用户名: 密码: 验证码:
骨髓间充质干细胞在肿瘤中的分化及超声测定前列腺突入的临床应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的探讨肿瘤微环境对骨髓间充质干细胞(MSCs)的趋化性以及MSCs在肿瘤微环境中分化为肌纤维母细胞的体外研究。
     方法于雄性新西兰大白兔股骨大转子处抽取骨髓约1ml,采用密度梯度离心法联合贴壁培养法分离扩增MSCs,用流式细胞仪检测培养的MSCs的表面抗原。无菌方法摘取VX2瘤兔的新鲜肿瘤组织进行原代培养扩增,并收集其培养上清。采用Transwell法比较对照组、体积分数为30%和50%的VX2上清培养基对F2代MSCs的趋化性;根据Transwell结果,将F2代MSCs用体积分数为30%VX2上清培养基刺激,分别在7天、14天时采用RT-PCR和Westernblot方法检测肌纤维母细胞标记物α-SMA和Vimentin的表达情况。
     结果MSCs细胞呈梭形,培养的F2代MSCs流式鉴定结果为CD29(+),CD44(+),CD45(-),CD106(+);VX2细胞呈多边形或长梭形;Transwell试验中发现:镜下体积分数为30%VX2上清组穿过基质胶的细胞数明显多于对照组和50%组,这一结果被随后进行的比色测定结果进一步证实;RT-PCR和Westernblot结果均发现:用30%VX2上清培养基刺激7天后,MSCs表达α-SMA和Vimentin的水平均明显强于对照组(P<0.05);而刺激14天后,MSCs表达α-SMA和Vimentin的水平均进一步增强(P<0.05)。
     结论肿瘤微环境对MSCs有一定的趋化性,MSCs可以在肿瘤微环境的刺激下分化为肌纤维母细胞。
     意义本实验在一定程度上表明:在肿瘤微环境的诱导下,MSCs能够进入肿瘤组织并在其刺激下转化为肌纤维母细胞,这可能是MSCs促进肿瘤发生发展的一个途径;MSCs可能是肿瘤/癌活化肌纤维母细胞的一个重要来源。
     目的探讨骨髓间充质干细胞(MSCs)在肿瘤发生发展过程中的作用及其是否可以转化为血管内皮细胞。
     方法随机将20只雄性新西兰大白兔分为2组:实验组和对照组。每只动物抽取骨髓培养MSCs后,采用VX2瘤块包埋法建立膀胱肿瘤模型。模型建立1周后,实验组回输DAPI标记的自身F2代MSCs,而对照组回输培养液。在模型建立2、4周后分别用经腹超声方法检测肿瘤大小。4周后处死所有动物,采用双重免疫荧光方法检测实验组中植入的MSCs能否转化为血管内皮细胞。另外,将实验组和对照组膀胱肿瘤标本做成石蜡切片,每个动物随机抽取3张,HE染色后,计数高倍视野下(×400)血管数目,比较两组动物肿瘤组织血管密度的差异。体外实验中原代培养MSCs和VX2细胞,收集新鲜VX2上清,实验组是用体积分数为10%胎牛血清、30%VX2上清的低糖DMEM培养的F2代MSCs,对照组是用体积分数为10%胎牛血清的低糖DMEM培养的F2代MSCs,分别在7天、14天时采用Westernblot方法比较两组细胞血管内皮细胞标记物CD146的蛋白表达情况。
     结果实验组和对照组在2周时肿瘤最大径分别是0.77±0.1 5cm和0.71±0.15cm,两组间没有明显统计学差异(P>0.05)。4周时实验组肿瘤最大径(3.82±0.94cm)明显大于对照组(2.28±0.54cm)(P<0.05)。实验组冰冻切片显示DAPI/CD146双重免疫荧光阳性的细胞存在于血管腔表面,表明植入的MSCs已转化为血管内皮细胞。实验组和对照组的肿瘤组织血管密度分别是10.1±0.70/0.2mm~2和8.24±0.81/0.2mm~2,两组间存在明显统计学差异(P<0.05);体外实验中Westernblot结果发现:实验组的MSCs用体积分数30%VX2上清培养基刺激7天后,CD146的蛋白表达水平明显强于对照组(P<0.05);而刺激14天后,CD146蛋白表达水平进一步增强(P<0.05)。
     结论MSCs能够在肿瘤微环境中分化为血管内皮细胞,促进血管生成,这可能是其促进肿瘤发生发展的主要途径。
     目的探讨良性前列腺增生(BPH)患者膀胱内前列腺突入(IPP)程度测定对膀胱出口梗阻及膀胱功能的预测与评价。
     方法分析206例初次就诊的良性前列腺增生患者的资料,根据经腹超声测量的IPP值将患者分为两组:明显突入组(IPP>1cm)和不明显突入组(IPP≤1cm),分析两组间临床资料及尿动力学检查结果间的关系。
     结果临床资料显示:明显突入组(sIPP)和不明显突入组(nsIPP)患者在前列腺体积(73.7±35.9cm~3 vs 62.8±36.5 cm~3)、前列腺特异性抗原(PSA)(1.81±0.67ng/mlvs 1.64±0.36 ng/ml)、剩余尿量(290.2±217.2ml vs 228.2±167.9ml)、急性尿潴留(33.3%vs 18.0%)及膀胱小梁化(23.1%vs 11.7%)五个方面的差异均有明显统计学意义(P<0.05)。尿动力学检查结果显示:两组患者的排尿期最大尿流率(Qmax)(7.6±4.1ml/s vs 9.1±3.6ml/s)、膀胱过度活动症发生率(82.1%vs 17.2%)、膀胱顺应性降低率(35.9%vs 12.5%)、最大逼尿肌压力(Pdet.max)(109.8±84.9cmH2O vs 84.9±44.1 cmH2O)及膀胱出口梗阻指数(BOOI)(75.2±27.1 vs 65.9±34.6)间的差异均有统计学意义(P<0.05)。
     结论IPP可以作为初步预测和评价膀胱出口梗阻程度及膀胱功能的一项指标。前列腺明显突入膀胱的BPH患者膀胱出口梗阻及膀胱功能受损的程度明显高于无明显突入患者,对于前列腺明显突入膀胱尤其是合并急性尿潴留的BPH患者应及早采取外科手术治疗。
OBJECTIVE To investigate the tropism of mesenchymal stem cells(MSCs) to tumor microenvironment and the feasibility of bone marrow mesenchymal stem cells differentiating into myofibroblast in vitro.
     METHODS 1ml bone marrow was taken from greater trochanter of male New Zealand rabbit and MSCs were obtained by density gradient centrifugation and cultured routinely;the surface markers were tested by flow cytometry.VX2 tumor was aseptically excised and primary cultured.The tropism of MSCs for control group, 30%and 50%VX2 conditioned medium were determined by using Transwell migration assay.MSCs were incubated in 30%VX2 conditioned medium for 7 or 14 days.The mRNA levels and protein expression ofα-SMA and Vimentin were measured by RT-PCR and Westernblot methods.
     RESULTS MSCs presented a spindle shape.The cultured MSCs were CD29(+), CD44(+),CD45(-),CD106(+).VX2 cells showed spindle or polygon shape.In the Transwell test,we found that the migrated cells appeared more in 30%VX2 conditioned medium group than other groups under microscope,which was further confirmed by the results of colorimetric assay.The mRNA levels and protein expression ofα-SMA and Vimentin both significantly increased in the 7 days group than the control group(P<0.05),which further increasd in the 14 days group(P<0.05).
     CONCLUSION MSCs show tropism for tumor microenvironment and can differentiate into myofibroblast in tumor microenvironment in vitro.
     SIGNIFICANCE This experiment suggests that MSCs could migrate to tumor and then differentiate into myofibroblast under tumor microenvironment,which might be a pathway of MSCs promoting the growth of tumor.It also suggestes that MSCs may be the precursors of the tumor/carcinoma associated myofibroblasts.
     OBJECTIVE To investigate the effect of mesenchymal stem cells(MSCs) in the process of tumor development and the possibility of MSCs differentiating into vascular endothelial cells in tumor microenvironment.
     METHODS 20 male New Zealand rabbits were randomly divided into two groups: test group and control group.MSCs were isolated and cultured by bone marrow cell adherence.The bladder tumor models were built by embedding vx2 mass in swelled bladder mucosa in all rabbits.One week later,4',6-diamidino-2-phenylindole labeling MSCs were transplanted into tumor tissue in test group(n=10).Culture medium was injected in the tumor tissue of control group(n=10).The maximum diameter of tumor mass was measured by ultrasound at 2,4 weeks after vx-2 tumor mass was embedded. All animals were sacrificed at 4 weeks.The double labeling immunofluorescence for CD146 was performed to reveal whether engrafted cells can differentiate into vascular endothelial cells.Vascular density was compared between two groups.VX2 cells were primary cultured also.MSCs were incubated in 30%VX2 conditioned medium for 7 or 14 days.The protein expression of CD146 were measured by Westernblot methods.
     RESULTS There was no significant difference in maximum diameter of tumor mass between two groups at 2 weeks(test group 0.77±0.15cm vs control group 0.71±0.15cm,P>0.05).The maximum diameter appear larger in test group at 4weeks (test group 3.82±0.94cm vs control group 2.28±0.54cm,P<0.05). Immunofluorescence studies revealed some engrafted MSCs expressing a vascular endothelial cell phenotype(CD146).Furthermore,vascular density was augmented in test group compared with control group(10.1±0.70/0.2mm~2 vs 8.24±0.81/0.2mm~2, P<0.05).In vitro,the protein expression of CD146 significantly increased in the 7 days group than the control group(P<0.05),which further increasd in the 14 days group(P<0.05).
     CONCLUSION Engrafted MSCs can differentiate into vascular endothelial cells and contribute to angiogenesis in tumor microenvironment,which may be the major pathway of promoting tumor growth.
     OBJECTIVE To evaluate a noninvasive method to predict bladder outlet obstruction(BOO) and bladder function in patients with benign prostatic enlargement (BPE) based on intravesical prostatic protrusion(IPP) using transabdominal ultrasound.
     METHODS The records of 206 first visit patients with BPE were analyzed. Patients were divided into two groups based on the degree of IPP:the significant IPP group-greater than 10 mm and no significant IPP group-10 mm or less.Clinical data and urodynamic findings of the two groups were analyzed to define the clinical significance of IPP.
     RESULTS Increased prostate volume(73.7±35.9cm~3 vs 62.8±36.5cm~3),serum prostate specific antigen(1.81±0.67ng/ml vs 1.64±0.36ng/ml),post-voiding residual urine volume(290.2±217.2ml vs 228.2±167.9ml),incidence of acute urine residual (33.3%vs 18.0%) and bladder trabeculation(23.1%vs 11.7%) appeared more often in the significant IPP group(P<0.05).In the urodynamic findings,significantly lower peak flow rate(Qmax)(7.6±4.1 ml/s vs 9.1±3.6ml/s ) and higher incidence of detrusor overactivity(82.1%vs 17.2%) and low bladder compliance(35.9%vs 12.5%) both existed in the significant IPP group(P<0.01).In addition,maximum detrusor pressure (109.8±84.9cmH20 vs 84.9±44.1 cmH2O) and BOO index(75.2±27.1 vs 65.9±34.6) were significantly higher in the significant IPP group(p<0.05).The incidence of recurrence of acute urinary intention was higher in the significant IPP group(64.3% vs 23.5%)(P<0.05).
     CONCLUSION IPP is a useful predictor for evaluating BOO and detrusor function. BOO and impaired detrusor function in the significant IPP patients are more severe. The significant IPP patients,especially those presenting with AUR,may benefit from early surgical intervention.
引文
1 Tuxhom JA,Ayala GE,Smith MJ,et al.Reactive stroma in human prostate cancer:induction of myofibroblast phenotype and extracellular matrix remodeling.Clin Cancer Res,2002,8:2912-23.
    2 Blankenstein Y.The role of tumor stroma in the interaction between tumor and immune system.Curr Opin Immunol,2005,17:180-6.
    3 Guedj N,Couvelard A,Arcangeli G,et al.Angiogenesis and extracellular matrix remodelling in bronchioloalveolar carcinomas:distinctive patterns in mucinous and non-mutinous tumours.Histopathology,2004,44:251-6.
    4 Powell DW,Adegboyega PA,Di Mari JF,et al.Epithelial cells and their neighbors I.Role of intestinal myofibroblasts in development,repair,and cancer.Am J Physiol Gastrointest Liver Physiol,2005,289:G2-7.
    5 Galie M,Sorrentino C,Montani M,et al.Mammary carcinoma provides highly tumourigenic and invasive reactive stromal cells.Carcinogenesis,2005,26:1868-78.
    6 Ishii G,Sangai T,Oda T,et al.Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction.Biochem Biophys Res Commun,2003,309:232-40.
    7 Direkze NC,Hodivala-Dilke K,Jeffery R,et al.Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts.Cancer Res,2004,64:8492-5.
    8 Morigi M,Imberti B,Zoja C,et al.Mesenchymal stem cells are renotropic,helping to repair the kidney and improve function in acute renal failure.J Am Soc Nephrol,2004,15:1794-804.
    9 Li H,Fu X,Ouyang Y,et al.Adult bone-marrow-derived mesenchymal stem cells contribute to wound healing of skin appendages.Cell Tissue Res,2006,326:725-36.
    10 Hung SC,Kuo PY,Chang CF,et al.Alpha-smooth muscle actin expression and structure integrity in chondrogenesis of human mesenchymal stem cells.Cell Tissue Res,2006,324:457-66.
    11 陈军,徐祗顺,赵海峰,等.骨髓间充质干细胞在兔肿瘤组织中的分布与分化. 中华医学杂志,2007,87:2361-2364.
    12 Kitano Y,Radu A,Shaaban A,et al.Selection,enrichment,and culture expansion of murine mesenchymal progenitor cells by retroviral transduction of cycling adherent bone marrow cells.Exp Hematol,2000,28:1460-9.
    13 Khan T,Havey RM,Sayers ST,et al.Animal models of spinal cord contusion injuries.Lab Anim Sci,1999,49:161-72.
    14 Basso DM,Beattie MS,Bresnahan JC,et al.MASCIS evaluation of open field locomotor scores:effects of experience and teamwork on reliability.Multicenter Animal Spinal Cord Injury Study.J Neurotrauma,1996,13:343-59.
    15 Wulf GG,Jackson KA,Goodell MA.Somatic stem cell plasticity:current evidence and emerging concepts.Exp Hematol,2001,29:1361-70.
    16 刘险峰,任乐荣,苏广彦,等.兔VX2肿瘤细胞系的建立及其生物学特性的观察.中华病理学杂志,2005,34:661-663.
    17 苏畅,张惠中,李文海,等.兔VX2肿瘤的离体培养及有关生物学特性.第四军医大学学报,2006,27:844-847.
    18 Herrera MB,Bussolati B,Bruno S,et al.Mesenchymal stem cells contribute to the renal repair of acute tubular epithelial injury.Int J Mol Med,2004,14:1035-41.
    19 Zhang N,Li J,Luo R,et al.Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy.Exp Clin Endocrinol Diabetes,2008,116:104-11.
    20 Dvorak HF.Tumors:wounds that do not heal.Similarities between tumor stroma generation and wound healing.N Engl J Med,1986,315:1650-9.
    21 Nakamizo A,Marini F,Amano T,et al.Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.Cancer Res,2005,65:3307-18.
    22 Studeny M,Marini FC,Champlin RE,et al.Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors.Cancer Res,2002,62:3603-8.
    23 Komarova S,Kawakami Y,Stoff-Khalili MA,et al.Mesenchymal progenitor cells as cellular vehicles for delivery of oncolytic adenoviruses.Mol Cancer Ther,2006,5:755-66.
    24 Sordi V,Malosio ML,Marchesi F,et al.Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets.Blood,2005,106:419-27.
    25 Gutova M,Najbauer J,Frank RT,et al.Urokinase plasminogen activator and urokinase plasminogen activator receptor mediate human stem cell tropism to malignant solid tumors.Stem Cells,2008,26:1406-13.
    26 Gabbiani G,Majno G.Dupuytren's contracture:fibroblast contraction? An ultrastructural study.Am J Pathol,1972,66:131-46.
    27 杨吉龙,王坚,朱雄增.肌纤维母细胞病理学研究进展.临床与实验病理学杂志,2005,21:480-484.
    28 Schmitt-Graff A,Desmouliere A,Gabbiani G.Heterogeneity of myofibroblast phenotypic features:an example of fibroblastic cell plasticity.Virchows Arch,1994,425:3-24.
    29 Tomasek JJ,Haaksma CJ,Eddy RJ,et al.Fibroblast contraction occurs on release of tension in attached collagen lattices:dependency on an organized actin cytoskeleton and serum.Anat Rec,1992,232:359-68.
    30 Bhowmick NA,Chytil A,Plieth D,et al.TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia.Science,2004,303:848-51.
    31 Li H,Fan X,Houghton J.Tumor microenvironment:the role of the tumor stroma in cancer.J Cell Biochem,2007,101:805-15.
    32 Kaplan RN,Riba RD,Zacharoulis S,et al.VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche.Nature,2005,438:820-7.
    33 Illemann M,Hansen U,Nielsen HJ,et al.Leading-edge myofibroblasts in human colon cancer express plasminogen activator inhibitor-1.Am J Clin Pathol,2004,122:256-65.
    34 Hagedom M,Balke M,Schmidt A,et al.VEGF coordinates interaction of pericytes and endothelial cells during vasculogenesis and experimental angiogenesis.Dev Dyn,2004,230:23-33.
    35 Tanaka T,Bai Z,Srinoulprasert Y,et al.Chemokines in tumor progression and metastasis.Cancer Sci,2005,96:317-22.
    36 Lewis MP, Lygoe KA, Nystrom ML, et al. Tumour-derived TGF-beta1 modulates myofibroblast differentiation and promotes HGF/SF-dependent invasion of squamous carcinoma cells. Br J Cancer, 2004,90:822-32.
    37 Khouw IM, van Wachem PB, Plantinga JA, et al. TGF-beta and bFGF affect the differentiation of proliferating porcine fibroblasts into myofibroblasts in vitro. Biomaterials, 1999,20:1815-22.
    38 Jeon ES, Moon HJ, Lee MJ, et al. Cancer-derived lysophosphatidic acid stimulates differentiation of human mesenchymal stem cells to myofibroblast-like cells. Stem Cells, 2008,26:789-97.
    1 Sangai T,Ishii G,Kodama K,et al.Effect of differences in cancer cells and tumor growth sites on recruiting bone marrow-derived endothelial cells and myofibroblasts in cancer-induced stroma.Int J Cancer,2005,115:885-92.
    2 王行富,张声.肿瘤间质肌纤维母细胞的促血管形成作用.国际病理科学与临床杂志,2008,28:49-53.
    3 Li H,Fan X,Houghton J.Tumor microenvironment:the role of the tumor stroma in cancer.J Cell Biochem,2007,101:805-15.
    4 Jiang Y,Jahagirdar BN,Reinhardt RL,et al.Pluripotency of mesenchymal stem cells derived from adult marrow.Nature,2002,418:41-9.
    5 Prockop DJ.Marrow stromal cells as stem cells for nonhematopoietic tissues.Science,1997,276:71-4.
    6 Silva GV,Litovsky S,Assad JA,et al.Mesenchymal stem cells differentiate into an endothelial phenotype,enhance vascular density,and improve heart function in a canine chronic ischemia model.Circulation,2005,111:150-6.
    7 Zhang N,Li J,Luo R,et al.Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy.Exp Clin Endocrinol Diabetes,2008,116:104-11.
    8 Dvorak HF.Tumors:wounds that do not heal.Similarities between tumor stroma generation and wound healing.N Engl J Med,1986,315:1650-9.
    9 Nakamizo A,Marini F,Amano T,et al.Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.Cancer Res,2005,65:3307-18.
    10 陈军,徐祗顺,董德鑫,等.兔膀胱vx-2肿瘤移植模型的建立.中华实验外科杂志,2006,23:117-117.
    11 Halkos ME,Zhao ZQ,Kerendi F,et al.Intravenous infusion of mesenchymal stem cells enhances regional perfusion and improves ventricular function in a porcine model of myocardial infarction.Basic Res Cardiol,2008,103:525-36.
    12 Wu Y,Chen L,Scott PG,et al.Mesenchymal stem cells enhance wound healing through differentiation and angiogenesis.Stem Cells,2007,25:2648-59.
    13 Salvesen HB,Akslen LA.Significance of tumour-associated macrophages,vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas.Int J Cancer,1999,84:538-43.
    14 方利君,付小兵,等.骨髓间充质干细胞分化为血管内皮细胞的实验研究.中华烧伤杂志,2003,19:22-24.
    15 Kerbel R,Folkman J.Clinical translation of angiogenesis inhibitors.Nat Rev Cancer,2002,2:727-39.
    16 Semenza GL.Targeting HIF-1 for cancer therapy.Nat Rev Cancer,2003,3:721-32.
    17 Beckermann BM,Kallifatidis G,Groth A,et al.VEGF expression by mesenchymal stem cells contributes to angiogenesis in pancreatic carcinoma.Br J Cancer,2008,99:622-31.
    18 Fam NP,Verma S,Kutryk M,et al.Clinician guide to angiogenesis.Circulation,2003,108:2613-8.
    19 Oswald J,Boxberger S,Jorgensen B,et al.Mesenchymal stem cells can be differentiated into endothelial cells in vitro.Stem Cells,2004,22:377-84.
    20 Raida M,Heymann AC,Gunther C,et al.Role of bone morphogenetic protein 2in the crosstalk between endothelial progenitor cells and mesenchymal stem cells.Int J Mol Med,2006,18:735-9.
    21 Okuyama H,Krishnamachary B,Zhou YF,et al.Expression of vascular endothelial growth factor receptor 1 in bone marrow-derived mesenchymal cells is dependent on hypoxia-inducible factor 1.J Biol Chem,2006,281:15554-63.
    22 Jain RK.Molecular regulation of vessel maturation.Nat Med,2003,9:685-93.
    23 Sanz L,Santos-Valle P,Alonso-Camino V,et al.Long-term in vivo imaging of human angiogenesis:critical role of bone marrow-derived mesenchymal stem cells for the generation of durable blood vessels.Microvasc Res,2008,75:308-14.
    24 Au P,Tam J,Fukumura D,et al.Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature.Blood,2008,111:4551-8.
    25 Campagnoli C,Roberts IA,Kumar S,et al.Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood,liver,and bone marrow. Blood, 2001,98:2396-402.
    26 Igura K, Zhang X, Takahashi K, et al. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy, 2004,6:543-53.
    27 Nadri S, Soleimani M, Kiani J, et al. Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells. Differentiation, 2008,76:223-31.
    28 Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod, 2004,19:1450-6.
    1 Chicharro-Molero JA,Burgos-Rodriguez R,Sanchez-Cruz JJ,et al.Prevalence of benign prostatic hyperplasia in Spanish men 40 years old or older.J Urol,1998,159:878-82.
    2 那彦群,孙则禹,叶章群等.中国泌尿外科疾病和诊断治疗指南(2007版):人民卫生出版社,2007.167.
    3 Abrams P.In support of pressure-flow studies for evaluating men with lower urinary tract symptoms.Urology,1994,44:153-5.
    4 Klingler HC,Madersbacher S,Djavan B,et al.Morbidity of the evaluation of the lower urinary tract with transurethral multichannel pressure-flow studies.J Urol,1998,159:191-4.
    5 Reynard JM,Abrams P.Bladder-outlet obstruction--assessment of symptoms.World J Urol,1995,13:3-8.
    6 de la Rosette JJ,Witjes WP,Schafer W,et al.Relationships between lower urinary tract symptoms and bladder outlet obstruction:results from the ICS-"BPH"study.Neurourol Urodyn,1998,17:99-108.
    7 Reynard J,Lim C,Abrams P.Significance of intermittency in men with lower urinary tract symptoms.Urology,1996,47:491-6.
    8 Laniado ME,Ockrim JL,Marronaro A,et al.Serum prostate-specific antigen to predict the presence of bladder outlet obstruction in men with urinary symptoms.BJU Int,2004,94:1283-6.
    9 Van Mastrigt R,Rollema HJ.The prognostic value of bladder contractility in transurethral resection of the prostate.J Urol,1992,148:1856-60.
    10 Kessler TM,Gerber R,Burkhard FC,et al.Ultrasound assessment of detrusor thickness in men-can it predict bladder outlet obstruction and replace pressure flow study?.J Urol,2006,175:2170-3.
    11 Inui E,Ochiai A,Naya Y,et al.Comparative morphometric study of bladder detrusor between patients with benign prostatic hyperplasia and controls.J Urol,1999,161:827-30.
    12 Kaefer M,Barnewolt C,Retik AB,et al.The sonographic diagnosis of infravesical obstruction in children:evaluation of bladder wall thickness indexed to bladder filling.J Urol,1997,157:989-91.
    13 Tan YH,Foo KT.Intravesical prostatic protrusion predicts the outcome of a trial without catheter following acute urine retention.J Urol,2003,170:2339-41.
    14 Chia SJ,Heng CT,Chan SP,et al.Correlation of intravesical prostatic protrusion with bladder outlet obstruction.BJU Int,2003,91:371-4.
    15 Lin AT,Chen MT,Yang CH,et al.Blood flow of the urinary bladder:effects of outlet obstruction and correlation with bioenergetic metabolism.Neurourol Urodyn,1995,14:285-92.
    16 Belenky A,Abarbanel Y,Cohen M,et al.Detrusor resistive index evaluated by Doppler ultrasonography as a potential indicator of bladder outlet obstruction.Urology,2003,62:647-50.
    17 Belal M,Abrams P.Noninvasive methods of diagnosing bladder outlet obstruction in men.Part 1:Nonurodynamic approach.J Urol,2006,176:22-8.
    18 Nose H,Foo KT,Lim KB,et al.Accuracy of two noninvasive methods of diagnosing bladder outlet obstruction using ultrasonography:intravesical prostatic protrusion and velocity-flow video urodynamics.Urology,2005,65:493-7.
    19 Ozawa H,Chancellor MB,Ding YY,et al.Noninvasive urodynamic evaluation of bladder outlet obstruction using Doppler ultrasonography.Urology,2000,56:408-12.
    20 Abrams P,Cardozo L,Fall M,et al.The standardisation of terminology in lower urinary tract function:report from the standardisation sub-committee of the International Continence Society.Urology,2003,61:37-49.
    21 Abrams P.Bladder outlet obstruction index,bladder contractility index and bladder voiding efficiency:three simple indices to define bladder voiding function.BJU Int,1999,84:14-5.
    22 虞海峰,何有华,余凯远,等.经腹超声测量膀胱内前列腺突入程度在良性前列腺梗阻诊断中的价值.中华男科学杂志,2008,14:628-630.
    23 Wadie BS,Ibrahim EH,de la Rosette JJ,et al.The relationship of the International Prostate Symptom Score and objective parameters for diagnosing bladder outlet obstruction.Part Ⅰ:when statistics fail.J Urol,2001,165:32-4.
    24 Mochtar CA,Kiemeney LA,van Riemsdijk MM,et al.Post-void residual urine volume is not a good predictor of the need for invasive therapy among patients with benign prostatic hyperplasia.J Urol,2006,175:213-6.
    25 Neal DE,Rao CV,Styles RA,et al.Effects of catheter size on urodynamic measurements in men undergoing elective prostatectomy.Br J Urol,1987,60:64-8.
    26 Drach GW,Layton TN,Binard WJ.Male peak urinary flow rate:relationships to volume voided and age.J Urol,1979,122:210-4.
    27 张克勤,史本康,王海新,等.超声测定前列腺的膀胱内突入对急性尿潴留的评价.临床泌尿外科杂志,2006,21:484-486.
    28 Kuo HC.Clinical prostate score for diagnosis of bladder outlet obstruction by prostate measurements and uroflowmetry.Urology,1999,54:90-6.
    29 唐来坤,潘良,郦俊生,等.良性前列腺增生向膀胱内突入部分所成夹角评价膀胱出口梗阻程度的意义.中华泌尿外科杂志,2007,28:411-413.
    30 Styles RA,Neal DE,Griffiths CJ,et al.Long-term monitoring of bladder pressure in chronic retention of urine:the relationship between detrusor activity and upper tract dilatation.J Urol,1988,140:330-4.
    31 Blandy J.Emergency situations:acute retention of urine.Br J Hosp Med,1978,19:109-11.
    32 葛晖,孙超.前列腺突入膀胱的程度对预测良性前列腺增生发生急性尿潴留的研究.中国临床医学影像杂志,2008,19:694-696.
    33 Benson MC,Whang IS,Olsson CA,et al.The use of prostate specific antigen density to enhance the predictive value of intermediate levels of serum prostate specific antigen.J Urol,1992,147:817-21.
    34 Marberger MJ,Andersen JT,Nickel JC,et al.Prostate volume and serum prostate-specific antigen as predictors of acute urinary retention.Combined experience from three large multinational placebo-controlled trials.Eur Urol,2000,38:563-8.
    35 el Din KE,de Wildt MJ,Rosier PF,et al.The correlation between urodynamic and cystoscopic findings in elderly men with voiding complaints.J Urol,1996,155:1018-22.
    36 宋健,邵强,郭宇文,等.膀胱容量对腹部B超测量前列腺体积及其突入膀胱程度的影响.临床和实验医学杂志,2005,4:142-144.
    37 Yuen JS,Ngiap JT,Cheng CW,et al.Effects of bladder volume on transabdominal ultrasound measurements of intravesical prostatic protrusion and volume.Int J Urol,2002,9:225-9.
    1 Prockop DJ: Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997;276:71-4.
    2 Sordi V, Malosio ML, Marchesi F, et al. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 2005; 106:419-27.
    3 Klopp AH, Spaeth EL, Dembinski JL, et al. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 2007;67:11687-95.
    4 Barry FP, Murphy JM: Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 2004;36:568-84.
    5 Barry FP: Biology and clinical applications of mesenchymal stem cells. Birth Defects Res C Embryo Today 2003;69:250-6.
    6 Dvorak HF: Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 1986;315:1650-9.
    7 Studeny M, Marini FC, Champlin RE, et al. Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors. Cancer Res 2002;62:3603-8.
    8 Chen J, Xu ZS, Zhao HF, et al. Distribution and differentiation of marrow mesenchymal cells in tumor tissue: experimental with rabbits. Zhonghua Yi Xue Za Zhi 2007;87:2361-4.
    9 Chen J, Xu ZS, Dong DX, et al. The foundation of rabbit bladder vx2 cancer model. Chinese Journal of experimental surgery 2006; 23: 117.
    10 Zhang N, Li J, Luo R, et al. Bone marrow mesenchymal stem cells induce angiogenesis and attenuate the remodeling of diabetic cardiomyopathy. Exp Clin Endocrinol Diabetes 2008; 116:104-11.
    11 Wurmser AE, Nakashima K, Summers RG, et al. Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 2004;430:350-6.
    12 Mancuso P, Burlini A, Pruneri G, et al. Resting and activated endothelial cells are increased in the peripheral blood of cancer patients. Blood 2001;97:3658-61.
    13 Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 2002;418:41-9.
    14 Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005;111:150-6.
    15 Sun B, Zhang S, Ni C, et al. Correlation between melanoma angiogenesis and the mesenchymal stem cells and endothelial progenitor cells derived from bone marrow. Stem Cells Dev 2005;14:292-8.
    16 Salvesen HB, Akslen LA: Significance of tumour-associated macrophages, vascular endothelial growth factor and thrombospondin-1 expression for tumour angiogenesis and prognosis in endometrial carcinomas. Int J Cancer 1999;84:538-43.
    17 Kerbel R, Folkman J: Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2002;2:727-39.
    18 Semenza GL: Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003 ;3:721-32.
    19 Oswald J, Boxberger S, Jorgensen B, et al. Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 2004;22:377-84.
    20 Rak J, Yu JL, Klement G, et al. Oncogenes and angiogenesis: signaling three-dimensional tumor growth. J Investig Dermatol Symp Proc 2000;5:24-33.
    21 Campagnoli C, Roberts IA, Kumar S, et al. Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 2001 ;98:2396-402.
    22 Igura K, Zhang X, Takahashi K, et al. Isolation and characterization of mesenchymal progenitor cells from chorionic villi of human placenta. Cytotherapy 2004;6:543-53.
    23 Nadri S, Soleimani M, Kiani J, et al. Multipotent mesenchymal stem cells from adult human eye conjunctiva stromal cells. Differentiation 2008;76:223-31.
    24 Tsai MS, Lee JL, Chang YJ, et al. Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 2004;19:1450-6.
    25 Studeny M, Marini FC, Dembinski JL, et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004;96:1593-603.
    26 Nakamura K, Ito Y, Kawano Y, et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004; 11:1155-64.
    27 Nakamizo A, Marini F, Amano T, et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65:3307-18.
    1. Abrams P: In support of pressure-flow studies for evaluating men with lower urinary tract symptoms. Urology,1994,44: 153-5.
    2..Klingler HC, Madersbacher S, Djavan B, et al: Morbidity of the evaluation of the lower urinary tract with transurethral multichannel pressure-flow studies. J Urol,1998, 159: 191-4.
    3. Kessler TM, Gerber R, Burkhard FC, et al: Ultrasound assessment of detrusor thickness in men-can it predict bladder outlet obstruction and replace pressure flow study? J Urol ,2006,175: 2170-3.
    4. Tan YH, Foo KT: Intravesical prostatic protrusion predicts the outcome of a trial without catheter following acute urine retention J.Urol ,2003,170:2339-41.
    5. Chia SJ, Heng CT, Chan SP, et al: Correlation of intravesical prostatic protrusion with bladder outlet obstruction. BJU Int ,2003,91: 371-4.
    6. Yuen JS, Ngiap JT, Cheng CW, et al: Effects of bladder volume on transabdominal ultrasound measurements of intravesical prostatic protrusion and volume. Int J Urol ,2002,9: 225-9.
    7. Schafer W, Abrams P, Liao L, et al: Good urodynamic practices : uroflowmetry, filling cystometry, and pressure-flow studies. Neurourol Urodyn,2002,21: 261-74.
    8. Abrams P, Cardozo L, Fall M, et al: The standardization of terminology in lower urinary tract function: report from the standardization sub-committee of the International Continence Society. Urology, 2003,61(1): 37-49.
    9. Abrams P: Bladder outlet obstruction index, bladder contractility index and bladder voiding efficiency: three simple indices to define bladder voiding function. BJU Int, 1999,84:14-5.
    10. McConnell JD: Why pressure-flow studies should be optional and not mandatory studies for evaluating men with benign prostatic hyperplasia. Urology, 1994,44: 156-8.
    11. Neal DE, Rao CV, Styles RA, et al: Effects of catheter size on urodynamic measurements in men undergoing elective prostatectomy. Br J Urol ,1987,60: 64-8.
    12. Kuo HC. Clinical prostate score for diagnosis of bladder outlet obstruction by prostate measurements and uroflowmetry. Urology, 1999,54: 90-6.
    13 Styles RA, Neal DE, Griffiths CJ, et al: Long-term monitoring of bladder pressure in chronic retention of urine: the relationship between detrusor activity and upper tract dilation. J Urol, 1988,140:330-4.
    14. Blandy J: Emergency situations: acute retention of urine. Br J Hosp Med, 1978, 19: 109-11.
    15 Benson MC , Whang IS , Olsson CA , et al:. The use of prostate specific antigen density to enhance the predictive value of intermediate levels of serum prostate specific antigen. J Urol, 1992,147: 817-21.
    16 Marberger MJ , Andersen JT , Nickel JC , et al:. Prostate volume and serum prostate-specific antigen as predictors of acute urinary retention. Combined experience from three large multinational placebo-controlled trials. Eur Urol, 2000,38: 563-8.
    
    17. Bai SW, Park SH, Chung DJ, et al: The significance of bladder trabeculation in the female lower urinary system: an objective evaluation by urodynamic studies. Yonsei Med J, 2005,46: 673-8.
    
    18.eI Din KE, de Wildt MJ, Rosier PF, et al: The correlation between urodynamic and cystoscopic finding in elderly men with voiding complaints. J Urol, 1996,155: 1018-22,.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700