用户名: 密码: 验证码:
双氢氧化物作催化剂前驱体化学气相沉积法制备碳纳米管
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)自1991年被发现以来,这种新型一维纳米材料由于具有许多优异的性质和潜在的广阔的应用前景,己成为物理、化学和材料领域的研究前沿。目前化学气相沉积法(CVD)以其设备简单、成本低、反应过程易控制等优点成为目前制备碳纳米管的主要方法,但同时也存在一些缺点,如产物的纯度不高,产量较低等。因而制备高活性催化剂成为CVD法制备碳纳米管研究的热点。本文利用双金属氢氧化物(LDHs)作为催化剂前驱体用CVD法制备碳纳米管,具体内容如下:
     1、Co/Al LDHs作催化剂前驱体来制备含氮的碳纳米管
     采用均匀沉淀法制备片层结构的Co/Al LDHs,以500 oC煅烧后产物作为催化剂,以甲烷为碳源,乙腈为氮源,在不同气流量下用CVD法大量制备了含氮碳纳米管,通过对其形貌和结构的表征发现,当甲烷和乙腈的流量(mL min-1)为30:30时,制备的含氮碳纳米管的形貌和纯度都较好,而且产量最大。
     2、Co/Al/La LDHs作催化剂前驱体来制备碳纳米管
     采用共沉淀法制备掺杂稀土元素La的Co/Al LDHs,600 oC煅烧处理后作为催化剂,以乙炔为碳源,利用CVD法制备碳纳米管。通过改变LDHs中La的掺入量,研究其含量对碳纳米管制备的影响。结果发现当La的掺杂量为5%时,制备的碳纳米管形貌好,且产量也最大。
     3、不同实验参数对CVD制备碳纳米管的影响
     从煅烧温度、生长温度、生长时间和气流量等方面分别研究了这些因素对碳纳米管制备过程的影响,并通过对比实验来确定最佳的实验参数。
Since the discovery of carbon nanotubes (CNTs) by Iijima in 1991, CNTs have attracted much attention due to their scientific significance and potential technological applications. Meanwhile, CNT materials become the frontier of scientific field such as physics, chemistry and material. Chemical vapor deposition (CVD) becomes the main method of CNT preparation for its simple reactor, low cost and controlled reaction. But there are also some disadvantages in the CVD method, such as low purity and yield of the products. So to prepare catalyst with high activity is very important in the process of CNT synthesis by CVD. In this paper we used LDHs as catalyst precursor to prepare CNTs by CVD.
     The details are as follows:
     1. Preparation of N-doped CNTs using Co/Al LDHs as catalyst precursor
     Co/Al LDHs with layered structure were prepared by homogeneous precipitation method. After calcination at 500 oC, the obtained products were used as catalyst to synthesize N-doped CNTs by CVD with methane and acetonitrile as carbon and nitrogen source. By a series of characterlization of the products, we found N-doped CNTs with good morphology and purity were obtained when the gas flow rate (mL min-1) were at 30:30. Also the yield of N-doped CNTs was largest at this flow rate.
     2. Preparation of CNTs using Co/Al/La LDHs as catalyst precursor
     Co/Al/La LDHs with different La content were prepared by co-precipitation method. After the procedure of calcination at 600 oC, the products were used as catalyst to synthesize CNTs by CVD with acetylene as carbon source. We studied the effect of La content in the catalyst precursor on the preparation of CNTs by CVD. Finally we found that the obtained CNTs had good quality and quantity when the La content was at 5%.
     3. Effects of different experimental parameters on the preparation of CNTs by CVD
     In our work, several factors such as calcination temperature, growth temperature, growth time and flow rate, were studied to find out the influence on the products. Meanwhile, we confirmed optimum experimental parameters by a series of contrast experiments.
引文
[1]张立德,牟季美,纳米材料和纳米结构[M].北京:科学出版社, 2002.
    [2] Kroto H W, Heath J R, O'Brien S C. et al. C60: Buckminsterfullerene [J]. Nature, 1985, 318(6042): 162~163.
    [3] Iijima S. Helical microtubules of graphitic carbon [J]. Nature, 1991, 354(6348): 356~358.
    [4] Hughes T V, Chambers C R. US Patent, 1889, 405: 480.
    [5] Bacon R. Growth, structure, and properties of graphite whiskers [J]. J. Appl. Phys., 1960, 31(2): 283~290.
    [6] Wiles P G, Abrahamson J. Carbon fibre layers on arc electrodes-I: Their properties and cool-down behavior [J]. Carbon, 1978, 16(5): 341~349.
    [7] Abrahamson J, Wiles P, Rhoades B. Structure of carbon fibers found on arc anodes [J]. Carbon, 1999, 37(11): 1873~1874.
    [8] Tibbetts G G. Why are carbon filaments tubular? [J]. J. Cryst. Growth, 1984, 66(3): 632~638.
    [9] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter [J]. Nature, 1993, 363(6430): 603~605.
    [10] Bethune D S, Klang C H, Vries M D, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls [J]. Nature, 1993, 363(6430): 605~607.
    [11]成会明.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社, 2002.
    [12] Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277(5334): 1971~1975.
    [13] Wind S J, Appenzeller J, Martel R, et al. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes [J]. Appl. Phys. Lett., 2002, 80(20): 3817~3819.
    [14] Fan S S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties [J]. Science, 1999, 283(5401): 512~514.
    [15] Shen Z Y, Liu S J, Hou S M, et al. In situ splitting of carbon nanotube bundles with atomic force microscopy [J]. J. Phys. D: Appl. Phys., 2003, 36(17): 2050~2053.
    [16] Fennimore A M, Yuzvinsky T D, Han W Q, et al. Rotational actuators based on carbon nanotubes [J]. Nature, 2003(6947), 424: 408~410.
    [17] Modi A, Koratkar N, Lass E, et al. Miniaturized gas ionization sensors using carbon nanotubes [J]. Nature, 2003, 424(6945): 171~174.
    [18] Li J, Yip S, Theoretical evaluation of hydrogen storage capacity in pure carbon nanostructures [J]. J. Chem. Phys., 2003, 119 (4): 2376~2379.
    [19] Ho Y H, Chang C P, Shyu F L, et al. Electronic and optical properties of double-walled armchair carbon nanotubes [J]. Carbon, 2004, 42(15): 3159~3167.
    [20] Shtogun Y V, Woods L M. Electronic and magnetic properties of deformed and defective single wall carbon nanotubes [J]. Carbon, 2009, 47(14): 3252~3262.
    [21] Bulusheva L G, Okotrub A V, Kudashov A G, et al. Effect of Fe/Ni catalyst composition on nitrogen doping and field emission properties of carbon nanotubes [J]. Carbon, 2008, 46(6): 864~869.
    [22] Cha S I, Kim K T, Lee K H, et al. Mechanical and electrical properties of cross-linked carbon nanotubes [J]. Carbon, 2008, 46(3): 482~488.
    [23] Müller C, Hampel S, Elefant D, et al. Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties [J]. Carbon, 2006, 44(9):1746~1753.
    [24] Krishnan A, Dujardin E, Ebbesen T W, et al. Young's modulus of single-walled nanotubes [J]. Phys. Rev. B, 1998, 58(20): 14013~14019.
    [25] Wang X K, Lin X W, Mesleh M. et al. The effect of hydrogen on the formation of carbon nanotubes and fullerenes [J]. J. Mater. Res., 1995, 10(8): 1977~1983.
    [26] Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high Young's modulus observed for individual carbon nanotubes [J]. Nature, 1996, 381(6584): 678~680.
    [27] De Jone K P, Geus J W. Carbon nanofibers: Catalytic synthesis and application [J]. Catal. Rev., 2000, 42(4): 481~510.
    [28] Smith B W, Monthioux M, Luzzi D E. Encapsulated C60 in carbon nanotubes [J], Nature, 1998, 396(6709): 323~324.
    [29] Liu C, Fan Y Y, Liu M. Dresselhaus hydrogen storage in single-salled carbon nanotubes at room temperature [J], Science, 1999, 286(5442): 1127~1129.
    [30] Han W Q, Fan S S, Li Q Q, et al. Synthesis of gallium nitride nanorods through a carbon nanotube-confined reaction [J]. Science, 1997, 277(5330): 1287~1289.
    [31] Mintmire J W, Dunlap B L, White C T. Are fullerene tubules metallic? [J]. Phys. Rev. Lett., 1992, 68(5): 631~634.
    [32] Hamada N, Sawada S, Oshiyama. New one-dimensional conductors: Graphitic microtubules [J]. Phys. Rev. Lett., 1992, 68(10): 1579~1581.
    [33] Saito R, Fujita M, Dresselhaus G, et al. Electronic structure of grapheme tubules based on C60 [J].Phys. Rev. B, 1992, 46(3): 1804~1811.
    [34] Wildoer J W G, Venema L C, Rinzler A G, et al. Electronic structure of atomically resolved carbon nanotubes [J]. Nature, 1998, 391(6662):59~62.
    [35] Hassanien A, Tokumoto M, Kumazawa Y, et al. Atomic structure and electronic properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature [J]. Appl. Phys. Lett., 1998, 73(26): 3839~3841.
    [36] Frank S, Poncharal P, Wang Z L, et al. Carbon nanotube quantum resistors [J]. Science, 1998, 280(5370): 1744~1746.
    [37] Kociak M, Kasumov A Y, Gueron S, et al. Superconductivity in ropes of single-walled carbon nanotubes [J]. Phys. Rev. Lett., 2001, 86(11): 2416~2419.
    [38] Tang Z K, Zhang L, Wang N, et al. Superconductivity in 4 angstrom single-walled carbon nanotubes [J]. Science, 2001, 292(5526): 2462~2465.
    [39] Berber S, Kwon Y K, Tomanek D. Unusually high thermal conductivity of carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84(20): 4613~4616.
    [40] Yi W, Lu L, Zhang D L, et al. Linear specific heat of carbon nanotubes [J]. Phys. Rev. B, 1999, 59(14): 9015~9018.
    [41] Hafner J H, Cheung C L, Lieber C M. Growth of nanotubes for probe microscopy tips [J]. Nature, 1999, 398(6730): 761~762.
    [42] Nikitin A, Li X, Zhang Z, et al. Hydrogen storage in carbon nanotubes through the formation of stable C-H bonds [J]. Nano Lett., 2008, 8(1): 162~167.
    [43] Sankaran M, Viswanathan B. Hydrogen storage in boron substituted carbon nanotubes [J]. Carbon, 2007, 45(8): 1628-1635.
    [44] Mu S, Tang H, Qian S, et al. Hydrogen storage in carbon nanotubes modified by microwave plasma etching and Pd decoration [J]. Carbon, 2006, 44(4): 762-767.
    [45] Luo J Z, Gao L Z, Leung Y L, et al. The decomposition of NO on CNTs and 1 wt% Rh/CNTs [J]. Catal. Lett., 2000, 66(1-2): 91~97.
    [46] Ebbesen T W, Ajayan P M. Large-scale synthesis of carbon nanotubes [J]. Nature, 1992, 358(6383): 220~222.
    [47] Guo T, Nikolaev P, Rinzler A G, et al. Self-assembly of tubular fullerenes [J]. J. Phys. Chem., 1995, 99(27): 10694~10697.
    [48] Endo M, Takeuchi K, Igarashi S, et al. The production and structure of pyrolytic carbon nanotubes (PCNTs) [J]. J. Phys. Chem. Solids, 1993, 54(12): 1841~1848.
    [49] Baker R T K, Harris P S., Thomas R B, et al. Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene [J]. J. Catal., 1973, 30(1): 86~95.
    [50] Oberlin A, Endo M, Koyama T. Filamentous growth of carbon through benzene decomposition [J]. J. Cryst. Growth, 1976, 32(3): 335~349.
    [51] Baker R T K, Chludzinski J J. Filamentous carbon growth on nickel-iron surfaces: The effect of various oxide additives [J]. J. Catal., 1980, 64(2): 464~478.
    [52] Nagaraju N, Fonseca A, Konya Z, et al. Alumina and silica supported metal catalysts for the production of carbon nanotubes [J]. J. Molec. Catal. A, 2002, 181(1-2): 57~62.
    [53] Dai H J, Rinzler A G, Nikalaev P, et al. Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J]. Chem. Phys. Lett., 1996, 260(3-4): 471~475.
    [54] Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes [J]. Chem. Phys. Lett., 1998, 292(4-6): 567~574.
    [55] Cassell A M, Raymakers J A, Kong J, et al. Large scale CVD synthesis of single-walled carbon nanotubes [J]. J. Phys. Chem. B, 1999, 103(31): 6484~6492.
    [56] Dai H J, Kong J, Zhou C, et al. Controlled chemical routes to nanotube architectures, physic and devices [J]. J. Phys. Chem B, 1999, 103(51): 11246~11255.
    [57] Lyu S C, Liu B C, Lee T J, et al. Synthesis of high-quality single-walled carbon nanotubes by catalytic decomposition of C2H2 [J]. Chem. Comm., 2003, (6): 734~735.
    [58] Chen P, Zhang H B, Lin G, et al. Growth of carbon nanotubes by catalytic decomposition of CH4 or CO on a Ni-MgO catalyst [J]. Carbon, 1997, 35(10-11): 1495~1501.
    [59] Soneda Y, Duclaux L, Beguin F. Synthesis of high quality multi-walled carbon nanotubes from the decomposition of acetylene on iron-group metal catalysts supported on MgO [J]. Carbon, 2002, 40(6): 965~969.
    [60] Li Z, Xie S S, Qian L X, et al. Large-scale synthesis of aligned carbon nanotubes [J]. Science, 1996, 274(5293): 1701~1703.
    [61] Ren Z F, Huang Z P, Xu J W, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass [J]. Science, 1998, 282(5391): 1105~1107.
    [62] Fan S, Chapline M G, Franklin N R, et al. Self-oriented regular arrays of carbon nanotubes and their field emission [J]. Science, 1999, 283(5401): 512~514.
    [63] Meyer R R, Sloan J, Dunin-Borkowski R E, et al. Discrete atom imaging of one-dimensional crystals formed within single-walled nanotubes [J]. Science, 2000, 289(5483): 1324~1326.
    [64] Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science,1996, 273(5274): 483~487.
    [65] Evans D G, Duan X. Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine [J]. Chem. Comm., 2006, (5): 485~496.
    [66] Han Y, Liu Z H, Yang Z, et al. Preparation of Ni2+-Fe3+ layered double hydroxide material with high crystallinity and well-defined hexagonal shapes [J]. Chem. Mater., 2008, 20(2): 360~363.
    [67] Carpani I, Berrettoni M, Giorgetti M, et al. Intercalation of iron(III) hexacyano complex in a Ni, Al hydrotalcite-like compound [J]. J. Phys. Chem. B, 2006, 110 (14): 7265~7269.
    [68] Li F, Tan Q, Evans D G, et al. Synthesis of carbon nanotubes using a novel catalyst derived from hydrotalcite-like Co-Al layered double hydroxide precursor [J]. Catal. Lett., 2005, 99(3-4): 151~156.
    [69] Xiang X, Zhang L, Hima H I, et al. Co-based catalysts from Co/Fe/Al layered double hydroxides for preparation of carbon nanotubes [J]. Appl. Clay Sci., 2009, 42(3-4): 405~409.
    [70] Hima H I, Xiang X, Zhang L, et al. Novel carbon nanostructures of caterpillar-like fibers and interwoven spheres with excellent surface super-hydrophobicity produced by chemical vapor deposition [J]. J. Mater. Chem., 2008, 18(11): 1245~1252.
    [71] Dussault L, Dupin J C, Latorre N, et al. New Ni-Cu-Mg-Al based catalysts preparation procedures for the synthesis of carbon nanofibers and nanotubes [J]. J. Phys. Chem. Solids, 2006, 67(5-6): 1162~1167.
    [72] Zhao Y, Jiao Q Z, Li C H, et al. Catalytic synthesis of carbon nanostructures using layered double hydroxides as catalyst precursors [J]. Carbon, 2007, 45(11): 2159~2163.
    [73] Zhao M Q, Zhang Q, Jia X L, et al. Hierarchical composites of single/double-walled carbon nanotubes interlinked flakes from direct carbon deposition on layered double hydroxides [J]. Adv. Funct. Mater., 2010, 20: 1~9.
    [74] Kang Y J, Kim Yo H, Chang K J. Electrical transport properties of nanoscale devices based on carbon nanotubes [J]. Curr. Appl. Phys., 2009, 9(1): 7~11.
    [75] Czenu R, Terrones M, Charlier J C, et al. Identification of electron donor states in N-doped carbon nanotubes [J]. Nano Lett., 2001, 1(5): 457~460.
    [76] Terrones M, Ajayan P M, Banhart F, et al. N-doping and coalescence of carbon nanotubes: synthesis and electronic properties [J], Appl. Phys. A, 2002, 74(3):355~361.
    [77] Kaun C C, Larade B, Mehrez H, Taylor J, et al. Current-voltage characteristics of carbon nanotubes with substitutional nitrogen [J]. Phys. Rev. B, 2002, 65(20): 205416.
    [78] Rubio A, Corlill J L, Cohen M L. Theory of graphitic boron nitride nanotubes [J]. Phys. Rev. B, 1994, 49(7): 5081~5084.
    [79] Loiseau A, Willaime F, Hug G, et al. Boron nitride nanotubes with reduced number of layers synthesized by arc discharge [J]. Phys. Rev. Lett., 1996, 76(25): 4737~4740.
    [80] Goldberg D, Bando Y, Han W, et al. Single-walled B-doped carbon, B/N-doped carbon and BN nanotubes synthesized from single-walled carbon nanotubes through a substitution reaction [J]. Chem. Phys. Lett., 1999, 308(3-4): 337~342.
    [81] Goldberg D, Han W, Bando Y, et al. Fine structure of boron nitride nanotubes produced from carbon nanotubes by a substitution reaction [J]. J. Appl. Phys., 1999, 86(4):2364~2366.
    [82] Terrones M, Terrones H, Grobert N, et al. Efficient route to large arrays of CNx nanofibers by pyrolysis of ferrocene/melamine mixtures [J]. Appl. Phys. Lett., 1999, 75(25):3932~3934.
    [83] Liu Y, Guo H. Current distribution in B- and N-doped carbon nanotubes [J]. Phys. Rev. B, 2004, 69(11): 115401.
    [84] Droppa R, Ribeiro C T M, Zanatta A R, et al. Comprehensive spectroscopic study of nitrogenated carbon nanotubes [J]. Phys. Rev. B, 2004, 69(4): 045405.
    [85] Jang J W, Lee C E, Lyu S C, et al. Structural study of nitrogen-doping effects in bamboo-shaped multi-walled carbon nanotubes [J]. Appl. Phys. Lett., 2004, 84(15):2877~2879.
    [86] Tanaka K, Yamabe T, Fukui K. The science and technology of carbon nanotubes [M]. New York: Elsevier Science, 1999.
    [87] Koo’s A A, Dowling M, Jurkschat K, et al. Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition [J].Carbon, 2009, 47(1): 30~37.
    [88] Wang B, Ma Y, Wu Y, et al. Direct and large scale electric arc discharge synthesis of boron and nitrogen doped single-walled carbon nanotubes and their electronic properties [J]. Carbon, 2009, 47(8): 2112~2142.
    [89] Ismagilov Z R, Shalagina A E, Podyacheva O Y, et al. Structure and electrical conductivity of nitrogen-doped carbon nanofibers [J]. Carbon, 2009, 47(8): 1922~1929.
    [90] Nevidomskyy A H, Csanyi C, Payne M C. Chemically active substitutional nitrogen impurity in carbon nanotubes [J]. Phys. Rev. Lett., 2003, 91(10): 105502.
    [91] Czerw R, Terrones M, Charlier J C, et al. Identification of electron donor states in N-doped carbon nanotubes [J]. Nano Lett., 2001, 1(9): 457~460.
    [92] Choi H J, Ihm J, Louie S G, et al. Defects, quasibound states, and quantum conductance inmetallic carbon nanotubes [J]. Phys. Rev. Lett., 2000, 84(13): 2917~2920.
    [93] Zhao M W, Xia Y Y, Ma Y C, et al. Exohedral and endohedral adsorption of nitrogen on the sidewall of single-walled carbon nanotubes [J]. Phys. Rev. B, 2002, 66(15): 155403.
    [94] Kang H S, Jeong S. Nitrogen doping and chirality of carbon nanotubes [J]. Phys. Rev. B, 2004, 70(23): 233411.
    [95] Su L H, Zhang X G, Liu Y. Electrochemical performance of Co-Al layered double hydroxide nanosheets mixed with multiwall carbon nanotubes [J]. J. Solid State Electrochem., 2008, 12(9): 1129~1134.
    [96] Miyata S. Anion-exchange properties of hydrotalcite-like compounds [J]. Clays Clay Miner., 1983, 31(4): 305~311.
    [97] Koós A A, Dowling M, Jurkschat K, et al. Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition [J]. Carbon, 2009, 47(1): 30~37.
    [98] Ayala P, Grüneis A, Gemming T, et al. Tailoring N-doped single and double wall carbon nanotubes from a nondiluted carbon/nitrogen feedstock [J]. J. Phys. Chem. C, 2007, 111(7): 2879~2884.
    [99] Gammon W J, Kraft O, Reilly A C, et al. Experimental comparison of N(1s) X-ray photoelectron spectroscopy binding energies of hard and elastic amorphous carbon nitride films with reference organic compounds [J]. Carbon, 2003, 41(10): 1917~1923.
    [100] Casanovas J, Ricart J M, Rubio J, et al. Origin of the large N1s binding energy in X-ray photoelectron spectra of calcined carbonaceous materials [J]. J. Am. Chem. Soc., 1996, 118(34): 8071~8076.
    [101] He M S, Zhou S, Zhang J, et al. CVD growth of N-doped carbon nanotubes on silicon substrates and its mechanism [J]. J. Phys. Chem. B, 2005, 109(19): 9275~9279.
    [102]于瀛,崔梅生,施用晞,等.掺杂镧对Ni-Si甲烷裂解催化剂性能影响的研究[J].稀有金属, 2009, 33(3): 391~395.
    [103] Liang Q, Gao L Z, Li Q, et al. Carbon nanotube growth on Ni-particles prepared in situ by reduction of LaNi2O4 [J]. Carbon, 2001, 39(6): 897~903.
    [104] Tang C C, Ding X, Gan Z, et al. Synthesis of carbon nanotubes using supported catalysts modified by lanthanum species [J]. Carbon, 2002, 40(13): 2495~2505.
    [105]崔梅生,于瀛,侯永可,等.稀土改性甲烷分解制氢Ni-Al催化剂制备及表征[J].中国稀土学报, 2009, 27(4): 483~488.
    [106]李红花,汪浩,严辉. ABO3钙钛矿型复合氧化物光催化剂设计评述[J].化工进展, 2006, 25(11): 1309~1313.
    [107] Vallés C, Pérez-Mendoza M, Maser W K, et al. Effects of partial and total methane flows on the yield and structural characteristics of MWCNTs produced by CVD [J]. Carbon, 2009, 47(4): 998~1004.
    [108] Terrado E, Tacchini I, Benito A M, et al. Optimizing catalyst nanoparticle distribution to produce densely-packed carbon nanotube growth [J]. Carbon, 2009, 47(8): 1989~2001.
    [109] Landois P, Peigney A, Laurent C, et al. CCVD synthesis of carbon nanotubes with W/Co-MgO catalysts [J]. Carbon, 2009, 47(3): 789~794.
    [110] Yao Y, Falk L K L, Morjan R E, et al. Nucleation and aligned growth of multi-wall carbon nanotube films during thermal CVD [J]. Carbon, 2007, 45(10): 2065~2071.
    [111] Morancais A, Caussat B, Kihn Y, et al. A parametric study of the large scale production of multi-walled carbon nanotubes by fluidized bed catalytic chemical vapor deposition [J]. Carbon, 2007, 45(3): 624~635.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700