用户名: 密码: 验证码:
有序介孔材料的制备与修饰及其对Cr(Ⅵ)、Cu(Ⅱ)的吸附行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统吸附剂活性炭的结构中微孔(孔径<2 nm)占有很大比例,重金属离子不易进入孔道中,其吸附能力有限。因此,本文制备了高孔容、大孔径的有序介孔碳,并进行胺化修饰,以期得到高吸附量和高选择性的新型吸附材料。
     以可溶性酚醛树脂为前驱体、F127为模板剂、正硅酸乙酯(TEOS)为硅源,三组分共组装法制备介孔碳-氧化硅复合材料,去除硅模板,得到有序介孔碳。研究了其对重金属离子Cr(VI)的吸附行为,探讨了吸附时间、吸附质浓度、温度等对吸附的影响,并与活性炭进行对比。实验发现,在60 min内吸附基本达到平衡,符合准二级速率方程。用Langmuir和Freundlich等温吸附方程可以较好地描述吸附行为。介孔碳对Cr(VI)吸附率随pH值增加而显著降低,在pH>6时,吸附率较低,饱和吸附量明显大于活性炭,可达225.23 mg/g,而活性炭为72.31 mg/g。
     通过原子转移自由基聚合合成两亲嵌段共聚物PEO-b-PS,以其为大分子模板剂,酚醛树脂为碳源,有机-有机自组装制备大孔径介孔碳。使用适量的模板剂可以获得高度有序结构的介孔碳LC(0.25),其孔径分布在20-25 nm,比表面积和孔容分别可达553 m2/g、0.74 cm3/g。与微波一次碳对比研究Cr(VI)吸附过程发现,适量的模板剂所得介孔碳对Cr(VI)的饱和吸附量明显大于微波一次碳,其值达189.39 mg/g,显示了较好的吸附性能。
     对有序介孔碳表面进行胺基修饰可以实现对Cu(II)的选择性吸附。实验发现,随着表面修饰剂乙二胺用量的增加,介孔碳表现了较强的选择性吸附Cu(II)的能力,同时对Cr(VI)则显示出较弱的吸附能力。介孔碳表面修饰后所表现出的这种选择性吸附能力,将有助于去除含Cr(VI)溶液中的铜离子杂质。
As a traditional sorbent, actived carbon has much micropore(pore size<2 nm) in its structure, heavy metal ions can’t access easily, thus its adsorption capacity is limited. Therefore, ordered mesoporous carbon was tried to prepare with higher pore volume and larger pore size. Furthermore, the surface of ordered mesoporous carbon was modified using amino groups in order to obtain new-type adsorption materials with higher adsorption capacity and higher selectivity.
     Ordered mesoporous carbon was synthesized by first using soluble phenolic resins as carbon precursor, F127 as template-directing agent, and TEOS as silicon source based on three-constituent assembly method, and then removing silicon. The investigation was to study the adsorption behavior of ordered mesoporous carbon to heavy metal ion of Cr(VI), and the effect of adsorption time, the adsorbate concentration and temperature on its adsorption behavior. This experiment was undertaken employing actived carbon as a comparison. It was found that the adsorption basically reached equilibrium in sixty minutes, consistent with the pseudo-second rate equation. Langmuir and Freundlich isothermal absorption can describe the adsorption behavior. Experimental evidences showed that, the adsorbability of ordered mesoporous carbon to Cr(VI) was decreased dramatically as pH increasing, and with pH>6, the adsorbability was lower, and the saturated adsorptive capacity was significantly higher than activated carbon, that of 225.23 mg/g.
     The amphiphilic diblock copolymer PEO-b-PS was synthesized by the copolymerization of atom transfer free radicals. Ordered mesoporous carbon with large pore size was synthesized using PEO-b-PS as macromolecular templating agent, phenolic resins as carbon source based on organic-organic self-assembly. Mesoporous carbon LC(0.25) with highly ordered structure can be obtained with appropriate templating agent, wherein, the pore size centered at 20-25 nm, the specific surface area and pore volume reached 553 m2/g and 0.74 cm3/g, respectively. Compared with microwave-synthesized carbon, ordered mesoporous carbon with appropriate templating agent, showed a significantly higher adsorption capacity of Cr(VI), with the value of 189.39 mg/g, indicating an excellent adsorption behavior.
     The selective adsorption of Cu(II) can be achieved by modifying the surface of ordered mesoporous carbon using amino groups. As increasing the surface-modification agent ethylenediamine, mesoporous carbon exhibited a better selective adsorption of Cu(II), and a worse selective adsorption of Cr(VI). Such a selective adsorption behavior, showed after surface modification of mesoporous carbon, can contribute to removing the copper ion impurity in Cr(VI)-containing solution.
引文
[1]张自杰,林荣忱,金儒霖.排水工程(下册)[M].北京:中国建筑工业出版社, 2000.
    [2] Wood, J M. Biological cycles for toxic elements in the environment[J]. Science, 1974, (183): 1049~1052.
    [3]于常荣,梁东梅,赫颖,等.松花江鱼类汞污染现状研究[J].环境科学, 1994, 15(4): 35~40.
    [4]奚旦立,孙裕生,刘秀英.环境监测[M].北京:高等教育出版社, 2000.
    [5]王绍文,姜凤有.重金属废水治理技术[M].北京:冶金工业出版社, 1993.
    [6]周怀东,彭文启.水污染与水环境修复[J].北京:化学工业出版社, 2005. 156~162.
    [7]陈坚,堵国成.环境友好材料的生产与应用[M].北京:化学工业出版社, 2002. 287.
    [8] Nordstrom, D K. Worldwide occurrences of arsenic in ground water[J]. Science, 2002, (296): 2143~2145.
    [9] Atia A A. Synthesis of a quaternary amine anion exchange resin and study its adsorption behaviour for chromate oxyanions [J]. J. Hazard. Mater., 2006, 137(2): 1049~1055.
    [10] Park D, Yun Y S, Ahn, C K, et al. Kinetics of the reduction of hexavalent chromium with the brown seaweed Ecklonia biomass[J]. Chemosphere, 2007, 66(5): 939~946.
    [11] Kumar P A, Ray M, Chakraborty S. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel[J]. J. Hazard. Mater., 2007, 143(1-2): 24~32.
    [12] Benhammou A, Yaacoubi A, Lahbib N, et al. Chromium(VI) adsorption from aqueous solution onto Moroccan Al-pillared and cationic surfactant stevensite[J]. J. Hazard. Mater., 2007, 140(1-2): 104~109.
    [13]杨克敌.微量元素与健康(第一版)[M].科学出版社, 2003. 139~148.
    [14]惠秀娟.环境毒理学[M].北京:化学工业出版社, 2003. 800.
    [15]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社, 2000. 12~16.
    [16]梅光泉.重金属废水的危害及治理[J].微量元素与健康研究, 2004, 21(4): 54~56.
    [17]唐受印,王大军.废水处理工程[M].北京:化学工业出版社, 1998. 207~225.
    [18]问一波.发展适合中国国情的城市污水处理技术[J].环境保护, 1999(5): 26~27.
    [19] Mukhopadhyay B, Sundquist J, Schmitz R J. Removal of Cr(VI) from crcontaminated ground water through electrochemical addition of Fe (II)[J]. J. Environ. Manage., 2007, 82(1): 66~76.
    [20] Aroua M K, Zuki F M, Sulaiman N M. Removal of chromium ions from aqueous solutions by polymer-enhanced ultrafiltration[J]. J. Hazard. Mater., 2007, 147(3): 752~758.
    [21] Huang Y, Ma X, Liang G, et al. Adsorption behavior of Cr(VI) on organic-modified rectorite[J]. Chem. Eng. J., 2008, 138(1-3): 187~193.
    [22] Kapoor A, Vraraghavan T. Fungal biosorption-an alternative treatment option for heavy metal bearing wastewaters: review[J]. Biotechnol. Prog., 1995, 13(1): 60~70.
    [23] Ecans M N. Hexavalent chromium reduction by baxollus sp in a packed-bed bioreactor[J]. Environ. Sci. Technol., 1997, 31(5): 1446~1453.
    [24] Kabava N, Arda M, Trochimczukc A, et al. Removal of chromate by solvent impregnated resins (SIRs) stabilized by coating and chemical crosslinking. I. Batch-mode sorption studies[J]. Reactive and Func. Polym., 2004, 59(1): 9~14.
    [25] Wang K Y, Chung T-Sh. Fabrication of polybenzimidazole (PBI) nanofiltration hollow fiber membranes for removal of chromate[J]. J. Membrane Sci., 2006, 281(1-2): 307~315.
    [26] Zouboulis A I, Loukidou M X, Matis K A. Biosorption of toxic metals from aqueous solutions by bacteria strains isolated from metal-polluted soils[J]. Process Biochem., 2004, 39(8): 909~916
    [27]马荣骏.工业废水的治理[M].长沙:中南工业大学出版社, 1991.
    [28] Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw[J]. Water Res., 2002, 36(11): 2824~2830.
    [29] Namasivayam C, Kavitha D. Removalof congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste[J]. Dyes Pigment, 2002, 54(1): 47~58.
    [30] Wong Y C, Szeto Y S, Cheung W H, et al. Equilibrium studies for acid dye adsorption onto chitosan[J]. Langmuir, 2003, 19(19): 7888~7894.
    [31] Orthman J, Zhu H Y, Lu G Q. Use of anion clay hydrotalcite to remove coloured organics from aqueous solutions[J]. Sep. Purif. Technol. 2003, 31(1): 53~59.
    [32] Chiou M S, Li H Y. Adsorption behavior of reactive dye in aqueous solution on chemical cross-linked chitosan beads[J]. Chemosphere, 2003, 50(8): 1095~1105.
    [33] Ho K Y, McKay G, Yeung K L. Selective adsorbents from ordered mesoporous silica[J]. Langmuir 2003, 19(7): 3019~3024.
    [34] Dogan M, Alkan M. Adsorption kinetics of methyl violet onto perlite[J]. Chemosphere, 2003, 50(4): 517~528.
    [35] Blackburn R S. Natural polysaccharides and their interactions with dye molecules: applications in Effluent Treatment[J]. Environ. Sci. Technol., 2004, 38(18): 4905~4909.
    [36] Allen S J, McKay G, Porter J F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems[J]. J. Colloid Interface Sci., 2004, 280(2): 322~333.
    [37] Campbell V E, Chiarelli P A, Kaur S, et al. Coadsoprtion of a polyanion and an azobenzene dye in self-assembled and spin-assembled polyelectrolyte multilayers[J]. Chem. Mater., 2005, 17(1): 186~190.
    [38] Aksu Z, Tezer S. Biosorption of reactive dyes on the green alga Chlorella vulgaris[J]. Process Biochem., 2005, 40(3-4): 1347~1361.
    [39] Yan Y M, Zhang M N, Gong K P. Adsorption of methylene blue dye onto carbon nanotubes: a route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite[J]. Chem. Mater., 2005, 17(13): 3457~3463.
    [40] Hu Q H, Qiao S Z, Haghseresht F. Adsorption study for removal of basic red dye using bentonite[J]. Ind. Eng. Chem. Res. 2006, 45(2): 733~738.
    [41] Dubey S P, Gopal K. Adsorption of chromium(VI) on low cost adsorbents derived from agricultural waste material: a comparative study[J]. J. Hazard. Mater., 2007, 145(3): 465~470.
    [42] Hu Z, Lei L, Li Y. Chromium adsorption on high-performance activated carbons from aqueous solution[J]. Sep. Purif. Technol., 2003, 31(1): 13~18.
    [43]颐惕人,马季铭,戴乐蓉.表面化学[M].北京:科学出版社, 1999.
    [44] Namasivayam C, Kadirvelu K. Uptake of mercury (II) from wastewater by activated carbon from an unwanted agricultural solid byproduct: coirpith[J]. Carbon, 1999, 37(1): 79~84.
    [45] Rao M M, Ramesh A, Rao G P C, et a1. Removal of copper and cadmium from the aqueous solutions by activated carbon derived from ceiba pentandra hulls[J]. J. Hazard. Mater., 2006, 129(1-3): 123~129.
    [46] Gupta V K, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud an aluminium industry waste[J]. Water Res., 2001, 35(5): 1125~1134.
    [47]杨明平,傅勇坚.用有机膨润土吸附处理含铬(VI)废水的研究[J].材料保护, 2006, 39(2): 67~69.
    [48]张玉玲,张兰英,刘娜,等.霉菌吸附水体中Cr(VI)、Cd(II)离子研究[J].环境科学与技术, 2006, 29(1): 21~22, 71.
    [49] Dakiky M,Khamis M,Manassar A,et a1.Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents[J].Adv. Environ. Res., 2002, (6): 533~540.
    [50]王桂芳,包明峰,韩泽志.活性炭对水中重金属离子去除效果的研究[J],环境保护科学, 2004, 30(122): 26~29.
    [51] Chen D H, Li Z, Yu C, et al. Nonionic block copolymer and anionic mixed surfactants directed synthesis of highly ordered mesoporous silica with bicontinuous cubic structure [J]. Chem. Mater. 2005, 17(12): 3228~3234.
    [52] Fan J, Yu C, Lei J, et al. Low-temperature strategy to synthesize highly ordered mesoporous silicas with very large pores[J]. J. Am. Chem. Soc. 2005, 127(31): 10794~10795.
    [53] Templin M, Franck A, Chesne A D, et al. Organically modified aluminosilicate mesostructures from block copolymer phases[J]. Science, 1997, (278): 1795.
    [54] Yu K, Smarsly B, Brinker C J. Self-Assembly and Characterization of Mesostructured Silica Films with a 3D arrangement of isolated spherical mesopores[J]. Adv. Funct. Mater. 2003, 13(1): 47~52.
    [55] Ryoo R, Joo S H, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation[J]. J. Phys. Chem. B, 1999, 103(37): 7743~7746.
    [56]何大白,胡汉杰.海外高分子科学的新进展[M].北京:化学工业出版社, 1997. 9.
    [57] Chiefari J, Chong Y K, Ercole F, et al. Synthesis polymer by reversible addition-fragmentation chain transfer [J]. Macromolecule, 1998, 31(16): 5559~5562.
    [58] Assebras M, Pascual S, Polton A, et al. Synthesis of di and triblock copolymers of St and n-BA by ATRP[J]. Macromol. Rapid Commun., 1999, 20: 261~264.
    [59] Ying S K, Zhang Z B, Wang S R, et al. Novel fluorinated block copolymers for the construction of low energy surfaces[J]. Polym Prepr. 1999, 40(1): 1501~1502.
    [60]邹友思,邱志平,庄荣传,等.甲基丙烯酸丁酯和苯乙烯的原子转移自由基聚合[J].高分子学报. 1999, (2): 146~149.
    [61]刘兵,刘峰,罗宁,等.α-氯乙酰氧基大分子引发剂的合成及其引发原子转移自由基聚合[J].高等学校化学学报, 2000, 21(3): 454~459.
    [62] Xu Y J, Pan C Y. Block and starblock copolymers by mechanism transformation synthesis of PTHF-PSt-PTHF by the transformation of ATRP into CROP[J]. Polym. Sci. Part A: PolymChem., 2000, 38(23): 337~344.
    [63] Dai S, Liang C D, Hong K L, et al. Synthesis of a large-scale highly ordered porous carbon film by self-assembly of block copolymers[J]. Angew. Chem. Int. Ed. 2004, 43(43): 5785 ~5789.
    [64] Zhao D Y, Deng Y H. Ordered mesoporous silicas and carbons with large accessible pores templated from amphiphilic diblock copolymer poly(ethylene oxide)-b-polystyrene[J]. J. Am. Chem. Soc., 2007, 129(6): 1690~1697.
    [65] Stein A, Wang Z Y, Fierke M A. Functionalization of porous carbon materials with designed porearchitecture[J]. Adv. Mater., 2008, (20): 1-29.
    [66]郭卓,朱广山,辛明红,等.不同孔径的介孔碳分子筛对VB_(12)的吸附性质研究[J].高等学校化学学报, 2006, 27(1): 9~l2.
    [67] Darmstadt H, Roy C, Kaliaguine S, et al. Pore structure and graphitic surface nature of ordered mesoporous carbons probed by low-pressure nitrogen adsorption[J]. Micropor. Mesopor. Mat. 2003, 60(1): 139~149.
    [68] Jun S, Joo S H, Ryoo R, et al. Synthesis of new nanoporous carbon with hexagonally ordered mesostructure[J]. J. Am. Chem. Soc., 2000, 122(43): 10712~10713.
    [69] Lee J, Yoon S, Hyeon T, et al. Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors[J]. Chem. Commun., 1999, (149): 2177~2178.
    [70] Hartmann M, Vinu A, Chandrasekar G. Adsorption of vitamin E on mesoporous carbon molecular sieves[J]. Chem. Mater., 2005, 17(4): 829~833.
    [71] Darmstadt H, Roy C, Kaliaguine S, et al. Surface chemistry of ordered mesoporous carbons[J]. Carbon, 2002, 40(14): 2673~2683.
    [72] Lu A H, Li W C, Schmidt W, et al. Template synthesis of large pore ordered mesoporous carbon. Micropor. Mesopor. Mat. 2005, 80(1-3): 117~128.
    [73] Han S, Kim M, HyeonT. Direct fabrication of mesoporous carbons using in-situ polymerized silica gel networks as a template[J]. Carbon, 2003, 41(8): 1525~1532.
    [74] Lee J, Han S, Hyeon T. Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates[J]. J. Mater. Chem., 2004, (14): 478~486.
    [75] Vinu A, Hossain K Z, Kumar G S. Adsorption of L-histidine over mesoporous carbon molecular sieves[J]. Carbon, 2006, 44(3): 530~536.
    [76] Wan Y, Yang H F, Zhao D Y.“Host-Guest”chemistry in the synthesis of ordered nonsiliceous mesoporous materials[J]. Acc. Chem. Res., 2006, 39(7): 423~432.
    [77] Tanaka S, Nishiyama N, Egashira Y, et al. Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite[J]. Chem. Commun., 2005, (16): 2125~2127.
    [78] Meng Y, Gu D, Zhang F Q. Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfactant templating and direct transformation[J]. Angew. Chem. Int. Ed., 2005, 44(43): 7053~7059.
    [79] Liang C D, Dai S. Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction[J]. J. Am. Chem. Soc., 2006, 128(16): 5316~5317.
    [80] Meng Y, Gu D, Zhang F Q, et al. A family of highly ordered mesoporous polymer resin and carbon structures from organic?organic self-assembly[J]. Chem. Mater., 2006, 18(18): 4447~4464.
    [81] Liu R L, Shi Y F, Wan Y, et al. Triconstituent co-assembly to ordered mesostructured polymer-silica and carbon-silica nanocomposites and large-pore mesoporous carbons with high surface areas[J]. J. Am. Chem. Soc., 2006, 128(35): 11652~11662.
    [82] Wan Y, Shi Y F, Zhao D Y. Designed synthesis of mesoporous solids via nonionic-surfactant-templating approach[J]. Chem. Commun., 2007, (10): 897~926.
    [83] Wan Y, Shi Y F, Zhao D Y. Supramolecular aggregates as templates: ordered mesoporous polymers and Carbons[J]. Chem. Mater., 2008, 20(3): 932~945.
    [84] Wan, Y, Qian X, Jia N Q, et al. Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon[J]. Chem. Mater., 2007, 20(3): 1012~1018.
    [85]袁勋,柳玉英,禚淑萍,等.有序介孔炭的合成及液相有机大分子吸附性能研究[J].化学学报, 2007, 65(17): 1814~1820.
    [86]郭卓,袁悦.介孔碳CMK-3对苯酚的吸附动力学和热力学研究[J].高等化学学报, 2007, 28(2): 289~292.
    [87] Li Y H, Di Z C, Ding J, et al. Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res., 2005, 39(4): 605-609.
    [88] Li Y H, Di Z C, Ding J, et al. Removal of heavy metals from aqueous solutions by carbon nanotubes: kinetic and equilibrium studies[J]. J. Environ. Sci., 2004, 16(2): 208-211.
    [89] Rumi C, Takanori W, Katsutoshi I, et al. Evaluation of wheat straw and barley straw carbon for Cr(VI) adsorption[J]. Sep. Purif. Technol. 2009, 65(3): 331~336.
    [90]黄孝华,张海良,王霞瑜. PEO-b-PS两亲性嵌段共聚物的合成与表征[J].精细化工中间体, 2005, 35(3): 33~54.
    [91] Sun X Y, Zhang H L, Huang X H, et al. Synthesis of poly(ethylene oxide)-block-poly(methyl methacrylate)-block-polystyrene triblock copolymers by two-step atom transfer radical polymerization[J]. Polymer, 2005, 46(14): 5251~5257.
    [92] Deng Y H, Liu C, Gu D, et al. Thick wall mesoporous carbons with a large pore structure templated from a weakly hydrophobic PEO–PMMA diblock copolymer[J]. J. Mater. Chem., 2008, (18): 91–97.
    [93] Feng X, Fryxell G E, Wang L Q, et al. Functionalized monolayers on ordered mesoporous supports[J]. Science, 1997, 276: 923~926.
    [94] Mercier L, Pinnavaia T J. Heavy metal ion adsorbents formed by the grafting of a thiol functionality to mesoporous silica molecular sieves: factors affecting Hg(II) uptake[J]. Environ. Sci. Technol., 1998, 32(18): 2749~2754.
    [95] Zhuang X, Wan Y, Feng C M, et al. Highly efficient adsorption of bulky dye molecules in wastewater on ordered mesoporous carbons[J]. Chem. Mater., 2009, 21(4): 706~716.
    [96]祝建中,杨嘉.有序介孔炭合成、改性及其对汞离子的吸附性能[J].新型炭材料, 2008, 23(3): 221~227.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700