor cells develop resistance tocisplatin is related to resistance to apoptosis. Molecular changes that have thepotential to cause apoptotic dysregulation, including activation ofantiapoptotic factors, inactivation of pro-apoptotic effectors, and/orreinforcement of survival signals. The development of novel therapeuticagents directed against these apoptosis regulation targets, which have beenshown to demonstrate enhanced apoptotic killing and sensitize resistantcancer cells to antineoplastic agents. Therefore, therapy targeting the specificmolecular alterations underlying the development of platinum resistancerepresents an attractive therapeutic strategy.
     RNA binding motif protein5(RBM5) is an RNA-binding protein thathas the ability to modulate apoptosis. Further, RBM5resides in the most“sought-after” tumor suppressor locus in lung cancer,3p21.3. Homozygousdeletions at this locus are the earliest and the most frequently genetic alteration in lung cancer. There is a growing body of literature on RBM5suggesting that RBM5is involved in apoptosis, cell proliferation andoncogenesis. Defects in apoptosis underpin both tumorigenesis and drugresistance. However, the role of RBM5in the development of acquiredresistance against chemotherapeutic agents, including cisplatin, in humanlung cancer has yet to be elucidated.
     In this study, we focused our research specifically on lungadenocarcinoma cells A549and their cisplatin resistant variant A549/DDPcells. We observed the regulation on apoptosis gene of RBM5and the effecton response to cisplatin in vivo and in vitro. This study provided platform forscreening and the discovery of new apoptosis genes related with tumorchemoresistance. These findings suggest that RBM5may act as a biomarkerwith the ability to predict a response to cisplatin, and that it may serve as aprognostic indicator in lung cancer patients, as well as acting as a moleculartarget for enhancing and resensitizing cisplatin-resistant tumors to cisplatin.
     Methods
     (1) RBM5mRNA and protein expression in the A549andA549/DDP cells was analyzed by semi-quantitative RT-PCR and Western blot.
     (2) MTT assays were used to evaluate chemosensitivity tocisplatin. Apoptosis was assessed by DAPI nuclear staining and flowcytometric analysis with an Annexin-V-FITC apoptosis kit. Cytosoliccytochrome c, cleaved caspase-3and cleaved caspase-9were detected byWestern blot.
     (3) The A549/DDP cells were then transfected with apcDNA3.1-RBM5plasmid using LipofectAMINE2000prior to treatmentwith cisplatin. We performed semi-quantitative RT-PCR and Western blotanalyses to confirm the expression of RBM5mRNA or protein.
     (4) Small interfering RNA (siRNA) sequences targeting humanRBM5and a non-target sequence were constructed. The RBM5-specificsiRNA was transfected into A549cells. Semi-quantitative RT-PCR andWestern blot analyses were performed to confirm the knockdown of RBM5mRNA or protein.
     (5) Transplant tumor model was obtained by injecting A549/DPPand A549cells to nude mice for study in vivo. Cisplatin group was givenintraperitoneal injection of2.5mg/kg cisplatin twice a week. Combination therapy group was administered with recombinant attenuated S.Typhimurium for3times and intraperitoneal injection of cisplatin forA549/DDP model. Lipidosome and siRNA were injected intra-tumor andperi-tumor for A549transplanted tumor twice a week. Tumor tissues wereobtained21days after the first treatment. Growth curve, Tumor weight andvolume were compared.
     (6) The tumors were weighted and performed the TUNEL andimmunohistochemistry (IHC) experiments respectively. The proteinexpression levels of RBM5, PCNA, cleaved-caspase-9andcleaved-caspase-3by Western blot and immunohistochemical method.
     (7) The apoptosis related genes expression change in theover-expression or down-regulated RBM5cells was detected by PCR arrayscreening in vivo and in vitro.
     Results
     (1) The expression of RBM5mRNA and protein wassignificantly reduced in the A549/DDP cells compared with the A549cells.
     (2) Exogenous expression of RBM5by the pcDNA3.1-RBM5resensitized the response of A549/DDP to cisplatin, resulting in a significant increase in tumor-suppressing activity induced by cisplatin. RBM5-enhancedchemosensitivity was associated with the release of cytochrome c into thecytosol, activation of caspase-9and the downstream marker caspase-3. Theexpression of apoptosis related genes changed to take the pro-apoptoticeffect.
     (3) The expression of RBM5mRNA and protein increased in thetransplanted human lung adenocarcinoma cells A549/DDP in nude miceconfirmed by RT-PCR, Western blot and IHC. Correlated with the results invitro, the introduction of RBM5enhanced the effect of cisplatin onA549/DDP transplanted tumors and induced the pro-apoptotic trend ofapoptosis genes.
     (4) After transfected the RBM5-specific siRNA,semi-quantitative RT-PCR and Western blot analyses were performed toconfirm the expression of RBM5mRNA or protein, and knockdown ofRBM5mRNA or protein. Downregulation of RBM5with siRNA in the A549cells inhibited the response of A549to cisplatin, resulting in a significantdecrease in tumor-suppressing activity induced by cisplatin. The expressionof apoptosis related genes changed to take the anti-apoptotic effect.
     (5) Injection of si-RBM5intra-tumor and peri-tumor reduced theexpression of RBM5mRNA and protein in A549transplanted tumor. Alltumors with A549cells increased in size during the experiment. However,the si-RBM5did not have any influence on the therapeutical effect alone orcombined with cisplatin.
     Conclusions
     (1) Cisplatin-resistant A549/DDP cells expressed lower RBM5levels than the parental A549cells. This implies a correlation betweencisplatin resistance and the expression of RBM5.
     (2) Ectopic expression of RBM5by pcDNA3.1-RBM5inducedcell apoptosis and promoted cisplatin-induced apoptosis in the A549/DDPcells. Cytosolic cytochrome c and the expression of cleaved caspase-3andcleaved caspase-9were clearly enhanced in the A549/DDP cells co-treatedwith pcDNA3.1-RBM5and cisplatin, compared with the negative control.Overexpression of RBM5up-regulated the expression of pro-apoptotic genesand down-regulated the expression of anti-apoptotic genes. These resultssuggest that the upregulated expressions of RBM5might sensitize tumorcells to cisplatin-based chemotherapy through regulation the expression of apoptotic genes.
     (3) Both mRNA and protein expression of RBM5significantlydecreased in the siRBM5-A549cells in vitro. Knockdown of RBM5conferred resistance to cisplatin-induced apoptosis and down-regulated theexpression of pro-apoptotic genes and up-regulated the expression ofanti-apoptotic genes in A549cells. The si-RBM5injection intra-tumor andperi-tumor indeed reduced the expression of RBM5in tumor tissue. However,we did not observe the influence of si-RBM5on the chemotherapeutic drugsin nude mice bearing human lung adenocarcinoma, which suggested thatthere is a complex regulatory mechanism in the regulation of response tocisplatin in vivo.
     (4) RBM5relates to cisplatin resistance in human lungadenocarcinoma. Regulation of RBM5might influence the response tocisplatin through modulating the apoptotic genes, and thus RBM5may be apromising target to overcome chemoresistance in lung cancer. Our resultssuggest that RBM5has the potential to act as a biomarker for the predictionof the cisplatin response and thus provide important data on the prognosis ofpatients with lung cancer. This study also further clarified and discovery and reversal of drug resistance related gene of apoptosis.
引文
[1] Jemal A., Bray F., Center M. M., et al. Global cancer statistics [J]. CACancer J Clin,2011,61(2):69-90.
    [2]郑荣寿,张思维,吴良有,等.中国肿瘤登记地区2008年恶性肿瘤发病和死亡分析[J].中国肿瘤,2012,(01):1-12.
    [3] Breathnach O. S., Freidlin B., Conley B., et al. Twenty-two years ofphase iii trials for patients with advanced non-small-cell lung cancer:Sobering results [J]. J Clin Oncol,2001,19(6):1734-42.
    [4] Siddik Z. H. Cisplatin: Mode of cytotoxic action and molecular basisof resistance [J]. Oncogene,2003,22(47):7265-7279.
    [5] Galluzzi L., Senovilla L., Vitale I., et al. Molecular mechanisms ofcisplatin resistance [J]. Oncogene,2012,31(15):1869-83.
    [6] Johnstone R. W., Ruefli A. A., Lowe S. W. Apoptosis: A link betweencancer genetics and chemotherapy [J]. Cell,2002,108(2):153-164.
    [7] Wajant H., Gerspach J., Pfizenmaier K. Tumor therapeutics by design:Targeting and activation of death receptors [J]. Cytokine&GrowthFactor Reviews,2005,16(1):55-76.
    [8] Okouoyo S., Herzer K., Ucur E., et al. Rescue of death receptor andmitochondrial apoptosis signaling in resistant human nsclc in vivo [J].International Journal of Cancer,2004,108(4):580-587.
    [9] Sutherland L. C., Wang K., Robinson A. G. RBM5as a putative tumorsuppressor gene for lung cancer [J]. Journal of Thoracic Oncology,2010,5(3):294-298.
    [10] Ramaswamy S., Ross K. N., Lander E. S., et al. A molecular signatureof metastasis in primary solid tumors [J]. Nat Genet,2003,33(1):49-54.
    [11] Shu Y., Rintala-Maki N. D., Wall V. E., et al. The apoptosis modulatorand tumour suppressor protein RBM5is a phosphoprotein [J]. CellBiochemistry and Function,2007,25(6):643-653.
    [12] Oh J. J., Razfar A., Delgado I., et al.3p21.3tumor suppressor geneh37/luca15/RBM5inhibits growth of human lung cancer cells throughcell cycle arrest and apoptosis [J]. Cancer Res,2006,66(7):3419-3427.
    [13] Sutherland L. C., Lerman M., Williams G. T., et al. Luca-15suppressescd95-mediated apoptosis in jurkat t cells (vol20, pg2713,2001)[J].Oncogene,2004,23(2):629-629.
    [14] Rintala-Maki N. D., Sutherland L. C. Luca-15/RBM5, a putativetumour suppressor, enhances multiple receptor-initiated death signals[J]. Apoptosis,2004,9(4):475-84.
    [15] Fushimi K., Ray P., Kar A., et al. Up-regulation of the proapoptoticcaspase2splicing isoform by a candidate tumor suppressor, RBM5[J].Proc Natl Acad Sci U S A,2008,105(41):15708-13.
    [16] Bonnal S., Martinez C., Forch P., et al. RBM5/luca-15/h37regulatesfas alternative splice site pairing after exon definition [J]. Mol Cell,2008,32(1):81-95.
    [17] Wang C. Y., Mayo M. W., Baldwin A. S., Jr. Tnf-and cancertherapy-induced apoptosis: Potentiation by inhibition of nf-kappab [J].Science,1996,274(5288):784-7.
    [18] Salvesen G. S., Renatus M. Apoptosome: The seven-spoked deathmachine [J]. Dev Cell,2002,2(3):256-7.
    [19] Saraste A., Pulkki K. Morphologic and biochemical hallmarks ofapoptosis [J]. Cardiovasc Res,2000,45(3):528-37.
    [20] Reed J. C., Pellecchia M. Apoptosis-based therapies for hematologicmalignancies [J]. Blood,2005,106(2):408-18.
    [21] Klasa R. J., Gillum A. M., Klem R. E., et al. Oblimersen bcl-2antisense: Facilitating apoptosis in anticancer treatment [J]. AntisenseNucleic Acid Drug Dev,2002,12(3):193-213.
    [22] Badros A. Z., Goloubeva O., Rapoport A. P., et al. Phase ii study ofg3139, a bcl-2antisense oligonucleotide, in combination withdexamethasone and thalidomide in relapsed multiple myeloma patients[J]. J Clin Oncol,2005,23(18):4089-99.
    [23] Oltersdorf T., Elmore S. W., Shoemaker A. R., et al. An inhibitor ofbcl-2family proteins induces regression of solid tumours [J]. Nature,2005,435(7042):677-81.
    [24] Sinicrope F. A., Penington R. C., Tang X. M. Tumor necrosisfactor-related apoptosis-inducing ligand-induced apoptosis is inhibitedby bcl-2but restored by the small molecule bcl-2inhibitor, ha14-1, inhuman colon cancer cells [J]. Clin Cancer Res,2004,10(24):8284-92.
    [25] Pei X. Y., Dai Y., Grant S. The small-molecule bcl-2inhibitor ha14-1interacts synergistically with flavopiridol to induce mitochondrialinjury and apoptosis in human myeloma cells through a freeradical-dependent and jun nh2-terminal kinase-dependent mechanism[J]. Mol Cancer Ther,2004,3(12):1513-24.
    [26] Nguyen M., Marcellus R. C., Roulston A., et al. Small moleculeobatoclax (gx15-070) antagonizes mcl-1and overcomesmcl-1-mediated resistance to apoptosis [J]. Proc Natl Acad Sci U S A,2007,104(49):19512-7.
    [27] McGregor N., Patel L., Craig M., et al. At-101(r-(-)-gossypol aceticacid) enhances the effectiveness of androgen deprivation therapy in thevcap prostate cancer model [J]. Journal of Cellular Biochemistry,2010,110(5):1187-94.
    [28] Becattini B., Kitada S., Leone M., et al. Rational design and real time,in-cell detection of the proapoptotic activity of a novel compoundtargeting bcl-x(l)[J]. Chem Biol,2004,11(3):389-95.
    [29] Oliver C. L., Miranda M. B., Shangary S., et al.(-)-gossypol actsdirectly on the mitochondria to overcome bcl-2-and bcl-x(l)-mediatedapoptosis resistance [J]. Mol Cancer Ther,2005,4(1):23-31.
    [30] Tzung S. P., Kim K. M., Basanez G., et al. Antimycin a mimics acell-death-inducing bcl-2homology domain3[J]. Nat Cell Biol,2001,3(2):183-91.
    [31] Chan S. L., Lee M. C., Tan K. O., et al. Identification of chelerythrineas an inhibitor of BCL-XL function [J]. Journal of BiologicalChemistry,2003,278(23):20453-20456.
    [32] Guensberg P., Wacheck V., Lucas T., et al. Bcl-xl antisenseoligonucleotides chemosensitize human glioblastoma cells [J].Chemotherapy,2002,48(4):189-95.
    [33] Broome H. E., Yu A. L., Diccianni M., et al. Inhibition of bcl-xlexpression sensitizes t-cell acute lymphoblastic leukemia cells tochemotherapeutic drugs [J]. Leuk Res,2002,26(3):311-6.
    [34] Jiang Z., Zheng X., Rich K. M. Down-regulation of bcl-2and bcl-xlexpression with bispecific antisense treatment in glioblastoma celllines induce cell death [J]. J Neurochem,2003,84(2):273-81.
    [35] Arnold A. A., Aboukameel A., Chen J. Y., et al. Preclinical studies ofapogossypolone: A new nonpeptidic pan small-molecule inhibitor ofbcl-2, bcl-x(l) and mcl-1proteins in follicular small cleaved celllymphoma model [J]. Mol Cancer,2008,7.
    [36] Xin J., Zhan Y. H., Xia L. M., et al. Apog2as the most potent gossypolderivatives inhibits cell growth and induces apoptosis on gastriccancer cells [J]. Biomedicine&Pharmacotherapy,2013,67(1):88-95.
    [37] Chetoui N., Sylla K., Gagnon-Houde J. V., et al. Down-regulation ofmcl-1by small interfering rna sensitizes resistant melanoma cells tofas-mediated apoptosis [J]. Molecular Cancer Research,2008,6(1):42-52.
    [38] Verbrugge I., de Vries E., Tait S. W., et al. Ionizing radiationmodulates the trail death-inducing signaling complex, allowing bypassof the mitochondrial apoptosis pathway [J]. Oncogene,2008,27(5):574-84.
    [39] Eggermont A. M. M., de Wilt J. H. W., ten Hagen T. L. M. Currentuses of isolated limb perfusion in the clinic and a model system fornew strategies [J]. Lancet Oncology,2003,4(7):429-437.
    [40] Srivastava R. K. Trail/apo-2l: Mechanisms and clinical applications incancer [J]. Neoplasia,2001,3(6):535-546.
    [41] Buchsbaum D. J., Zhou T., Lobuglio A. F. Trail receptor-targetedtherapy [J]. Future Oncol,2006,2(4):493-508.
    [42] Chiappori A. A., Schreeder M. T., Moezi M. M., et al. A phase i trial ofpan-bcl-2antagonist obatoclax administered as a3-h or a24-hinfusion in combination with carboplatin and etoposide in patientswith extensive-stage small cell lung cancer [J]. Br J Cancer,2012,106(5):839-45.
    [43] Hwang J. J., Kuruvilla J., Mendelson D., et al. Phase i dose findingstudies of obatoclax (gx15-070), a small molecule pan-bcl-2familyantagonist, in patients with advanced solid tumors or lymphoma [J].Clin Cancer Res,2010,16(15):4038-45.
    [44] Chinnaiyan A. M., Prasad U., Shankar S., et al. Combined effect oftumor necrosis factor-related apoptosis-inducing ligand and ionizingradiation in breast cancer therapy [J]. Proc Natl Acad Sci U S A,2000,97(4):1754-9.
    [45] Wissink E. H., Verbrugge I., Vink S. R., et al. Trail enhances efficacyof radiotherapy in a p53mutant, bcl-2overexpressing lymphoidmalignancy [J]. Radiother Oncol,2006,80(2):214-22.
    [46] Vogler M., Furdas S. D., Jung M., et al. Diminished sensitivity ofchronic lymphocytic leukemia cells to abt-737and abt-263due toalbumin binding in blood [J]. Clin Cancer Res,2010,16(16):4217-25.
    [47] Lock R., Carol H., Houghton P. J., et al. Initial testing (stage1) of thebh3mimetic abt-263by the pediatric preclinical testing program [J].Pediatric Blood&Cancer,2008,50(6):1181-9.
    [48] van Delft M. F., Wei A. H., Mason K. D., et al. The bh3mimeticabt-737targets selective bcl-2proteins and efficiently inducesapoptosis via bak/bax if mcl-1is neutralized [J]. Cancer Cell,2006,10(5):389-99.
    [49] Vogler M., Dickens D., Dyer M. J., et al. The b-cell lymphoma2(Bcl-2)-inhibitors, abt-737and abt-263, are substrates forp-glycoprotein [J]. Biochem Biophys Res Commun,2011,408(2):344-9.
    [50] Kim H., Rafiuddin-Shah M., Tu H. C., et al. Hierarchical regulation ofmitochondrion-dependent apoptosis by bcl-2subfamilies [J]. Nat CellBiol,2006,8(12):1348-58.
    [51] Igney F. H., Krammer P. H. Death and anti-death: Tumour resistanceto apoptosis [J]. Nat Rev Cancer,2002,2(4):277-88.
    [52] Cheng E. H., Wei M. C., Weiler S., et al. Bcl-2, bcl-x(l) sequester bh3domain-only molecules preventing bax-and bak-mediatedmitochondrial apoptosis [J]. Mol Cell,2001,8(3):705-11.
    [53] Scorrano L., Oakes S. A., Opferman J. T., et al. Bax and bak regulationof endoplasmic reticulum ca2+: A control point for apoptosis [J].Science,2003,300(5616):135-9.
    [54] Bredesen D. E., Rao R. V., Mehlen P. Cell death in the nervous system[J]. Nature,2006,443(7113):796-802.
    [55] Liu F. T., Newland A. C., Jia L. Bax conformational change is a crucialstep for puma-mediated apoptosis in human leukemia [J]. BiochemBiophys Res Commun,2003,310(3):956-962.
    [56] Fennell D. A., Chacko A., Mutti L. Bcl-2family regulation by the20sproteasome inhibitor bortezomib [J]. Oncogene,2008,27(9):1189-97.
    [57] Qin J. Z., Xin H., Sitailo L. A., et al. Enhanced killing of melanomacells by simultaneously targeting mcl-1and noxa [J]. Cancer Res,2006,66(19):9636-45.
    [58] Bross P. F., Kane R., Farrell A. T., et al. Approval summary forbortezomib for injection in the treatment of multiple myeloma [J]. ClinCancer Res,2004,10(12Pt1):3954-64.
    [59] LeBlanc R., Catley L. P., Hideshima T., et al. Proteasome inhibitorps-341inhibits human myeloma cell growth in vivo and prolongssurvival in a murine model [J]. Cancer Res,2002,62(17):4996-5000.
    [60] Richardson P. G., Siegel D., Baz R., et al. Phase1study ofpomalidomide mtd, safety, and efficacy in patients with refractorymultiple myeloma who have received lenalidomide and bortezomib [J].Blood,2013,121(11):1961-7.
    [61] Fernandez Y., Verhaegen M., Miller T. P., et al. Differential regulationof noxa in normal melanocytes and melanoma cells by proteasomeinhibition: Therapeutic implications [J]. Cancer Res,2005,65(14):6294-304.
    [62] Perez-Galan P., Roue G., Villamor N., et al. The proteasome inhibitorbortezomib induces apoptosis in mantle-cell lymphoma throughgeneration of ros and noxa activation independent of p53status [J].Blood,2006,107(1):257-264.
    [63] Qin J. Z., Xin H., Sitailo L. A., et al. Enhanced killing of melanomacells by simultaneously targeting mcl-1and noxa [J]. Cancer Res,2006,66(19):9636-9645.
    [64] Li C., Li R., Grandis J. R., et al. Bortezomib induces apoptosis via bimand bik up-regulation and synergizes with cisplatin in the killing ofhead and neck squamous cell carcinoma cells [J]. Mol Cancer Ther,2008,7(6):1647-55.
    [65] Slee E. A., O'Connor D. J., Lu X. To die or not to die: How does p53decide?[J]. Oncogene,2004,23(16):2809-2818.
    [66] Kuczera D., Paro de Oliveira H. H., Fonseca Guimaraes Fde S., et al.Bax/bcl-2protein expression ratio and leukocyte function are relatedto reduction of walker-256tumor growth afterbeta-hydroxy-beta-methylbutyrate (hmb) administration in wistar rats[J]. Nutr Cancer,2012,64(2):286-93.
    [67] Muller P. A., Vousden K. H. P53mutations in cancer [J]. Nat Cell Biol,2013,15(1):2-8.
    [68] Rodriguez-Nieto S., Zhivotovsky B. Role of alterations in theapoptotic machinery in sensitivity of cancer cells to treatment [J].Current Pharmaceutical Design,2006,12(34):4411-4425.
    [69] Chipuk J. E., Maurer U., Green D. R., et al. Pharmacologic activationof p53elicits bax-dependent apoptosis in the absence of transcription[J]. Cancer Cell,2003,4(5):371-381.
    [70] Lebedeva I. V., Su Z. Z., Sarkar D., et al. Restoring apoptosis as astrategy for cancer gene therapy: Focus on p53and mda-7[J].Seminars in Cancer Biology,2003,13(2):169-178.
    [71] Dey A., Verma C. S., Lane D. P. Updates on p53: Modulation of p53degradation as a therapeutic approach [J]. Br J Cancer,2008,98(1):4-8.
    [72] Wade M., Li Y. C., Wahl G. M. Mdm2, mdmx and p53in oncogenesisand cancer therapy [J]. Nat Rev Cancer,2013,13(2):83-96.
    [73] MacEwan D. J. Tnf ligands and receptors-a matter of life and death[J]. British Journal of Pharmacology,2002,135(4):855-875.
    [74] Pan G., Ni J., Wei Y. F., et al. An antagonist decoy receptor and a deathdomain-containing receptor for trail [J]. Science,1997,277(5327):815-8.
    [75] Hymowitz S. G., Christinger H. W., Fuh G., et al. Triggering cell death:The crystal structure of apo2l/trail in a complex with death receptor5[J]. Mol Cell,1999,4(4):563-71.
    [76] Chen M., Wang J. Initiator caspases in apoptosis signaling pathways[J]. Apoptosis,2002,7(4):313-9.
    [77] Hitoshi Y., Lorens J., Kitada S. I., et al. Toso, a cell surface, specificregulator of fas-induced apoptosis in t cells [J]. Immunity,1998,8(4):461-71.
    [78] Metkar S. S., Wang B., Ebbs M. L., et al. Granzyme b activatesprocaspase-3which signals a mitochondrial amplification loop formaximal apoptosis [J]. Journal of Cell Biology,2003,160(6):875-885.
    [79] Kelley S. K., Ashkenazi A. Targeting death receptors in cancer withapo2l/trail [J]. Curr Opin Pharmacol,2004,4(4):333-9.
    [80] Cretney E., Shanker A., Yagita H., et al. Tnf-relatedapoptosis-inducing ligand as a therapeutic agent in autoimmunity andcancer (vol84, pg87,2006)[J]. Immunology and Cell Biology,2006,84(2):238-238.
    [81] Insinga A., Monestiroli S., Ronzoni S., et al. Inhibitors of histonedeacetylases induce tumor-selective apoptosis through activation ofthe death receptor pathway [J]. Nature Medicine,2005,11(1):71-76.
    [82] Pukac L., Kanakaraj P., Humphreys R., et al. Hgs-etr1, a fully humantrail-receptor1monoclonal antibody, induces cell death in multipletumour types in vitro and in vivo [J]. Br J Cancer,2005,92(8):1430-1441.
    [83] Smith M. A., Morton C. L., Kolb E. A., et al. Initial testing (stage1) ofmapatumumab (hgs-etr1) by the pediatric preclinical testing program[J]. Pediatric Blood&Cancer,2010,54(2):307-10.
    [84] Tolcher. Phase i pharmacokinetic and biologic correlative study ofmapatumumab, a fully human monoclonal antibody with agonistactivity to tumor necrosis factor-related apoptosis-inducing ligandreceptor-1(vol25, pg1390,2007)[J]. Journal of Clinical Oncology,2007,25(29):4701-4701.
    [85] Takeda K., Stagg J., Yagita H., et al. Targeting death-inducingreceptors in cancer therapy [J]. Oncogene,2007,26(25):3745-57.
    [86] Belka C., Schmid B., Marini P., et al. Sensitization of resistantlymphoma cells to irradiation-induced apoptosis by the death ligandtrail [J]. Oncogene,2001,20(17):2190-6.
    [87] Verhagen A. M., Silke J., Ekert P. G., et al. Htra2promotes cell deaththrough its serine protease activity and its ability to antagonizeinhibitor of apoptosis proteins [J]. Journal of Biological Chemistry,2002,277(1):445-454.
    [88] Hunter A. M., LaCasse E. C., Korneluk R. G. The inhibitors ofapoptosis (iaps) as cancer targets [J]. Apoptosis,2007,12(9):1543-1568.
    [89] Fong W. G., Liston P., Rajcan-Separovic E., et al. Expression andgenetic analysis of xiap-associated factor1(xaf1) in cancer cell lines[J]. Genomics,2000,70(1):113-122.
    [90] Tong Q. S., Zheng L. D., Wang L., et al. Downregulation of xiapexpression induces apoptosis and enhances chemotherapeuticsensitivity in human gastric cancer cells [J]. Cancer Gene Ther,2005,12(5):509-14.
    [91] Berezovskaya O., Schimmer A. D., Glinskii A. B., et al. Increasedexpression of apoptosis inhibitor protein xiap contributes to anoikisresistance of circulating human prostate cancer metastasis precursorcells [J]. Cancer Res,2005,65(6):2378-86.
    [92] Lacasse E. C., Kandimalla E. R., Winocour P., et al. Application ofxiap antisense to cancer and other proliferative disorders:Development of aeg35156/gem640[J]. Ann N Y Acad Sci,2005,1058:215-34.
    [93] Carter B. Z., Gronda M., Wang Z., et al. Small-molecule xiapinhibitors derepress downstream effector caspases and induceapoptosis of acute myeloid leukemia cells [J]. Blood,2005,105(10):4043-50.
    [94] Cillessen S. A., Reed J. C., Welsh K., et al. Small-molecule xiapantagonist restores caspase-9mediated apoptosis in xiap-positivediffuse large b-cell lymphoma cells [J]. Blood,2008,111(1):369-75.
    [95] Kim Y., Suh N., Sporn M., et al. An inducible pathway for degradationof flip protein sensitizes tumor cells to trail-induced apoptosis [J]. JBiol Chem,2002,277(25):22320-9.
    [96] Ikeda T., Nakata Y., Kimura F., et al. Induction of redox imbalance andapoptosis in multiple myeloma cells by the novel triterpenoid2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid [J]. Mol Cancer Ther,2004,3(1):39-45.
    [97] Hyer M. L., Croxton R., Krajewska M., et al. Synthetic triterpenoidscooperate with tumor necrosis factor-related apoptosis-inducing ligandto induce apoptosis of breast cancer cells [J]. Cancer Res,2005,65(11):4799-808.
    [98] Aggarwal B. B. Nuclear factor-kappa-b: The enemy within [J]. CancerCell,2004,6(3):203-208.
    [99] Karin M., Lin A. Nf-kappa b at the crossroads of life and death [J].Nature Immunology,2002,3(3):221-227.
    [100] Pikarsky E., Porat R. M., Stein I., et al. Nf-kappa b functions as atumour promoter in inflammation-associated cancer [J]. Nature,2004,431(7007):461-466.
    [101] Mokhtari D., Li T., Lu T., et al. Effects of imatinib mesylate (gleevec)on human islet nf-kappab activation and chemokine production invitro [J]. PLoS One,2011,6(9): e24831.
    [102] Gatto S., Scappini B., Pham L., et al. The proteasome inhibitor ps-341inhibits growth and induces apoptosis in bcr/abl-positive cell linessensitive and resistant to imatinib mesylate [J]. Haematologica,2003,88(8):853-863.
    [103] Burke J. R., Pattoli M. A., Gregor K. R., et al. Bms-345541is a highlyselective inhibitor of i kappa b kinase that binds at an allosteric site ofthe enzyme and blocks nf-kappa b-dependent transcription in mice [J].Journal of Biological Chemistry,2003,278(3):1450-1456.
    [104] Dai Y., Pei X. Y., Rahmani M., et al. Interruption of the nf-kappa bpathway by bay11-7082promotes ucn-01-mediated mitochondrialdysfunction and apoptosis in human multiple myeloma cells [J]. Blood,2004,103(7):2761-2770.
    [105] Kishore N., Sommers C., Mathialagan S., et al. A selective ikk-2inhibitor blocks nf-kappa b-dependent gene expression in interleukin-1beta-stimulated synovial fibroblasts [J]. Journal of BiologicalChemistry,2003,278(35):32861-32871.
    [106] Dhanalakshmi S., Singh R. P., Agarwal C., et al. Silibinin inhibitsconstitutive and tnfalpha-induced activation of nf-kappab andsensitizes human prostate carcinoma du145cells to tnfalpha-inducedapoptosis [J]. Oncogene,2002,21(11):1759-67.
    [107] Castro A. C., Dang L. C., Soucy F., et al. Novel ikk inhibitors:Beta-carbolines [J]. Bioorg Med Chem Lett,2003,13(14):2419-22.
    [108] Shankar S., Srivastava R. K. Enhancement of therapeutic potential oftrail by cancer chemotherapy and irradiation: Mechanisms and clinicalimplications [J]. Drug Resist Updat,2004,7(2):139-56.
    [109] Nam S. Y., Jung G. A., Hur G. C., et al. Upregulation of flip(s) by akt, apossible inhibition mechanism of trail-induced apoptosis in humangastric cancers [J]. Cancer Sci,2003,94(12):1066-73.
    [110] Burns T. F., El-Deiry W. S. Identification of inhibitors of trail-induceddeath (itids) in the trail-sensitive colon carcinoma cell line sw480using a genetic approach [J]. Journal of Biological Chemistry,2001,276(41):37879-37886.
    [111] Carol H., Morton C. L., Gorlick R., et al. Initial testing (stage1) of theakt inhibitor gsk690693by the pediatric preclinical testing program [J].Pediatr Blood Cancer,2010,55(7):1329-37.
    [112] Jakubowiak A. J., Richardson P. G., Zimmerman T., et al. Perifosineplus lenalidomide and dexamethasone in relapsed andrelapsed/refractory multiple myeloma: A phase i multiple myelomaresearch consortium study [J]. Br J Haematol,2012,158(4):472-80.
    [113] Lord S. J., Rajotte R. V., Korbutt G. S., et al. Granzyme b: A naturalborn killer [J]. Immunological Reviews,2003,193(1):31-38.
    [114] Barry M., Heibein J. A., Pinkoski M. J., et al. Granzyme bshort-circuits the need for caspase8activity during granule-mediatedcytotoxic t-lymphocyte killing by directly cleaving bid [J]. Mol CellBiol,2000,20(11):3781-3794.
    [115] Motyka B., Korbutt G., Pinkoski M. J., et al. Mannose6-phosphate/insulin-like growth factor ii receptor is a death receptorfor granzyme b during cytotoxic t cell-induced apoptosis [J]. Cell,2000,103(3):491-500.
    [116] Davis J. E., Sutton V. R., Smyth M. J., et al. Dependence of granzymeb-mediated cell death on a pathway regulated by bcl-2or its viralhomolog, bhrf1[J]. Cell Death and Differentiation,2000,7(10):973-983.
    [117] Bian G., Ding X., Leigh N. D., et al. Granzyme b-mediated damage ofcd8+t cells impairs graft-versus-tumor effect [J]. J Immunol,2013,190(3):1341-50.
    [118] Rosen D., Li J. H., Keidar S., et al. Tumor immunity inperforin-deficient mice: A role for cd95(fas/apo-1)[J]. Journal ofImmunology,2000,164(6):3229-3235.
    [119] Sanna M. G., da Silva Correia J., Ducrey O., et al. Iap suppression ofapoptosis involves distinct mechanisms: The tak1/jnk1signalingcascade and caspase inhibition [J]. Mol Cell Biol,2002,22(6):1754-66.
    [120] Deveraux Q. L., Reed T. C. Iap family proteins-suppressors ofapoptosis [J]. Genes&Development,1999,13(3):239-252.
    [121] Liston P., Fong W. G., Korneluk R. G. The inhibitors of apoptosis:There is more to life than Bcl-2[J]. Oncogene,2003,22(53):8568-8580.
    [122] Li F. Z., Ackermann E. J., Bennett C. F., et al. Pleiotropic cell-divisiondefects and apoptosis induced by interference with survivin function[J]. Nat Cell Biol,1999,1(8):461-466.
    [123] Salvesen G. S., Duckett C. S. Iap proteins: Blocking the road to death'sdoor [J]. Nature Reviews Molecular Cell Biology,2002,3(6):401-410.
    [124] Holcik M., Gibson H., Korneluk R. G. Xiap: Apoptotic brake andpromising therapeutic target [J]. Apoptosis,2001,6(4):253-61.
    [125] Deveraux Q. L., Leo E., Stennicke H. R., et al. Cleavage of humaninhibitor of apoptosis protein xiap results in fragments with distinctspecificities for caspases [J]. EMBO J,1999,18(19):5242-51.
    [126] Eckelman B. P., Salvesen G. S. The human anti-apoptotic proteinsciap1and ciap2bind but do not inhibit caspases [J]. Journal ofBiological Chemistry,2006,281(6):3254-3260.
    [127] Chang H., Schimmer A. D. Livin/melanoma inhibitor of apoptosisprotein as a potential therapeutic target for the treatment ofmalignancy [J]. Mol Cancer Ther,2007,6(1):24-30.
    [128] Maier J. K. X., Lahoua Z., Gendron N. H., et al. The neuronalapoptosis inhibitory protein is a direct inhibitor of caspases3and7[J].Journal of Neuroscience,2002,22(6):2035-2043.
    [129] Dohi T., Beltrami E., Wall N. R., et al. Mitochondrial survivin inhibitsapoptosis and promotes tumorigenesis [J]. Journal of ClinicalInvestigation,2004,114(8):1117-1127.
    [130] Nachmias B., Ashhab Y., Ben-Yehuda D. The inhibitor of apoptosisprotein family (iaps): An emerging therapeutic target in cancer [J].Seminars in Cancer Biology,2004,14(4):231-243.
    [131] Sung K. W., Choi J., Hwang Y. K., et al. Overexpression of apollon, anantiapoptotic protein, is associated with poor prognosis in childhoodde novo acute myeloid leukemia [J]. Clinical Cancer Research,2007,13(17):5109-5114.
    [132] Schimmer A. D. Inhibitor of apoptosis proteins: Translating basicknowledge into clinical practice [J]. Cancer Res,2004,64(20):7183-7190.
    [133] Altieri D. C. Survivin, versatile modulation of cell division andapoptosis in cancer [J]. Oncogene,2003,22(53):8581-8589.
    [134] Altieri D. C. Opinion-survivin, cancer networks andpathway-directed drug discovery [J]. Nature Reviews Cancer,2008,8(1):61-70.
    [135] Suzuki Y., Nakabayashi Y., Takahashi R. Ubiquitin-protein ligaseactivity of x-linked inhibitor of apoptosis protein promotesproteasomal degradation of caspase-3and enhances its anti-apoptoticeffect in fas-induced cell death [J]. Proc Natl Acad Sci U S A,2001,98(15):8662-8667.
    [136] Kempkensteffen C., Hinz S., Christoph F., et al. Expression levels ofthe mitochondrial iap antagonists smac/diablo and omi/htra2inclear-cell renal cell carcinomas and their prognostic value [J]. J CancerRes Clin Oncol,2008,134(5):543-50.
    [137] Cao C., Mu Y., Hallahan D. E., et al. Xiap and survivin as therapeutictargets for radiation sensitization in preclinical models of lung cancer[J]. Oncogene,2004,23(42):7047-52.
    [138] Kang H. G., Lee S. J., Chae M. H., et al. Identification ofpolymorphisms in the xiap gene and analysis of association with lungcancer risk in a korean population [J]. Cancer Genet Cytogenet,2008,180(1):6-13.
    [139] Berezovskaya O., Schimmer A. D., Glinskii A. B., et al. Increasedexpression of apoptosis inhibitor protein xiap contributes to anoikisresistance of circulating human prostate cancer metastasis precursorcells [J]. Cancer Res,2005,65(6):2378-2386.
    [140] Tong Q. S., Zheng L. D., Wang L., et al. Downregulation of xiapexpression induces apoptosis and enhances chemotherapeuticsensitivity in human gastric cancer cells [J]. Cancer Gene Ther,2005,12(5):509-514.
    [141] Cheng Y. J., Jiang H. S., Hsu S. L., et al. Xiap-mediated protection ofh460lung cancer cells against cisplatin [J]. Eur J Pharmacol,2010,627(1-3):75-84.
    [142] McManus D. C., Lefebvre C. A., Cherton-Horvat G., et al. Loss ofxiap protein expression by rnai and antisense approaches sensitizescancer cells to functionally diverse chemotherapeutics [J]. Oncogene,2004,23(49):8105-8117.
    [143] Hu Y. P., Cherton-Horvat G., Dragowska V., et al. Antisenseoligonucleotides targeting xiap induce apoptosis and enhancechemotherapeutic activity against human lung cancer cells in vitro andin vivo [J]. Clinical Cancer Research,2003,9(7):2826-2836.
    [144] Amantana A., London C. A., Iversen P. L., et al. X-linked inhibitor ofapoptosis protein inhibition induces apoptosis and enhanceschemotherapy sensitivity in human prostate cancer cells [J]. MolCancer Ther,2004,3(6):699-707.
    [145] Cao C., Mu Y., Hallahan D. E., et al. Xiap and survivin as therapeutictargets for radiation sensitization in preclinical models of lung cancer(vol23, pg7047,2004)[J]. Oncogene,2004,23(58):9448-9448.
    [146] LaCasse E. C., Cherton-Horvat G. G., Hewitt K. E., et al. Preclinicalcharacterization of aeg35156/gem640, a second-generation antisenseoligonucleotide targeting x-linked inhibitor of apoptosis [J]. ClinicalCancer Research,2006,12(17):5231-5241.
    [147] Mahadevan D., Chalasani P., Rensvold D., et al. Phase i trial ofaeg35156an antisense oligonucleotide to xiap plus gemcitabine inpatients with metastatic pancreatic ductal adenocarcinoma [J]. Am JClin Oncol,2012.
    [148] Cummings J., Ward T. H., LaCasse E., et al. Validation ofpharmacodynamic assays to evaluate the clinical efficacy of anantisense compound (aeg35156) targeted to the x-linked inhibitor ofapoptosis protein xiap [J]. Br J Cancer,2005,92(3):532-538.
    [149] Shaw T. J., Lacasse E. C., Durkin J. P., et al. Downregulation of xiapexpression in ovarian cancer cells induces cell death in vitro and invivo [J]. Int J Cancer,2008,122(6):1430-4.
    [150] Schimmer A. D., Welsh K., Pinilla C., et al. Small-moleculeantagonists of apoptosis suppressor xiap exhibit broad antitumoractivity [J]. Cancer Cell,2004,5(1):25-35.
    [151] Wu T. Y., Wagner K. W., Bursulaya B., et al. Development andcharacterization of nonpeptidic small molecule inhibitors of thexiap/caspase-3interaction [J]. Chem Biol,2003,10(8):759-67.
    [152] Oost T. K., Sun C., Armstrong R. C., et al. Discovery of potentantagonists of the antiapoptotic protein xiap for the treatment of cancer[J]. J Med Chem,2004,47(18):4417-26.
    [153] Sun H. Y., Nikolovska-Coleska Z., Yang C. Y., et al. Structure-baseddesign, synthesis, and evaluation of conformationally constrainedmimetics of the second mitochondria-derived activator of caspase thattarget the x-linked inhibitor of apoptosis protein/caspase-9interactionsite [J]. J Med Chem,2004,47(17):4147-4150.
    [154] Mori T., Doi R., Kida A., et al. Effect of the xiap inhibitor embelin ontrail-induced apoptosis of pancreatic cancer cells [J]. J Surg Res,2007,142(2):281-6.
    [155] Aird K. M., Ding X., Baras A., et al. Trastuzumab signaling inerbb2-overexpressing inflammatory breast cancer correlates withx-linked inhibitor of apoptosis protein expression [J]. Mol Cancer Ther,2008,7(1):38-47.
    [156] Li J., Chen P., Li X. Q., et al. Elevated levels of survivin and livinmrna in bronchial aspirates as markers to support the diagnosis of lungcancer [J]. Int J Cancer,2013,132(5):1098-104.
    [157] Xi R. C., Sheng Y. R., Chen W. H., et al. Expression of survivin andlivin predicts early recurrence in non-muscle invasive bladder cancer[J]. J Surg Oncol,2012.
    [158] Morgillo F., Woo J. K., Kim E. S., et al. Heterodimerization ofinsulin-like growth factor receptor/epidermal growth factor receptorand induction of survivin expression counteract the antitumor action oferlotinib [J]. Cancer Res,2006,66(20):10100-10111.
    [159] Coma S., Noe V., Lavarino C., et al. Use of siRNAs and antisenseoligonucleotides against survivin rna to inhibit steps leading to tumorangiogenesis [J]. Oligonucleotides,2004,14(2):100-113.
    [160] Lladser A., Ljungberg K., Tufvesson H., et al. Intradermal DNAelectroporation induces survivin-specific ctls, suppresses angiogenesisand confers protection against mouse melanoma [J]. CancerImmunology Immunotherapy,2010,59(1):81-92.
    [161] Gyurkocza B., Plescia J., Toke M., et al. Antileukemic activity ofshepherdin, a novel targeted inhibitor of the survivin-hsp90complex.[J]. Blood,2005,106(11):74a-74a.
    [162] Fei Q., Zhang H., Fu L., et al. Experimental cancer gene therapy bymultiple anti-survivin hammerhead ribozymes [J]. Acta BiochimBiophys Sin (Shanghai),2008,40(6):466-77.
    [163] Zaffaroni N. Targeting survivin in cancer therapy: Fulfilled promisesand open questions [J]. Mol Cancer Ther,2007,6(12):3624s-3625s.
    [164] Olie R. A., Simoes-Wust A. P., Baumann B., et al. A novel antisenseoligonucleotide targeting survivin expression induces apoptosis andsensitizes lung cancer cells to chemotherapy [J]. Cancer Res,2000,60(11):2805-9.
    [165] Lu B., Mu Y., Cao C., et al. Survivin as a therapeutic target forradiation sensitization in lung cancer [J]. Cancer Res,2004,64(8):2840-5.
    [166] Tian H., Liu S., Zhang J., et al. Enhancement of cisplatin sensitivity inlung cancer xenografts by liposome-mediated delivery of the plasmidexpressing small hairpin rna targeting survivin [J]. Journal ofBiomedical Nanotechnology,2012,8(4):633-41.
    [167] Shankar S. L., Mani S., Agrawal S., et al. Survivin inhibition induceshuman neural tumor cell death through caspase-independent and-dependent pathways [J]. Mol Biol Cell,2001,12:22a-22a.
    [168] Kanwar J. R., Shen W. P., Kanwar R. K., et al. Effects of survivinantagonists on growth of established tumors and b7-1immunogenetherapy [J]. J Natl Cancer Inst,2001,93(20):1541-1552.
    [169] Pennati M., Binda M., De Cesare M., et al. Ribozyme-mediateddown-regulation of survivin expression sensitizes human melanomacells to topotecan in vitro and in vivo [J]. Carcinogenesis,2004,25(7):1129-1136.
    [170] Choi K. S., Lee T. H., Jung M. H. Ribozyme-mediated cleavage of thehuman survivin mrna and inhibition of antiapoptotic function ofsurvivin in mcf-7cells [J]. Cancer Gene Ther,2003,10(2):87-95.
    [171] Nakao K., Hamasaki K., Ichikawa T., et al. Survivin downregulationby siRNA sensitizes human hepatoma cells to trail-induced apoptosis[J]. Oncol Rep,2006,16(2):389-392.
    [172] Ai Z. H., Yin L. H., Zhou X. R., et al. Inhibition of survivin reducescell proliferation and induces apoptosis in human endometrial cancer[J]. Cancer,2006,107(4):746-756.
    [173] Pennati M., Sbarra S., De Cesare M., et al. Ym155-mediated inhibitionof survivin expression enhances trail-induced apoptosis in humantriple-negative breast cancer cells [J]. European Journal of Cancer,2012,48:24-25.
    [174] Rodel F., Reichert S., Sprenger T., et al. The role of survivin forradiation oncology: Moving beyond apoptosis inhibition [J]. CurrentMedicinal Chemistry,2011,18(2):191-199.
    [175] Li Z., Yang S. S., Chang T., et al. Anti-angiogenesis and anticancereffects of a plasmid expressing both endo-vegi(151) and smallinterfering rna against survivin [J]. Int J Mol Med,2012,29(3):485-490.
    [176] Jiang L., Luo R. Y., Yang J., et al. Knockdown of survivin contributesto antitumor activity in cisplatin-resistant ovarian cancer cells [J].Molecular Medicine Reports,2013,7(2):425-430.
    [177] Khan Z., Tiwari R. P., Khan N., et al. Induction of apoptosis andsensitization of head and neck squamous carcinoma cells to cisplatinby targeting survivin gene expression [J]. Current Gene Therapy,2012,12(6):444-453.
    [178] Mesri M., Wall N. R., Li J., et al. Cancer gene therapy using a survivinmutant adenovirus [J]. Journal of Clinical Investigation,2001,108(7):981-990.
    [179] Grossman D., Kim P. J., Schechner J. S., et al. Inhibition of melanomatumor growth in vivo by survivin targeting [J]. Proc Natl Acad Sci U SA,2001,98(2):635-640.
    [180] Mukherjee N., Song Q. H., Zhai G. G., et al. Survivin enhancesradiation resistance in primary human glioblastoma cells viacaspase-independent mechanisms [J]. Neuro-Oncology,2004,6(4):319-319.
    [181] Zhu Z. B., Chen Y. B., Makhija S. K., et al. Survivin promoter-basedconditionally replicative adenoviruses target cholangiocarcinoma [J].Int J Oncol,2006,29(5):1319-1329.
    [182] van Houdt W. J., Haviv Y. S., Lu B. G., et al. The human survivinpromoter: A novel transcriptional targeting strategy for treatment ofglioma [J]. Journal of Neurosurgery,2006,104(4):583-592.
    [183] Caldas H., Jaynes F. O., Boyer M. W., et al. Survivin and granzymeb-induced apoptosis, a novel anticancer therapy [J]. Mol Cancer Ther,2006,5(3):693-703.
    [184] Yin X. D., Yuan X., Xue J. J., et al. Clinical significance ofcarcinoembryonic antigen-, cytokeratin19-, or survivin-positivecirculating tumor cells in the peripheral blood of esophageal squamouscell carcinoma patients treated with radiotherapy [J]. Diseases of theEsophagus,2012,25(8):750-756.
    [185] Siegel S., Wagner A., Schmitz N., et al. Induction of antitumourimmunity using survivin peptide-pulsed dendritic cells in a murinelymphoma model [J]. Br J Haematol,2003,122(6):911-914.
    [186] Wang S., Huang X., Lee C. K., et al. Elevated expression of erbb3confers paclitaxel resistance in erbb2-overexpressing breast cancercells via upregulation of survivin [J]. Oncogene,2010,29(29):4225-4236.
    [187] Nishioka C., Ikezoe T., Yang J., et al. Ms-275, a novel histonedeacetylase inhibitor with selectivity against hdac1, inducesdegradation of flt3via inhibition of chaperone function of heat shockprotein90in aml cells [J]. Leuk Res,2008,32(9):1382-1392.
    [188] Castro-Gamero A. M., Borges K. S., Moreno D. A., et al.Tetra-o-methyl nordihydroguaiaretic acid, an inhibitor of sp1-mediatedsurvivin transcription, induces apoptosis and acts synergistically withchemo-radiotherapy in glioblastoma cells [J]. Invest New Drugs,2013.
    [189] Sun Y., Giacalone N. J., Lu B. Terameprocol (tetra-o-methylnordihydroguaiaretic acid), an inhibitor of sp1-mediated survivintranscription, induces radiosensitization in non-small cell lungcarcinoma [J]. J Thorac Oncol,2011,6(1):8-14.
    [190] Murakami Y., Matsuya T., Kita A., et al. Radiosynthesis,biodistribution and imaging of [11c]ym155, a novel survivinsuppressant, in a human prostate tumor-xenograft mouse model [J].Nucl Med Biol,2013,40(2):221-6.
    [191] Tolcher A. W., Quinn D. I., Ferrari A., et al. A phase ii study of ym155,a novel small-molecule suppressor of survivin, in castration-resistanttaxane-pretreated prostate cancer [J]. Ann Oncol,2012,23(4):968-73.
    [192] Aoyama Y., Kaibara A., Takada A., et al. Population pharmacokineticmodeling of sepantronium bromide (ym155), a small moleculesurvivin suppressant, in patients with non-small cell lung cancer,hormone refractory prostate cancer, or unresectable stage iii or ivmelanoma [J]. Invest New Drugs,2013,31(2):443-51.
    [193] Xi R. C., Biao W. S., Gang Z. Z. Significant elevation of survivin andlivin expression in human colorectal cancer: Inverse correlationbetween expression and overall survival [J]. Onkologie,2011,34(8-9):428-32.
    [194] Yuan D., Liu L., Xu H., et al. The effects on cell growth andchemosensitivity by livin rnai in non-small cell lung cancer [J]. MolCell Biochem,2009,320(1-2):133-40.
    [195] Yu L., Wang Z. Effects of livin gene rna interference on apoptosis ofcervical cancer hela cells and enhanced sensitivity to cisplatin [J]. JHuazhong Univ Sci Technolog Med Sci,2009,29(5):625-30.
    [196] Bissell M. J. Modelling molecular mechanisms of breast cancer andinvasion: Lessons from the normal gland [J]. Biochem Soc Trans,2007,35(Pt1):18-22.
    [197] Singh M., Johnson L. Using genetically engineered mouse models ofcancer to aid drug development: An industry perspective [J]. ClinicalCancer Research,2006,12(18):5312-5328.
    [198] Ji L., Minna J. D., Roth J. A.3p21.3tumor suppressor cluster:Prospects for translational applications [J]. Future Oncol,2005,1(1):79-92.
    [199] Lerman M. I., Minna J. D. The630-kb lung cancer homozygousdeletion region on human chromosome3p21.3: Identification andevaluation of the resident candidate tumor suppressor genes. Theinternational lung cancer chromosome3p21.3tumor suppressor geneconsortium [J]. Cancer Res,2000,60(21):6116-33.
    [200] Wistuba, II, Lam S., Behrens C., et al. Molecular damage in thebronchial epithelium of current and former smokers [J]. J Natl CancerInst,1997,89(18):1366-73.
    [201] Wei M. H., Latif F., Bader S., et al. Construction of a600-kilobasecosmid clone contig and generation of a transcriptional mapsurrounding the lung cancer tumor suppressor gene (tsg) locus onhuman chromosome3p21.3: Progress toward the isolation of a lungcancer tsg [J]. Cancer Res,1996,56(7):1487-92.
    [202] Senchenko V. N., Liu J., Loginov W., et al. Discovery of frequenthomozygous deletions in chromosome3p21.3luca and ap20regions inrenal, lung and breast carcinomas [J]. Oncogene,2004,23(34):5719-28.
    [203] Oh J. J., Razfar A., Delgado I., et al.3p21.3tumor suppressor geneh37/luca15/RBM5inhibits growth of human lung cancer cells throughcell cycle arrest and apoptosis [J]. Cancer Res,2006,66(7):3419-27.
    [204] Sutherland L. C., Rintala-Maki N. D., White R. D., et al. Rna bindingmotif (rbm) proteins: A novel family of apoptosis modulators?[J].Journal of Cellular Biochemistry,2005,94(1):5-24.
    [205] Rintala-Maki N. D., Sutherland L. C. Identification andcharacterisation of a novel antisense non-coding rna from the RBM5gene locus [J]. Gene,2009,445(1-2):7-16.
    [206] ter Elst A., Hiemstra B. E., van der Vlies P., et al. Functional analysisof lung tumor suppressor activity at3p21.3[J]. Genes Chromosomes&Cancer,2006,45(12):1077-1093.
    [207] Sugliani M., Brambilla V., Clerkx E. J. M., et al. The conservedsplicing factor sua controls alternative splicing of the developmentalregulator abi3in arabidopsis [J]. Plant Cell,2010,22(6):1936-1946.
    [208] Aravind L., Koonin E. V. G-patch: A new conserved domain ineukaryotic rna-processing proteins and type d retroviral polyproteins[J]. Trends Biochem Sci,1999,24(9):342-4.
    [209] Daigo Y., Nishiwaki T., Kawasoe T., et al. Molecular cloning of acandidate tumor suppressor gene, dlc1, from chromosome3p21.3[J].Cancer Res,1999,59(8):1966-1972.
    [210] Oh J. J., Boctor B. N., Jimenez C. A., et al. Promoter methylationstudy of the h37/RBM5tumor suppressor gene from the3p21.3humanlung cancer tumor suppressor locus [J]. Human Genetics,2008,123(1):55-64.
    [211] Toyooka S., Maruyama R., Toyooka K. O., et al. Smoke exposure,histologic type and geography-related differences in the methylationprofiles of non-small cell lung cancer [J]. Int J Cancer,2003,103(2):153-60.
    [212] Oh J. J., Koegel A. K., Phan D. T., et al. The two single nucleotidepolymorphisms in the h37/RBM5tumour suppressor gene at3p21.3correlated with different subtypes of non-small cell lung cancers [J].Lung Cancer,2007,58(1):7-14.
    [213] Rintala-Maki N. D., Abrasonis V., Burd M., et al. Genetic instability ofRBM5/luca-15/h37in mcf-7breast carcinoma sublines may affectsusceptibility to apoptosis [J]. Cell Biochemistry and Function,2004,22(5):307-313.
    [214] Shao C., Zhao L., Wang K., et al. The tumor suppressor gene RBM5inhibits lung adenocarcinoma cell growth and induces apoptosis [J].World J Surg Oncol,2012,10:160.
    [215] Mourtada-Maarabouni M., Sutherland L. C., Williams G. T. Candidatetumour suppressor luca-15can regulate multiple apoptotic pathways[J]. Apoptosis,2002,7(5):421-432.
    [216] Hirsch F. R., Varella-Garcia M., Bunn P. A., et al. Epidermal growthfactor receptor in non-small-cell lung carcinomas: Correlation betweengene copy number and protein expression and impact on prognosis [J].Journal of Clinical Oncology,2003,21(20):3798-3807.
    [217] Rintala-Maki N. D., Goard C. A., Langdon C. E., et al. Expression ofRBM5-related factors in primary breast tissue [J]. Journal of CellularBiochemistry,2007,100(6):1440-1458.
    [218] Liang H., Zhang J., Shao C., et al. Differential expression of RBM5,egfr and kras mrna and protein in non-small cell lung cancer tissues [J].Journal of Experimental&Clinical Cancer Research,2012,31.
    [219] Oh J. J., West A. R., Fishbein M. C., et al. A candidate tumorsuppressor gene, h37, from the human lung cancer tumor suppressorlocus3p21.3[J]. Cancer Res,2002,62(11):3207-3213.
    [220] Mourtada-Maarabouni M., Keen J., Clark J., et al. Candidate tumorsuppressor luca-15/RBM5/h37modulates expression of apoptosis andcell cycle genes [J]. Exp Cell Res,2006,312(10):1745-52.
    [221] Kobayashi T., Ishida J., Musashi M., et al. P53transactivation isinvolved in the antiproliferative activity of the putative tumorsuppressor RBM5[J]. International Journal of Cancer,2011,128(2):304-318.
    [222] Oh J. J., Taschereau E. O., Koegel A. K., et al. RBM5/h37tumorsuppressor, located at the lung cancer hot spot3p21.3, altersexpression of genes involved in metastasis [J]. Lung Cancer,2010,70(3):253-62.
    [223] Wang K., Ubriaco G., Sutherland L. C. Rbm6-RBM5transcription-induced chimeras are differentially expressed in tumours[J]. Bmc Genomics,2007,8.
    [224] Ren J. H., He W. S., Nong L., et al. Acquired cisplatin resistance inhuman lung adenocarcinoma cells is associated with enhancedautophagy [J]. Cancer Biotherapy and Radiopharmaceuticals,2010,25(1):75-80.
    [225] Sangodkar J., DiFeo A., Feld L., et al. Targeted reduction of klf6-sv1restores chemotherapy sensitivity in resistant lung adenocarcinoma [J].Lung Cancer,2009,66(3):292-297.
    [226] Rosenberg S. A., Spiess P. J., Kleiner D. E. Antitumor effects in miceof the intravenous injection of attenuated salmonella typhimurium [J].J Immunother,2002,25(3):218-25.
    [227] Loeffler M., Le'Negrate G., Krajewska M., et al. Attenuated salmonellaengineered to produce human cytokine light inhibit tumor growth [J].Proc Natl Acad Sci U S A,2007,104(31):12879-83.
    [228] Lee C. H., Wu C. L., Shiau A. L. Endostatin gene therapy delivered bysalmonella choleraesuis in murine tumor models [J]. J Gene Med,2004,6(12):1382-93.
    [229]邵晨.肿瘤抑制基因RBM5抗肺腺癌及乳腺癌的作用及机制的实验研究[D].长春:吉林大学白求恩医学院,2012.
    [230] Maeda R., Yoshida J., Ishii G., et al. Risk factors for tumor recurrencein patients with early-stage (stage i and ii) non-small cell lung cancer:Patient selection criteria for adjuvant chemotherapy according to theseventh edition tnm classification [J]. Chest,2011,140(6):1494-502.
    [231] Kelland L. The resurgence of platinum-based cancer chemotherapy [J].Nature Reviews Cancer,2007,7(8):573-584.
    [232] Ocker M., Hopfner M. Apoptosis-modulating drugs for improvedcancer therapy [J]. European Surgical Research,2012,48(3):111-120.
    [233] Cohen S. M., Lippard S. J. Cisplatin: From DNA damage to cancerchemotherapy [J]. Prog Nucleic Acid Res Mol Biol,2001,67:93-130.
    [234] Li Z., Yin P. H., Yang S. S., et al. Recombinant attenuated salmonellatyphimurium carrying a plasmid co-expressing endo-vegi151andsurvivin siRNA inhibits the growth of breast cancer in vivo [J]. MolMed Rep,2013,7(4):1215-22.
    [235] Zhang L., Gao L., Zhao L., et al. Intratumoral delivery andsuppression of prostate tumor growth by attenuated salmonellaenterica serovar typhimurium carrying plasmid-based small interferingrnas [J]. Cancer Res,2007,67(12):5859-64.
    [236] Pawelek J. M., Low K. B., Bermudes D. Tumor-targeted salmonella asa novel anticancer vector [J]. Cancer Res,1997,57(20):4537-44.
    [237] Avogadri F., Martinoli C., Petrovska L., et al. Cancer immunotherapybased on killing of salmonella-infected tumor cells [J]. Cancer Res,2005,65(9):3920-7.
    [238] Patutina O. A., Mironova N. L., Popova N. A., et al. The siRNAtargeted to mdr1b and mdr1a mrnas in vivo sensitizes murinelymphosarcoma to chemotherapy [J]. BMC Cancer,2010,10:204.
    [239]季锡清.靶向siRNA阻断NF-κB信号通路对胆管癌增殖和侵袭影响实验研究[D].上海:第二军医大学,2009.
    [240] Tian F., Fan T., Jiang Y., et al. A small interfering rna targetingnf-kappab p65alone or combined with5-fu inhibits growth ofesophageal squamous cell carcinoma in nude mice [J]. Pathol ResPract,2012,208(1):32-8.
    [241] Gondi C. S., Rao J. S. Concepts in in vivo siRNA delivery for cancertherapy [J]. J Cell Physiol,2009,220(2):285-91.
    [242] Plati J., Bucur O., Khosravi-Far R. Apoptotic cell signaling in cancerprogression and therapy [J]. Integr Biol (Camb),2011,3(4):279-96.
    [243] Barille-Nion S., Bah N., Vequaud E., et al. Regulation of cancer cellsurvival by Bcl-2family members upon prolonged mitotic arrest:Opportunities for anticancer therapy [J]. Anticancer Res,2012,32(10):4225-33.
    [244] Kirsch D. G., Kastan M. B. Tumor-suppressor p53: Implications fortumor development and prognosis [J]. J Clin Oncol,1998,16(9):3158-68.
    [245] Vousden K. H., Lane D. P. P53in health and disease [J]. Nat Rev MolCell Biol,2007,8(4):275-83.
    [246] Branch P., Masson M., Aquilina G., et al. Spontaneous development ofdrug resistance: Mismatch repair and p53defects in resistance tocisplatin in human tumor cells [J]. Oncogene,2000,19(28):3138-45.
    [247] Hengstler J. G., Pilch H., Schmidt M., et al. Metallothioneinexpression in ovarian cancer in relation to histopathologicalparameters and molecular markers of prognosis [J]. Int J Cancer,2001,95(2):121-7.
    [248] Jayachandran G., Ueda K., Wang B. B., et al. Nprl2sensitizes humannon-small cell lung cancer (nsclc) cells to cisplatin treatment byregulating key components in the DNA repair pathway [J]. PLoS One,2010,5(8).
    [249] Deng W. G., Wu G., Ueda K., et al. Enhancement of antitumor activityof cisplatin in human lung cancer cells by tumor suppressor fus1[J].Cancer Gene Ther,2008,15(1):29-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700