用户名: 密码: 验证码:
金、银纳米结构的可控生长及表征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料是目前材料科学研究的一个热点,其相应发展起来的纳米技术被公认为是21世纪最具有前途的科研领域之一。由于纳米材料的特殊性能与贵金属独特的物理化学性质有机地结合起来使其具有表面效应、体积效应、量子尺寸效应和量子隧道效应,并在光、电、热、磁、催化等领域有着广阔的应用前景而成为纳米材料的一个重要组成部分。同时,由于纳米粒子表现出来的特殊物理化学性质依赖于粒子的尺寸及形貌,因此对纳米粒子实现可控的生长,并实现按照人的意愿设计合成功能材料具有重要的意义。
     本论文的工作是设计简单有效的合成方法,制备出尺寸和形状可控的金、银纳米结构,并使用场发射扫描电子显微镜(FE-SEM)、透射电子显微镜(TEM)、高分辨透射电镜(HRTEM),原子力显微镜(AFM),X射线衍射仪(XRD)和紫外-可见光光谱仪(UV-Visble)对所得的金、银纳米粒子的结构、形貌和光谱进行表征。本论文的主要成果如下:
     1、围绕金纳米粒子,主要研究在150oC的溶剂热条件下,从金属前驱液(氯金酸)开始,在表面活性剂(PVP,CTAB)辅助下,利用乙二醇(EG)为溶剂和还原剂,并通过对生长过程的调控达到对纳米粒子形貌进行控制,还原金离子获得了多种形状的金纳米片,提高了纳米粒子的单分散性和反应及晶体生长速率。
     2、在室温条件下,以水为溶剂,用不同聚合度的PVP(K30,K60和K90)还原氯金酸合成不同形状的单晶金纳米片。提出一种金片从成核到生长成微米级片的生长机制,阐述了金片可能的生长过程。
     3、在高温条件下,用乙二醇(EG)为溶剂和还原剂,并在PVP作用下还原AgNO3合成Ag的纳米棒(线);另外,利用简单水相法在只有PVP的条件下合成片状纳米结构。
     4、通过溶胶-凝胶法,在常压条件下制备介孔二氧化硅材料,利用氮气等温吸附对其结构进行评估,并分别对所得介孔材料的比表面积进行测定和孔径分布进行了计算。
Nano-material is one of the exciting research subjects on material science in recent years. Nano technology is recognized as one of the 21st century's most promising research areas. The nanostructural noble metal, together with the unique physical and chemical properties, has surface effect, volume effect, quantum size effect and quantum tunnel effect. It also has been broadly applied in optical, electrical, thermal, magnetic, catalytic and other fields, and become an important component of nano-materials. Meanwhile, it is important to get the shape-controlled noble metal nanoparticles and design the functional materials because their unique physical and chemical properties can be tuned through controlling over the size, shape and morphology of particles. The main content of this dissertation research is to design a simple and effective method to synthesize size- and shape-controlled gold and silver nanostructures. Structures, morphology and spectra characterization were also carried out by field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), atomic force microscope (AFM), X-ray diffraction (XRD) and UV - visible spectrometer (UV-Visble). The main results of this work are listed as follows:
     1. Through a modified Polyol procee, we mainly studied the synthesis of Au nanoparticles through thermal reduction (150oC) of HAuCl4 precursor in ethylene glycol (EG) solution with the presence of Poly-vinylpyrrolidone (PVP) and Cetyltrimethylammonium bromide (CTAB). By introducing the surfactants (PVP, CTAB) and regulating the growth process, Au nanoparticles of various shapes were obtained. These works provided a demonstration of the use of surfactants to increase the monodisperse of nanoparticles, growth and reaction rate.
     2. At room temperatures, a simple and modified method was developed for preparing new shapes of Au nanoplates with different degrees of polymerization of PVP (K30, K60 and K90) in the aqueous solution at room temperature. PVP was used as both reducing agent and surfactant. The growth mechanism for Au micro-plates from the nucleation was proposed. Also, the possible growth process of Au nanoplates was described in this thesis.
     3. The third part of this thesis presented a polyol process for preparing Ag nanorods (or nanowires). Ag nanorods (or nanowires) with the high aspect ratio were synthesized in EG solution by thermal reduction (150oC) of AgNO3 at the presence of PVP used as capping agent. In addition, in terms of regulating the concentration of PVP and changing the temperature and the solution, we can readily access the Ag nanoplates.
     4. In the fourth part of this thesis, the monolithic porous silica material was prepared by sol-gel method under normal pressure and the obtained structure was examined by Nitrogen sorption isotherms measurement. Additionally, the specific surface area and the distribution of pore size for samples were mensurated and calculated, respectively.
引文
[1]张立德,牟季美.纳米材料和纳米结构.北京:科技出版社, 2001. 51-65.
    [2] S. Auer, D. Frenkel. Suppression of crystal nucleation in polydisperse colloids due to increase of the surface free energy. Nature, 2001, 413: 711-713.
    [3] J. F. Wang, M. S. Gudiksen, X. F. Duan, et al. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293: 1455-1457.
    [4] C. J. Murphy. Nanocubes and Nanoboxes. Science, 2002, 298: 2139-2141.
    [5] Y. Sun, Y. Xia. Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 2002, 298: 2176-2179.
    [6] B. Yurke, A. J. Turberfield, A. P. Mills, et al. A DNA-fuelled molecular machine made of DNA. Nature, 2000, 406: 605-608.
    [7] T. S. Ahmadi, Z. L. Wang, T. C. Green, et al. Shape-Controlled Synthesis of Colloidal Platinum Nanoparticles. Science, 1996, 272: 1924-1925.
    [8] S. H. Chen, Z. Y. Fan, D. L. Carroll. Silver Nanodisks: Synthesis, Characterization, and Self-Assembly. J. Phys. Chem. B, 2002, 106: 10777-10781.
    [9] Y. Sun, Y. Xia. Mechanistic Study on the Replacement Reaction between Silver Nanostructures and Chloroauric Acid in Aqueous Medium. J. Am. Chem. Soc, 2004, 126: 3892-3901.
    [10] G. Banfi, V. Degiorgio, D. Ricard. Nonlinear optical properties of semiconductor nanocrystals. Adv. Phys, 1998, 47: 447-519.
    [11] P. Mulvaney. Surface Plasmon Spectroscopy of Nanosized Metal Particles. Langmuir, 1996, 12: 788-800.
    [12] A. J. Haes, S. Zou, G. C. Schatz, et al. A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles. J. Phys. Chem. B, 2004, 108: 109-116.
    [13] J. H. Shim, B. J. Lee, Y. W. Cho. Thermal stability of unsupported gold nanoparticle: a molecular dynamics study. Surf. Sci, 2002, 512: 262-268.
    [14] K. Dick, T. Dhanasekaran, Z. Zhang, et al. Size-Dependent Melting of Silica-Encapsulated Gold Nanoparticles. J. Am. Chem. Soc, 2002, 124: 2312-2317.
    [15] A. Stella, M. Nisoli, S. D. Silvestri, et al. Size effects in the ultrafast electronic dynamics of metallic tin nanoparticles. Phys. Rev. B, 1996, 53: 15497-15500.
    [16] Q. Darugar, W. Qian, M. A. El-Sayed, et al. Size-Dependent Ultrafast Electronic Energy Relaxation and Enhanced Fluorescence of Copper Nanoparticles. J. Phys. Chem. B, 2006, 110: 143-149.
    [17] B. R. Cuenya, S. H. Baeck, T. F. Jaramillo, et al. Size- and Support-Dependent Electronic and Catalytic Properties of Au0/Au3+ Nanoparticles Synthesized from Block Copolymer Micelles. J. Am. Chem. Soc, 2003, 125: 12928-12934.
    [18]高善民,孙树声,刘兆明.纳米材料的应用前景展望.化学世界, 2000, 11: 613-616.
    [19] M. M. Maye, Y. Lou, C. J. Zhong. Core?Shell Gold Nanoparticle Assembly as Novel Electrocatalyst of CO Oxidation. Langmuir, 2000, 16: 7520-7523.
    [20] P. V. Kamat. Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles. J. Phys. Chem. B, 2002, 106: 7729-7744.
    [21] S. S. Shankar, A. Rai, B. Ankamwar, et al. Biological synthesis of triangular gold nanoprisms. Nat. Mater, 2004, 3: 482-488.
    [22] S. S. Shankar, A. Rai, A. Ahmad, et al. Controlling the Optical Properties of Lemongrass Extract Synthesized Gold Nanotriangles and Potential Application in Infrared-Absorbing Optical Coatings. Chem. Mater., 2005, 17: 566-572.
    [23] X. H. Huang, I. H. El-Sayed, W. Qian, et al. Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods. J. Am. Chem. Soc., 2006, 128: 2115-2120.
    [24] J. M. Weissman, H. B. Sunkara, A. S. Tee, et al. Thermally Switchable Periodicities and Diffraction from Mesoscopically Ordered Materials. Science, 1996, 274: 959-963.
    [25] Y. Y. Yu, S. S. Chang, C. L. Lee, et al. Gold Nanorods: Electrochemical Synthesis and Optical Properties. J. Phys. Chem. B, 1997, 101: 6661-6664.
    [26] S. Link, M. B. Mohamed, M. A. El-Sayed. Simulation of the Optical Absorption Spectra of Gold Nanorods as a Function of Their Aspect Ratio and the Effect of the Medium Dielectric Constant. J. Phys. Chem. B, 1999, 103: 3073-3077.
    [27] B. M. I. van der Zande, M. R. Bohmer, L. G. J. Fokkink, et al. Colloidal Dispersions of Gold Rods: Synthesis and Optical Properties. Langmuir, 2000, 16: 451-458.
    [29] N. R. Jana, L. Gearheart, C. J. Murphy. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. J. Phys. Chem. B, 2001, 105: 4065-4067.
    [30] B. D. Busbee, S. O. Obare, C. J. Murphy. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Adv. Mater, 2003, 15: 414-416.
    [31] J. Sloan, D. M. Wright, H. G. Woo, et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun., 1999, 699-700.
    [32] Y. Sun, Y. Xia. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft, Self-Seeding, Polyol Process. Adv. Mater, 2002, 14: 833-837.
    [33] R. C. Jin, Y. W. Cao, C. A. Mirkin, et al. Photoinduced Conversion of Silver Nanospheres to Nanoprisms. Science, 2001, 294: 1901-1903.
    [34] C. X. Kan, X. G. Zhu, G. H. Wang. Single-Crystalline Gold Microplates: Synthesis, Characterization, and Thermal Stability. J. Phys. Chem. B, 2006, 110: 4651-4656.
    [35] S. Chen, D. L. Carroll. Synthesis and Characterization of Truncated Triangular Silver Nanoplates. Nano Lett., 2002, 2: 1003-1007.
    [36] Y. Sun, B. Mayers, Y. Xia. Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process. Nano Lett., 2003, 3: 675-679.
    [37] K. L. Kelly, E. Coronado, L. L. Zhao, et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B, 2003, 107: 668-677.
    [38] N. Okada, Y. Hamanaka, A. Nakamura, et al. Linear and Nonlinear Optical Response of Silver Nanoprisms: Local Electric Fields of Dipole and Quadrupole Plasmon Resonances. J. Phys. Chem. B, 2004, 108: 8751-8755.
    [39] G. S. Metraux, C. A. Mirkin. Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness. Adv. Mater, 2005, 17: 412-415.
    [40] D. Yu, V. W. Yam. Controlled Synthesis of Monodisperse Silver Nanocubes in Water. J. Am. Chem. Soc., 2004, 126: 13200-13201.
    [41] S. H. Chen, Z. L. Wang, J. Ballato, et al. Monopod, Bipod, Tripod, and Tetrapod Gold Nanocrystals. J. Am. Chem. Soc., 2003, 125: 16186-16187.
    [42] W. X. Niu, S. L. Zheng, D. W. Wang, et al. Selective Synthesis of Single-Crystalline Rhombic Dodecahedral, Octahedral, and Cubic Gold Nanocrystals. J. Am. Chem. Soc., 2009, 131: 697-703.
    [43] J. J. Zhu, C. X. Kan, X. G. Zhu, et al. Synthesis of perfect silver nanocubes by a simple polyol process. J. Mater. Res., 2007, 22: 1479-1485.
    [44] C. X. Kan, J. J. Zhu, X. G. Zhu. Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms. J. Phys. D: Appl. Phys. 2008, 41: 155304-155312.
    [45] I. Pastoriza-Santos, L. M. Liz-Marzan. Synthesis of Silver Nanoprisms in DMF. Nano Lett., 2002, 2: 903-905.
    [46] Y. Zhou, C. Y. Wang, Y. R. Zhu, et al. A Novel Ultraviolet Irradiation Technique for Shape-Controlled Synthesis of Gold Nanoparticles at Room Temperature. Chem. Mater., 1999, 11: 2310-2312.
    [47] J. U. Kim, S. H. Cha, K. Shin, et al. Preparation of Gold Nanowires and Nanosheets in BulkBlock Copolymer Phases under Mild Conditions. Adv. Mater, 2004, 16: 459-464.
    [48] F. Kim, J. H. Song, P. Yang. Photochemical Synthesis of Gold Nanorods. J. Am. Chem. Soc., 2002, 124: 14316-14317.
    [49] Y. Zhou, S. H. Yu, C. Y. Wang, et al. A Novel Ultraviolet Irradiation Photoreduction Technique for the Preparation of Single-Crystal Ag Nanorods and Ag Dendrites. Adv. Mater, 1999, 11: 850-852.
    [50] T. Tsuji, T. Higuchi, M, Tsuji. Laser-induced Structural Conversions of Silver Nanoparticles in Pure Water -Influence of Laser Intensity. Chem. Lett., 2005, 34: 476-477.
    [51] T. Tsuji, N. Watanabe, M, Tsuji. Laser induced morphology change of silver colloids: formation of nano-size wires. Appl. Surf. Sci., 2003, 211: 189-193
    [52] S. S. Chang, C. W. Shih, C. D. Chen, et al. The Shape Transition of Gold Nanorods. Langmuir, 1999, 15: 701-709.
    [53] E. C. Walter, B. J. Murray, F. Favier, et al. Noble and Coinage Metal Nanowires by Electrochemical Step Edge Decoration. J. Phys. Chem. B, 2002, 106: 11407-11411.
    [54] J. J. Zhu, X. H. Liao, X. N. Zhao, et al. Preparation of silver nanorods by electrochemical methods. Mater. Lett., 2001, 49: 91-95.
    [55] C. J. Murphy, N. R. Jane. Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Adv. Mater, 2002, 14: 80-82.
    [56] N. R. Jane, L. Gearheart, C. J. Murphy. Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Adv. Mater, 2001, 14: 1389-1393.
    [57] A. Henglein. Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate. J. Phys. Chem. B, 1999, 103: 9533-9539.
    [58] A. D. Belapurkar, S. Kapoor, S. K. Kulshreshtha, et al. Radiolytic preparation and catalytic properties of platinum nanoparticles. Mater. Res. Bull., 2001, 36: 145-151.
    [59] J. P. Kottmann, O. J. F. Martin, D. R. Smith, et al. Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B, 2001, 64: 235402.
    [60] J. P. Kottmann, O. J. F. Martin, D. R. Smith, et al. Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem. Phys. Lett., 2001, 341: 1-6.
    [61] Y. Shao, Y. Jin, S. Dong. Synthesis of gold nanoplates by aspartate reduction of gold chloride. Chem. Commun., 2004, 1104-1105.
    [62] L. Wang, X. Chen, J. Zhan, et al. Synthesis of Gold Nano- and Microplates in Hexagonal Liquid Crystals. J. Phys. Chem. B, 2005, 109: 3189-3194.
    [63] X. Sun, S. Dong, E. Wang. High-Yield Synthesis of Large Single-Crystalline Gold Nanoplatesthrough a Polyamine Process. Langmuir, 2005, 21: 4710-4712.
    [64] A. Courty, A. -I. Henry, N. Goubet, et al. Large triangular single crystals formed by mild annealing of self-organized silver nanocrystals. Nature Materials, 2007, 6: 900-907.
    [65] R. H. Morriss, W. R. Bottoms, R. G. Peacock. Growth and Defect Structure of Lamellar Gold Microcrystals. J. Appl. Phys. 1968, 39: 3016-3021.
    [66] A. I. Kirkland, D. A. Jefferson, D. G. Duff, et al. Structural Studies of Trigonal Lamellar Particles of Gold and Silver. Proc. R. Soc. Lond. A. 1993, 440: 589-609.
    [67] C. X. Kan, W. P. Cai, C. C. Li, et al. Optical studies of polyvinylpyrrolidone reduction effect on free and complex metal ions. J. Mater. Res., 2005, 20: 320-324.
    [68] T. Mortier, T. Verbiest, A. Persoons. Laser ablation of gold in chloroform solutions of cetyltrimethylammoniumbromide. Chem. Phys. Lett., 2003, 382: 650-653.
    [69] K. Esumo, K. Matsuhisa, K. Torigoe. Preparation of Rodlike Gold Particles by UV Irradiation Using Cationic Micelles as a Template. Langmuir, 1995, 11: 3285-3287.
    [70] A. Kameo, A. Suzuki, K. Torigoe, et al. Fiber-like Gold Particles Prepared in Cationic Micelles by UV Irradiation: Effect of Alkyl Chain Length of Cationic Surfactant on Particle Size. J. Colloid. Interf. Sci., 2001, 241: 289-292.
    [71] Y. Sun, Y. Yin, B. T. Mayers, et al. Uniform Silver Nanowires Synthesis by Reducing AgNO3 with Ethylene Glycol in the Presence of Seeds and Poly(Vinyl Pyrrolidone). Chem. Mater., 2002, 14: 4736-4745.
    [72] F. Bonet, V. Delmas, S. Grugeon, et al. Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol. NanoStru. Mater., 1999, 11: 1277-1284.
    [73]万鹏.聚乙烯基吡咯烷酮研究进展.精细与专用化学品. 2004. 8: 8-10
    [74]姚连增.晶体生长基础.合肥:中国科学技术大学出版社, 1995, 258-310; 409-429.
    [75] C. C. Li, W. P. Cai, B. Q. Cao, et al. Mass Synthesis of Large, Single-Crystal Au Nanosheets Based on a Polyol Process. Adv. Funct. Mater., 2006, 16: 83-90.
    [76] L. D. Marks. Experimental studies of small particle structures. Rep. Prog. Phys., 1994, 57: 603-649.
    [77] H. S. Nam, N. M. Hwang, B. D. Yu, et al. Formation of an Icosahedral Structure during the Freezing of Gold Nanoclusters: Surface-Induced Mechanism. Phys. Rev. Lett., 2002, 89: 275502.
    [78] L. A. Bauer, N. S. Birenbaum, G. J. Meyer. Biological applications of high aspect ratio nanoparticles. J. Mater. Chem., 2004, 14: 517– 526.
    [79] J. Chen, F. Saeki, B. J. Wiley, et al. Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents. Nano Lett., 2005, 5: 473-477.
    [80] A. J. Sai Venkataraman, C. Subramaniam, R. R. Kumar, et al. Growth of Gold Nanoparticles in Human Cells. Langmuir, 2005, 21: 11562-11567.
    [81] A. R. Tao, S. Habas, P. Yang. Shape Control of Colloidal Metal Nanocrystals. Samll, 2008, 4: 310-325.
    [82] H. Hofmeister. Forty Years Study of Fivefold Twinned Structures in Small Particles and Thin Films. Cryst. Res. Tehnol. 1998, 33: 3-25.
    [83] C. L. Cleveland, U. Landman, T. G. Schaaff, et al. Structural Evolution of Smaller Gold Nanocrystals: The Truncated Decahedral Motif. Phys. Rev. Lett., 1997, 79: 1873-1876.
    [84] H. J. Bi, W. P. Cai, C. X. Kan, et al. Optical study of redox process of Ag nanoparticles at high temperature. J. Appl. Phys., 2002, 92 : 7491-7497.
    [85] J. L. Elechiguerra, J. R. Gsaga, M. J. Yacaman. The role of twinning in shape evolution of anisotropic noble metal nanostructures. J. Mater. Chem., 2006, 16: 3906– 3919.
    [86] Y. Sun, B. Mayers, T. Herricks, et al. Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. Nano Lett., 2003, 3: 955-960.
    [87] B. Wiley, Y. Sun, Y. Xia. Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Acc. Chem. Res., 2007, 40: 1067-1076.
    [88] J. Bregado-Gutiéírrez, A. J. Saldívar-García, H. F. López. Synthesis of silver nanocrystals by a modified polyol method. J. Appl. Polymer Sci., 2008, 107: 45-53.
    [89] D. H. Everett. Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. J. Pure. Appl. Chem., 1972, 31: 577-638.
    [90] Q. Huo, R. Leon, P. M. Petroff, et al. Mesostructure Design with Gemini Surfactants: Supercage Formation in a Three-Dimensional Hexagonal Array. Science, 1995, 268: 1324-1327.
    [91] H. Yang, A. Kuperman, N. Coombs, et al. Synthesis of oriented films of mesoporous silica on mica. Nature, 1996, 379: 703-705.
    [92] Y. Lu, R. Gangli, C. A. Drewien, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol–gel dip-coating. Nature, 1997, 389: 364-368.
    [93]杨一军.阚彩侠.刘强春.李光源. CdS/SiO 2介孔组装体系的光学性质.四川大学学报. 2008, 45: 383-386.
    [94]严继民,张启元,高敬宗.吸附与凝聚-固体的表面与空.北京:科技出版社, 1986. 139-155, 156-168.
    [95] W. P. Cai, L. D. Zhang. Characterization and the optical switching phenomenon of porous silica dispersed with silver nano-particles within its pores. J. Phys.: Condens. Matter, 1996, 8: L591-L596.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700